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Abstract

The major contribution of this paper is in de-
signing an eÆcient parallel algorithm for rectan-
gular partitioning on the binary image. Based
on the recon�gurability and power of the recon-
�gurable meshes, a constant time algorithm for
rectangular partitioning for an N � N binary
image using N � N processors is derived. For
applications of this algorithm, an approach for
compressing and decompressing binary images
is also proposed. In the sense of the product
of time and the number of processors used, our
algorithms are time and cost optimal.

1 Introduction

Binary image representation techniques are
mainly classi�ed into three categories, namely
tree, string and set of codes [12]. The set of cod-
ing is a very compact representation scheme. In
the set of code type of representation, the image
is represented as a set of codes, where each code
represents a corresponding region of the image.
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Linear quadtree [4], interpolation-based binary
tree [11], rectangular coding [1], blocking cod-
ing [16], and image block representation [13] fall
in this category. This type of image represen-
tation has many applications because it saves
much space and basic image operations can be
eÆciently performed.

Region-based representation of images is an
important issue in image processing, comput-
er vision and in other �elds. Previously, many
methods had been proposed to represent an
N � N binary image as a number of rectan-
gular regions with black pixels (i.e. 1's) in-
stead of representing it by a 2-D array [1, 9, 13].
We refer these methods as rectangle-based rep-
resentations. These algorithms partition the
black pixels of the input image into a set of
non-overlapping rectangular regions. The most
important characteristic of the rectangle-based
representation is that a perception of image
parts greater than a pixel and all the image op-
erations on the pixels belonging to a rectangle
may be substituted by a simple operation on
the rectangle. Therefore, the space and time
complexities of applications fully depend on the
cardinality of the set of rectangular regions. In
the worst case, each rectangular region consists
of only one pixel. Like the chessboard image,
the number of rectangular regions is N2=2. In
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Figure 1: Rectangle Ri is described by the co-
ordinates of its two opposite corners.

most cases, however, the rectangle-based rep-
resentations are superior to quadtree represen-
tation and interpolation-based binary tree rep-
resentation, because the number of rectangular
regions is signi�cantly smaller than the number
of nodes. Thus, using rectangle-based represen-
tation, the computational complexity of image
processing can be reduced signi�cantly.
Given an N �N binary image, the rectangle-

based representation of it is a set of non-
overlapping rectangles that completely cover the
black pixels and it can be de�ned as follows.
These rectangles have their edges parallel to the
image axes and contain an integer number of
black pixels. Let the rectangles denoted by Ri,
0 � i < r, where r is the number of rectan-
gles. Only the two locations of any two op-
posite corners of each rectangle would be suf-
�cient to represent the whole rectangle. That
is, Ri = (xi; x

0

i; yi; y
0

i), where (xi; yi) and (x0i; y
0

i)
are the coordinates of the top left corner and
the bottom right corner of rectangle Ri, respec-
tively, as shown in Figure 1. For example, the
image shown in Figure 2(a) can be described by
non-overlapping rectangles, and rectangle Ri,
0 � i < r, can be represented by (xi; x

0

i; yi; y
0

i) or
(xi; yi; l; h), where li and hi represent the length
and height of rectangle Ri, respectively (see Fig-
ure 2(b)).
Most image processing problems are compu-
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Figure 2: (a) Binary image rectangular parti-
tioning. (b) Rectangle-based representation for
the original image, where each rectangle is rep-
resented by the coordinates of the top left corner
and its length and height.



tationally intensive and require parallel process-
ing. For many applications, it is impossible
to design a real-time image processing system
if only a single processor is used. Instead of
using a single processor, researchers try to en-
hance the computation power through multipro-
cessors. Recently, Lee and Horng et al. [5] de-
rived a constant time parallel quadtree building
algorithm for a given image based on a speci�ed
space-�lling order.

The most important thing in rectangle-based
algorithms is to extract the non-overlapping
rectangles for the given image. In this paper,
we will design an eÆcient parallel algorithm for
building the rectangle-based representation of
the given image. Based on the recon�gurabil-
ity and power of the recon�gurable meshes, a
constant time algorithm for this problem using
N �N processors is derived. In the sense of the
product of time and the number of processors
used, our algorithm is time and cost optimal.
To the best of our knowledge, there were no
constant time algorithms before for this prob-
lem.

The rest of this paper is organized as follows.
We give a brief introduction to the recon�g-
urable mesh in Section 2. Section 3 develops our
parallel algorithm for rectangular partitioning.
In Section 4, an example of rectangular parti-
tioning application is addressed. We apply it to
perform image compression and decompression.
Finally, some concluding remarks are included
in the last section.

2 Recon�gurable Mesh

The recon�gurable mesh [8] is used as the com-
putational model throughout this paper. An
N � N recon�gurable mesh consists of N � N
identical processors arranged in a 2-D grid. The
processor located at (i; j); 0 � i; j < N , is de-
noted by Pi;j . Each processor has four ports
denoted by N, S, E and W. Any con�guration
of the bus system is derivable by properly estab-
lishing the local connection among ports within
each processor. The interconnection among the
four ports of a processor can be dynamically
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Figure 3: (a) A 4 � 4 recon�gurable mesh. (b)
The allowed switch connection.

con�gured to suit computational needs during
the execution of algorithms. It also allows us
to reset (disconnect) the local connection. If all
local connections are disconnected, the recon-
�gurable mesh is functionally equivalent to the
mesh-connected computers.

We assume that each processor has a constant
number of registers or local memory each of size
O(logN) bit. We also assume that a processor
can determine the �rst/last zero/nonzero bit in
a register and perform standard arithmetic and
Boolean operations in a unit of time. The recon-
�gurable mesh is assumed to be operated in a s-
ingle instruction multiple data streams (SIMD)
model. That is, for a time unit the same in-
struction is broadcast to all enabled processors,
which execute it and wait for the next instruc-
tion. Each instruction can contain setting lo-
cal connections, performing an operation men-
tioned above, broadcasting a value on a bus, or
receiving a value from a speci�ed bus. The reg-
ular structure of the recon�gurable mesh makes
it suitable for VLSI implementation [6]. In fac-
t, it is easy to see that the recon�gurable mesh
can be used as a universal chip capable of sim-
ulating any equivalent architecture without the
loss of time.

An example for a 2-D 4 � 4 recon�gurable
mesh is shown in Figure 3(a). Some allowed
local connections of a processor are shown in
Figure 3(b). We assume that the setting of
the local connection is destructive in the sense
that setting a new pattern of connections de-



stroys the previous one. If there is no collision,
it allows multiple processors to broadcast data
on the buses simultaneously. According to oth-
er related models [2, 6, 8, 15], we assume that
the communication time along a bus takes O(1)
time. The YUPPIE (Yorktown Ultra-Parallel
Polymorphic Image Engine) [6], GCN (Gated-
Connection Network) [14] and PPA (Polymor-
phic Processor Array) [7] multiprocessor sys-
tems indicate that this is a reasonable hypothe-
sis practically. Due to these developments, the
recon�gurable mesh is likely a feasible architec-
ture for parallel processing.

The I/O loading time including download and
upload is fully dependent on how complex the
I/O interface between processors and peripher-
als will be. It is rather diÆcult to estimate ac-
curately how much I/O time should be included
to the time complexity of the algorithm. There-
fore, we only sum up the computation time of
processors and the communication time among
processors as the time complexity of the pro-
posed algorithm. This assumption has also been
used by many researchers [2, 3, 6, 8, 15].

As for easily presenting our algorithms, let
var(i; j) and ary(i; j)[k; l] denote the local
variable var (memory or register) and the lo-
cal array ary respectively in a processor with
index (i; j). For example, sum(0; 1) and
rect(0; 1)[k; l] are a local variable sum and a lo-
cal array rect of processor P0; 1.

3 Rectangular Partitioning

As mentioned above, there were several ap-
proaches proposed to partition the input image
into a set of non-overlapping rectangles. Theo-
retically, an optimal partition algorithm must
decompose the original image into the mini-
mum number of non-overlapping rectangles [10].
Unfortunately, the computational complexity of
optimal rectangular partitioning algorithm is
signi�cant and it is hard to implement it. There-
fore, in practice, a simple and suboptimal al-
gorithm is more valuable than an optimal one
which is complex and hard to be implemented.
Especially, it is important to design a fast sub-

optimal algorithm in the real time applications.
This problem can be overcome by using parallel
processing systems. The sequential algorithm-
s proposed previously scanned the input image
in a raster format and extracted the rectangles
recursively. If we parallel these algorithms s-
traightforwardly, it requires 
(logN) time. In
this section, based on the recon�gurability and
power of the recon�gurable mesh, a constant
time and cost optimal algorithm for rectangu-
lar partitioning on a binary image can be de-
rived. Given an N �N binary image B, assume
each pixel of it can be either a black pixel or
a white pixel. In the ensuing discussion, with-
out loss of generality, it is assumed that initially
the index and label of pixel (i; j), 0 � i; j < N ,
are identical and equal to i � N + j. The par-
allel rectangular partitioning algorithm consists
of three major steps.

1: For each row, connect the bus of the pro-
cessor which contains black pixel relative
to its previous processor (according to the
column index order) having black pixel and
disconnect it, otherwise. In this way, two
processors with the black pixels will be con-
nected together. After that, several sub-
buses can be constructed which represent
the corresponding rectangles with one unit
of height on each row. Then, label each
rectangle with the minimum index of the
pixel to which it belongs. Using the largest
column index and the smallest column in-
dex of each sub-bus, the length (or inter-
val) of the newly extracting rectangle can
be calculated.

2: The extracted rectangles then can be ex-
tended by merging the adjacent rectangles
along the y-axis according to the follow-
ing criterion: the adjacent rectangles have
the same intervals, i.e. their correspond-
ing sub-buses have the same x-coordinates.
Then, relabel each newly extracting rect-
angle. The pixels with the same label will
form a rectangle.

3: For each newly extracting rectangle, the
pixel whose index is equal to its label is



located at the top left corner. Calculating
the height of the newly extracting rectan-
gle, the bottom right corner of each extract-
ed rectangle can be found.

For the sake of simplicity, the input image B
is initially stored in the local variable b(i; j)
of processor Pi; j, 0 � i; j < N . Let the da-
ta structure of a rectangle consist of four �elds
x; y; l and h; respectively. That is, the coordi-
nates of the top left corner of the rectangle are
represented by x and y, the length and height
of the rectangle are represented by l and h, re-
spectively. The �nal result is stored in the lo-
cal array rect(i; j)[i; j; h; l] of processor Pi; j,
0 � i; j < N . The detailed algorithm for
the image rectangular partitioning (RECT) is
presented as follows. From Figure 2, we know
that the input image can be partitioned into �ve
non-overlapping rectangles. Based on the image
shown in Figure 2, where N = 8, an illustration
of parallel rectangular partitioning algorithm is
shown in Figure 4.

Algorithm RECT

INPUT: An N � N binary image. Download
each binary image pixel b(i; j); 0 �
i; j < N , to processor Pi; j , respec-
tively.

OUPUT: Rectangles are stored
in rect(i; j)[i; j; h; l] of processor Pi; j,
0 � i; j < N .

// Initially, assume that the label lb(i; j) of
pixel b(i; j), 0 � i; j < N , is equal to its index
id(i; j). //

1: // Partition and label the rectangles for
each row. //

1.1: Processor Pi; j ; 0 < i < N , 0 � j <
N , establishes the local connection
WE if b(i; j) = b(i�1; j) = 1; discon-
nects the local connection, otherwise.
After that, several sub-buses will be
constructed on each row, and each
sub-bus contains a piece of chained
black pixels.

1.2: For each sub-bus, the leftmost pro-
cessor broadcasts its label lb and col-
umn index x to the remaining pro-
cessors; also the rightmost processor
broadcasts its column index x0 to the
remaining processors.

1.3: All processors on each sub-bus update
its label by lb received in Step 1.2 and
calculate the interval v = [x; x0] and
length l = x0 � x+ 1.

2: // Merge the adjacent rectangles along the
y-axis. //

2.1: Processor Pi; j ; 0 � i < N , 0 <
j < N , establishes the local connec-
tion NS if b(i; j) = b(i; j�1) = 1 and
v(i; j) = v(i; j�1); disconnects the lo-
cal connection, otherwise. After that,
several sub-buses will be constructed
on each column. Each sub-bus con-
tains a piece of chained black pixels
with the same interval.

2.2 For each sub-bus, the topmost proces-
sor broadcasts its label lb and row in-
dex y to the remaining processors; also
the bottommost processor broadcasts
its row index y0 to the remaining pro-
cessors.

2.3 All processors on each sub-bus update
its label by lb received in Step 2.2 and
calculate the length h = y0 � y + 1.

3: Processor Pi; j ; 0 � i; j < N , whose la-
bel and index are identical (i.e. lb(i; j) =
id(i; j)), is the top left corner of an extract-
ed rectangle. Set rect(i; j) = (i; j; l; h).

Theorem 1 The recon�gurable mesh of size

N � N extracts the non-overlapping rectangles

of an N �N binary image in constant time.

Proof: Step 1 identi�es each piece of the con-
tinuous black pixels. Step 2 �nds the possible
block size of a rectangle for the continuous black
pixels. In Step 2, continuous rectangles each
with one unit of height and with the same in-
terval are merged to form a new rectangle of



larger size along the y-axis. The newly extract-
ed rectangle consists of continuous black pixels
(i.e. no white pixels within them), since the in-
tervals of the merged rectangles each with one
unit of height are identical. After Step 1, the
labels of continuous black pixels are updated
except the leftmost corner of each piece of con-
tinuous black pixels. After Step 2, the labels
of black pixels of the newly extracted rectangle
are updated except the topmost piece of con-
tinuous black pixels of it. Therefore, the label
of the newly extracted rectangle is equal to the
label of the topmost piece of continuous black
pixels of it, and this is equal to the index of the
leftmost corner of the topmost piece of contin-
uous black pixels. Hence, the top left corner of
the extracted rectangle is located at processor
P (i; j) whose label is never updated.

It is clear that every step of the proposed algo-
rithm takes only constant time. Thus the time
complexity is O(1). Q:E:D:

4 Application

In this section, we use the parallel rectangular
partitioning algorithm RECT to describe an ap-
proach for compressing a given binary image in-
to a �le and recovering it using the correspond-
ing decompression algorithm.

Let the data structure of a rectangle consist
of four �elds x; y; l and h; respectively. The
coordinates of the top left corner of the rectan-
gle are represented by x and y: The length and
height of the rectangle are represented by l and
h, respectively.

Algorithm COMPRESS:

Using the algorithm RECT addressed in Sec-
tion 3, we can create a rectangle-based represen-
tation for the input image shown in Figure 2(a)
and store it into a �le denoted as COMP. For
example, as shown in Figure 4(d), the record-
s stored in �le COMP are (3,0,5,2), (0,1,2,2),
(4,2,3,4), (0,3,3,3) and (3,6,5,2), respectively. A
coordinate needs logN bits. Since the length
(height) is equal to x0� x+1 (y0� y+1), �eld-
s l and h require log(N � x) and log(N � y)

bits, respectively, where x0 and y0 are the coor-
dinates of the bottom right corner. Hence, the
total number of bits required for �le COMP is
r(2 logN + log(N �x)+ log(N �y)) bits, where
r is the number of rectangles.

Algorithm DECOMPRESS:

Input: Download the records of �le COMP to
the corresponding processors, respectively.
Ouput: The pixels of the original image in an
N �N recon�gurable mesh.

1: // Restore the pixel color of the top left
corner of each rectangle. //
Processor Px;y, 0 � x; y < N , sets b(x; y) =
1, if it contains record rect(x; y)[x; y; l; h];
b(x; y) = 0, otherwise.

2: // Establish the row buses. //
Set the local switch of processor Pi;j, 0 �
i; j < N , to connect processors Pi�1;j and
Pi+1;j together, if b(i; j) = 0; reset it, oth-
erwise. After that, several sub-buses can be
constructed whose leftmost processor con-
tains the top left corner of the correspond-
ing rectangle on each row.

3: Processor Px;y, 0 � x; y < N , with
b(x; y) = 1 writes x, l and h on E port.
Then the data will be broadcast rightward
and processor Pi;j, 0 � i; j < N , reads the
data bus from E port and calculates the
distance d(i; j) between itself and proces-
sor Px;y: That is, d(i; j) = i� x+ 1.

4: // Restore the pixel color of the top edge
of each rectangle. //

Processor Pi;j , 0 � i; j < N , sets b(i; j) = 1,
if d(i; j) � l; b(i; j) = 0, otherwise.

5: // Establish the column buses. //
Set the local switch of processor Pi;j, 0 �
i; j < N , to connect processors Pi;j�1 and
Pi;j+1 together, if b(i; j) = 0; reset it, oth-
erwise. After that, similarly to Step 2, sev-
eral sub-buses can be constructed on each
column.



6: Processor Px;y, 0 � x; y < N , with
b(x; y) = 1 writes y and h on S port. Then
the data will be broadcast downward and
processor Pi;j , 0 � i; j < N , reads the da-
ta bus from S port and calculates the dis-
tance d0(i; j) between itself and processor
Px;y: That is, d

0(i; j) = j � y + 1.

7: // Restore the original image. //

Processor Pi;j , 0 � i; j < N , sets b(i; j) =
1, if d0(i; j) � h; b(i; j) = 0, otherwise.
Then, the original image is reconstructed
completely.

It is clear that every step of the proposed al-
gorithm takes only constant time. This leads to
the following theorem.

Theorem 2 Given an N � N binary image,

the image compression and decompression can

be performed in constant time using rectangular

partitioning technique on a recon�gurable mesh

of size N �N .

5 Concluding Remarks

Due to its simplicity and regularity, a mesh-
connected computer (MCC) is a well-known es-
tablished multiprocessing system. Although the
computation power is somewhat increased in the
MCC, it is confronted with the tedious commu-
nication time for global communication. There
are two drawbacks of the MCC: �xed architec-
ture and long communication diameter. These
two drawbacks can be overcome by equipping it
with various types of bus systems. Recently, the
recon�gurable networks have received much at-
tention from researchers because they can over-
come the drawbacks of the MCC.

There are many types of recon�gurable net-
works, the recon�gurable mesh not only solves
the global communication problem but also pro-
vides the run time recon�gurability. Based on
the recon�gurability and power of the recon�g-
urable mesh, we use N � N processors to de-
sign a constant time algorithm for constructing
a rectangle-based representation for an N � N

binary image. We also successfully use this algo-
rithm to describe constant time algorithms for
image compression and decompression. Com-
pared to that of Lee and Horng et al. [5], our
method is better since ours do not need any pre-
processing time. In practice, the preprocessing
time proposed in [5] requires O(logN) time.
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Figure 4: An illustration of algorithm RECT.
(a) The row bus partitioning, after Step 1.1. (b)
The value of (lb; x; x0; l) of each sub-bus, after
Step 1.3. (c) The value of (lb; y; y0; h) of each
sub-bus, after Step 2.3. (d) Each extracted rect-
angle is described by (x; y; l; h) and stored in
rect on the top left corner of the extracted rect-
angle, the �nal result.


