
FAULT-FREE RING EMBEDDING IN FAULTY WRAPPED
BUTTERFLY GRAPHS ∗

Chang-Hsiung Tsai, Tyne Liang and Lih-Hsing Hsu

Department of Computer and Information Science
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Email: lhhsu@cc.nctu.edu.tw

ABSTRACT

In this paper, we study cycle embedding in a faulty
wrapped butterfly BFn with at most two faults in vertices
and/or edges. Let F be a subset of V (BFn)∪E(BFn) with
|F | ≤ 2. Let fv denote |F ∩ V (BFn)|. In this paper, we
prove that BFn −F contains a cycle of length n×2n−2fv.
Moreover,BFn − F contains a cycle of length n× 2n − fv
if n is an odd integer. In other words, BFn − F contains a
hamiltonian cycle if n is an odd integer.

1 INTRODUCTION

Performance of the distributed system is significantly de-
termined by the choice of the network topology. The hyper-
cube (binary n-cube) is one of the most popular interconnec-
tion networks. It has been used to design various commercial
multiprocessor machines. One basic drawback with hyper-
cubes is that the degree of nodes increases with the number
of nodes. Hence it is not suitable to apply hypercubes to
the area layout from the viewpoint of VLSI implementation.
Among all networks of fixed degrees, wrapped butterfly net-
work is one of the most promising networks due to its nice
topological properties. On the other hand, cycle (ring) con-
tains several attractive properties such as simplicity, exten-
sibility, and feasible implementation. Hence embedding a
cycle into wrapped butterfly network has received many re-
searchers’ efforts in recent years [1, 3, 5, 6, 8]. To embed
a cycle into a faulty butterfly network, it is desirable to iso-
late those faulted components from the rest ones so that a
maximal-length cycle can be still embedded.

Assume that F ⊂ V (BFn) ∪ E(BFn) be the fault set
with |F | ≤ 2. In [6], Vadapalli and Srimani verified that
BFn − F contains a cycle of length n × 2n − 2 if F is a
set with only one vertex and that BFn − F contains a cy-
cle of length n × 2n − 4 if F is a set with two vertices.
In [3], Hwang and Chen proved that there still exists a cy-
cle of length n × 2n in a BFn − F where F is a subset of
E(BFn). In other words, BFn − F remains hamiltonian
with at most two edges faults. In the previous study of cycle
embedding into wrapped butterfly, faults are limited into ei-
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ther node faults or edge faults. However some faults on both
nodes and edges may occur. Therefore we want to improve
the results of [3, 6]. We use fv to denote |F ∩ V (BFn)|. In
this paper, we prove thatBFn−F contains a cycle of length
n×2n−2fv. Moreover,BFn−F contains a cycle of length
n× 2n − fv if n is an odd integer. In other words,BFn −F
contains a hamiltonian cycle if n is an odd integer.

In the following section, we discuss some properties of
the wrapped butterfly graphs. In section 3, we first present
a short proof that BFn − F remains hamiltonian if F is a
subset of E(BFn). Then we prove that BFn −F contains a
cycle of length n× 2n − 2 if F is a set with one vertex and
one edge. Finally, we prove that BFn − F contains a cycle
of length n× 2n − fv if n is an odd integer.

2 WRAPPED BUTTERFLY AND ITS PROPERTIES

A graph G = (V,E) consists of a finite set V and a sub-
set E of {(u, v) | u 
= v, (u, v) is an unordered pair of
elements of V }. We call V = V (G) the vertex set of G
and E = E(G) the edge set of G. Let F = V1

⋃
E1 for

E1 ⊂ E and V1 ⊂ V . We use G − F to denote the graph
G′ = (V − V1, (E − E1)

⋂
((V − V1) × (V − V1))). The

wrapped butterfly (butterfly for short) BFn is a graph
with n × 2n vertices such that each vertex is labeled
by 〈a0a1 . . . an−1, i〉 with 0 ≤ i ≤ n − 1 and aj ∈
{0, 1} for all 0 ≤ j ≤ n − 1. We say the vertex
〈a0a1 . . . an−1, i〉 is at level i. Edges of BFn are described
as follows. Node 〈a0a1 . . . ai . . . an−1, i〉 is adjacent to node
〈a0a1 . . . ai . . . an−1, (i+ 1) mod n〉 by a straight edge and
adjacent to node 〈a0a1 . . . āi . . . an−1, (i + 1) mod n〉 by a
cross edge.

Lemma 1 [4]
For any integer k with 0 ≤ k < n, the mapping σk from
V (BFn) into V (BFn) defined by σk(〈a0a1 . . . an−1, l〉) =
〈akak+1 . . . an−1a0a1 . . . ak−1, (l − k) mod n〉 is an auto-
morphism of BFn.

Similarly, we can easily obtain the following lemma.

Lemma 2 For any integer i with 0 ≤ i < n, the
mapping ϕi from V (BFn) into V (BFn) defined by



ϕi(〈a0a1 . . . an−1, l〉) = 〈a0a1 . . . āiai+1 . . . an−1, l〉 is an
automorphism of BFn.

Thus, we have the following corollary.

Corollary 1 BFn is vertex transitive.

In [5], Vadapalli et al. proposed a family of degree four
Cayley graphs, Gn. Later, Chen and Lau [2] point out that
Gn is isomorphic to BFn. Thus, we can combine all the
results ofGn and BFn.

Each vertex of Gn is represented by a circular permuta-
tion of n different symbols in lexicographic order, where the
n symbols are presented in either uncomplemented or com-
plemented form. Let dk, 0 ≤ k ≤ n − 1, denote the kth
symbol in the set of n symbols. We use the English alpha-
bets: thus for n = 3, d0 = a, d1 = b, and d2 = c. We
use tk to denote either dk or d̄k. Therefore, for n distinct
symbols, there are exactly n different cyclic permutations of
the symbols in lexicographic order. Moreover, each sym-
bol can be presented in either uncomplemented or comple-
mented form. So the vertex set of Gn has a cardinality of
n × 2n. If a0a1 . . . an−1 denotes the label of an arbitrary
vertex and a0 = tk for some integer k, then for all i and
0 ≤ i ≤ n − 1, we have ai = tl where l = k + i (mod n).
The edges ofGn are defined by the following four generators
in the graph:

g(tktk+1 . . . tn−1t0 . . . tk−2tk−1)
= tk+1 . . . tn−1t0 . . . tk−1tk,
f(tktk+1 . . . tn−1t0 . . . tk−2tk−1)
= tk+1 . . . tn−1t0 . . . tk−1 t̄k,
g−1(tktk+1 . . . tn−1t0 . . . tk−2tk−1)
= tk−1tk . . . tn−1t0 . . . tk−2, and
f−1(tktk+1 . . . tn−1t0 . . . tk−2tk−1)
= t̄k−1tk . . . tn−1t0 . . . tk−2.

In [7], Wei et al. point out the isomorphism maps
the vertex 〈a0a1 . . . an−1, k〉 of BFn into the vertex
tk . . . tn−1t0 . . . tk−1 of Gn, where ti = di if and only
if ai = 0, or ti = d̄i if and only if ai = 1. There-
fore, throughout this paper, the nodes of the butterfly graph
will be labeled in the form of 〈a0a1 . . . an−1, k〉 rather than
tk . . . tn−1t0 . . . tk−1. Therefore, the four generators g, g−1,
f and f−1 can be rewritten as follows:

g(〈a0a1 . . . an−1, k〉)
= 〈a0a1 . . . an−1, k + 1〉,
f(〈a0a1 . . . an−1, k〉)
= 〈a0a1 . . . ak−1ākak+1 . . . an−1, k + 1〉,
g−1(〈a0a1 . . . an−1, k〉)
= 〈a0a1 . . . an−1, k − 1〉, and
f−1(〈a0a1 . . . an−1, k〉)
= 〈a0a1 . . . ak−2āk−1ak . . . an−1, k − 1〉.

Hence the g-edges, (u, g(u)) or
(
u, g−1(u)

)
for some u ∈

V (BFn), correspond to the straight edges and the f -edges,
(u, f(u)) or

(
u, f−1(u)

)
for some u ∈ V (BFn), correspond

to the cross edges of BFn.

Lemma 3 f−1 (g(u)) = g−1 (f(u)) for any node u in
BFn.

Let u be any vertex of BFn. Obviously, gn(u) = u.
Moreover, 〈u, g(u), g2(u), . . . , gn(u) = u〉 forms a simple
cycle of length n, denoted by Cu

g . We call such cycle of
BFn a g-cycle at u. It is easy to see that Cv

g = Cu
g if and

only if v ∈ Cu
g . Thus all g-cycles form a partition of the

straight edges of BFn. There is no g-edge joining vertices
of two different g-cycles. Any f -edge joins vertices of two
different g-cycles. Obviously, (u, f(u)) joins vertices of Cu

g

and Cf(u)
g . The following lemma can be proved easily.

Lemma 4
(
g(u), g−1 (f(u))

)
is an f -edge joining vertices

of Cu
g and C

f(u)
g . Moreover, the

path 〈u, f(u), g−1 (f(u)) , g(u), u〉 forms a cycle of length
4.

Any Cu
g contains exactly one vertex at each level. In

particular, Cu
g contains exactly one vertex at level 0, say

〈a0a1 . . . an−1, 0〉. We use C(a0a1...an−1)
g as the name for

Cu
g . Now, we form a new graph BFG

n with all the g-cycles
of BFn as vertices, two different g-cycles are joined with an
edge if and only if there exists an f -edge joining them. The
vertex of BFG

n corresponding to Cu
g is denoted by C̄u

g . The
following theorem is proved in [5] [6].

Lemma 5 BFG
n is isomorphic to the n-dimensional hyper-

cube. Moreover,
the set of vertices adjacent to the vertex corresponding to
C

(a0a1...an−1)
g is the set of vertices corresponding to the g-

cycles in {C(ā0a1...an−1)
g , C

(a0ā1...an−1)
g , . . . C

(a0a1...ān−1)
g }.

Let h = (C̄u
g , C̄

v
g ) be any edge of BFG

n . We use X(h)
to denote the set of edges in BFn joining vertices of Cu

g

and Cv
g . Using standard counting technique, we have the

following two corollaries.

Corollary 2 Let h = (C̄u
g , C̄

v
g ) be any edge of BFG

n . Then
|X(h)| = 2. Moreover, the vertices of edges inX(h) induces
a 4-cycle in BFn.

Corollary 3 There is a unique g-cycle, namely Cf(u)
g , such

that edges of BFn joining vertices between Cu
g and Cf(u)

g

are exactly (u, f(u)) and
(
g(u), f−1 (g(u))

)
.

According to Corollaries 2 and 3, any edge h = (C̄u
g , C̄

v
g )

in BFG
n induces a unique 4-cycle in BFn, with two f -edges

and two g-edges. We use Xf (Cu
g , C

v
g ) to denote the set of

f -edges in this 4-cycle, andXg(Cu
g , C

v
g ) to denote the set of

g-edges in this cycle.



Lemma 6 Assume that T be any subtree of BFG
n . Let CT

g

denote the graph generated by the edge set

 ⋃

C̄u
g ∈V (T )

E(Cu
g ) ∪

⋃
(C̄u

g ,C̄v
g )∈E(T )

Xf (Cu
g , C

v
g )




−
⋃

(C̄u
g ,C̄v

g )∈E(T )

Xg(Cu
g , C

v
g ).

Then CT
g is a cycle of BFn of length n× |V (T )|.

Let u = 〈a0a1 . . . an−1, k〉 be any vertex of BFn.
We use ũ to denote the node 〈ā0ā1 . . . ān−1, k〉. Ob-
viously, fn(u) = ũ and f2n(u) = u. Moreover,
〈u, f(u), f2(u), . . . , f2n(u) = u〉 forms a simple cycle of
length 2n, denoted by Cu

f . It is easy to see that all f -cycles
form a partition of the cross edges of BFn. There is no f -
edge joining vertices of two different f -cycles. Any g-edge
joins vertices of two different f -cycles. The g-edge (u, g(u))
joins vertices of Cu

f andCg(u)
f . The following lemma can be

proved easily.

Lemma 7
(f(u), g−1(f(u))), (ũ, g(ũ)), (f(ũ), g−1(f(ũ))) are also g-

edges joining vertices of Cu
f and Cg(u)

f . Moreover, the paths
〈u, f(u), g−1 (f(u)) , g(u), u〉, and
〈ũ, f(ũ), g−1 (f(ũ)) , g(ũ), ũ〉, form two 4-cycles in BFn.

Any Cu
f contains exactly two vertex at each level. Sup-

pose that u is one of the vertex in Cu
f at level i. Obviously,

the other vertex in Cu
f at level i is ũ. Thus, Cu

f contains
exactly one vertex at level 0, say 〈a0a1 . . . an−1, 0〉 with

an−1 = 0. We use C(a0a1...an−2)
f as the name for Cu

g . Now,
we form a new graph BFF

n with all the f -cycles of BFn

as vertices, two different f -cycles are joined with an edge if
and only if there exists a g-edge joining them. The vertex of
BFF

n corresponding to Cu
f is denoted by C̄u

f . The following
theorem is proved in [5] [6].

Lemma 8 BFF
n is isomorphic to the (n − 1)-dimensional

folded hypercube. Moreover, the set of vertices ad-
jacent to the vertex corresponding to C(a0a1...an−2)

f is
the set of vertices corresponding to the f -cycles in
{C(ā0a1...an−2)

f , C
(a0ā1...an−2)
f , . . . C

(a0a1...ān−2)
f } ∪

{C(ā0ā1...ān−2)
f }.

Let h = (C̄u
f , C̄

v
f ) be any edge of BFF

n . We use Y (h)
to denote the set of edges of BFn joining vertices of Cu

f

and Cv
f . Using standard counting technique, we have the

following two corollaries.

Corollary 4 Let h = (C̄u
f , C̄

v
f ) be any edge of BFF

n . Then
|Y (h)| = 4. Moreover, the vertices of edges in Y (h) induce
two 4-cycles in BFn.

Corollary 5 There is a unique f -cycle, namely Cg(u)
f , such

that edges of BFn joining vertices between Cu
f and Cg(u)

f

are exactly (u, g(u)),
(
f(u), g−1 (f(u))

)
, (ũ, g(ũ)), and(

f(ũ), g−1 (f(ũ))
)
.

According to Corollaries 4 and 5, any edge h = (C̄u
f , C̄

v
f )

induces two 4-cycles in BFn. Let α be an assignment of
(C̄u

f , C̄
v
f ) ∈ E(BFF

n ) with one of the 4-cycles it induced.
We use Y α

f (Cu
f , C

v
f ) to denote the set of f -edges induced by

α(h) and Y α
g (Cu

f , C
v
f ) to denote the set of g-edges induced

by α(h). Hence |Y α
f (Cu

f , C
v
f )| = |Y α

g (Cu
f , C

v
f )| = 2.

Lemma 9 Assume that T is any subset of BFF
n . Let CT,α

f

denote the graph generated by the edge set

 ⋃

C̄u
f ∈V (T )

E(Cu
f ) ∪

⋃
(C̄u

f ,C̄v
f )∈E(T )

Y α
g (Cu

f , C
v
f )




−
⋃

(C̄u
f ,C̄v

f )∈E(T )

Y α
f (Cu

f , C
v
f ).

Then CT,α
f is a cycle of BFn of length 2n× |V (T )|.

In the following, we introduce three basic cycles B1, B2,
and B3.

The cycle B1 is constructed as follows: Let a1 =
〈00 . . . 0︸ ︷︷ ︸

n

, 1〉. Let P1 be the path a1, g(a1), . . ., gn−2(a1) =

a2. Obviously, a2 = 〈00 . . . 0︸ ︷︷ ︸
n

, n − 1〉, f(a2) =

〈00 . . . 0︸ ︷︷ ︸
n−1

1, 0〉 = a3, and f(a3) = 〈1 00 . . . 0︸ ︷︷ ︸
n−2

1, 1〉 = a4. Let

P2 be the path a4, g(a4), . . ., gn−1(a4) = a5. Obviously,
a5 = 〈1 00 . . .0︸ ︷︷ ︸

n−2

1, 0〉 and f(a5) = 〈1 00 . . .0︸ ︷︷ ︸
n−1

, n − 1〉 = a6.

Let P3 be the path a6, g−1(a6), . . ., g−(n−1)(a6) = a7. Ob-
viously, a7 = 〈1 00 . . .0︸ ︷︷ ︸

n−1

, 0〉 and f(a7) = a1. Then B1 is

〈a1 → P1 → a2, a3, a4 → P2 → a5, a6 → P3 → a7, a1〉.
Let W1 = V (Ca1

g ) ∪ V (Ca3
g ) ∪ V (Ca5

g ) ∪ V (Ca7
g ) and

W̄1 = {C̄a1
g , C̄

a3
g , C̄

a5
g , C̄

a7
g }.

The cycle B2 is constructed as follows: Let b1 =
〈00 . . . 0︸ ︷︷ ︸

n

, 1〉. Let Q1 be the path b1, g(b1), . . ., gn−2(b1) =

b2. Obviously, b2 = 〈00 . . . 0︸ ︷︷ ︸
n

, n − 1〉 and f−1(b2) =

〈00 . . . 0︸ ︷︷ ︸
n−2

10, n − 2〉 = b3. Let Q2 be the path b3, g−1(b3),

. . ., g−(n−3)(b3) = b4. Obviously, b4 = 〈00 . . . 0︸ ︷︷ ︸
n−2

10, 1〉

and f−1(b4) = 〈1 00 . . . 0︸ ︷︷ ︸
n−3

10, 0〉 = b5. Let Q3 be the

path b5, g(b5), . . ., gn−1(b5) = b6. Obviously, b6 =
〈1 00 . . .0︸ ︷︷ ︸

n−3

10, n−1〉 and f−1(b6) = 〈1 00 . . . 0︸ ︷︷ ︸
n−1

, n−2〉 = b7.



Let Q4 be the path b7, g(b7), g2(b7) = b8. Then b8 =
〈1 00 . . .0︸ ︷︷ ︸

n−1

, 0〉 and f(b8) = 〈00 . . . 0︸ ︷︷ ︸
n

, 1〉 = b1. Then B2 is

〈b1 → Q1 → b2, b3 → Q2 → b4, b5 → Q3 → b6, b7 →
Q4 → b8, b1〉. Let W2 = V (Cb1

g ) ∪ V (Cb3
g ) ∪ V (Cb5

g ) ∪
V (Cb7

g ) and W̄2 = {C̄b1
g , C̄

b3
g , C̄

b5
g , C̄

b7
g }.

Let 2 ≤ j ≤ d − 1. The cycle B3 is constructed
as follows: Let c1 = 〈00 . . . 0︸ ︷︷ ︸

n

, 1〉. Let R1 be the

path c1, g(c1), . . ., gj−2(c1) = c2. Obviously, c2 =
〈00 . . . 0︸ ︷︷ ︸

n

, j − 1〉 and f(c2) = 〈00 . . . 0︸ ︷︷ ︸
j−1

1 00 . . .0︸ ︷︷ ︸
n−j

, j〉 =

c3. Let R2 be the path c3, g−1(c3), . . ., g−j(c3) =
c4. Obviously, c4 = 〈00 . . .0︸ ︷︷ ︸

j−1

1 00 . . .0︸ ︷︷ ︸
n−j

, 0〉 and f(c4) =

〈1 00 . . .0︸ ︷︷ ︸
j−2

1 00 . . .0︸ ︷︷ ︸
n−j

, 1〉 = c5. Let R3 be the path c5,

g−1(c5), . . ., g−(n−j+1)(c5) = c6. Obviously, c6 =
〈1 00 . . .0︸ ︷︷ ︸

j−2

1 00 . . .0︸ ︷︷ ︸
n−j

, j〉 and f−1(c6) = 〈1 00 . . . 0︸ ︷︷ ︸
n−1

, j − 1〉 =

c7. LetR4 be the path c7, g−1(c7), . . ., g−(n−j+1)(c7) = c8.
Then c8 = 〈1 00 . . . 0︸ ︷︷ ︸

n−1

, 0〉 and f(c8) = 〈00 . . .0︸ ︷︷ ︸
n

, 1〉 = c1.

Then B3 is 〈c1 → R1 → c2, c3 → R2 → c4, c5 →
R3 → c6, c7 → R4 → c8, c1〉. Then, the length of B3 is
2n+ 4. LetW3 = V (Cc1

g ) ∪ V (Cc3
g ) ∪ V (Cc5

g ) ∪ V (Cc7
g )

and W̄3 = {C̄c1
g , C̄

c3
g , C̄

c5
g , C̄

c7
g }.

When n = 3, it is observed that b3 = b4 and c1 = c2. All
the vertices of Bi is a proper subset ofWi for every 1 ≤ i ≤
3. Moreover, the length of Bi is 3n for i = 1, 2.

3 CYCLE EMBEDDING IN A FAULTY WRAPPED
BUTTERFLY

In this section, we assume that F ⊂ V (BFn)
⋃
E(BFn)

with |F | ≤ 2. In the following lemmas, we just state the
results and omit the proofs.

Lemma 10 For any integernwith n ≥ 3,BFn−F is hamil-
tonian if F ⊂ E(BFn) and |F | = 2.

Lemma 11 Assume that n ≥ 3. Then BFn − F contains a
cycle of length n× 2n − 2 where F consists of a vertex and
an edge in BFn.

Lemma 12 For any odd integer n with n ≥ 3, BFn − F
is hamiltonian where F consists of a vertex and an edge in
BFn.

Lemma 13 For any odd integer n with n ≥ 3, BFn − F is
hamiltonian where F ⊂ V (BFn) and |F | = 2.

Since BFn is hamiltonian for all n ≥ 3, by lemmas 10,
11, 12, 13, and Vadapalli et. al. [6], we have the following
theorem.

Theorem 1 Assume that n ≥ 3, F ⊂ V (BFn)
⋃
E(BFn),

and |F | ≤ 2. Then BFn − F contains a cycle of length
n× 2n − 2|F ∩ V (BFn)|. Moreover, BFn − F contains a
hamiltonian cycle if n is an odd integer.
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