
FAULT–TOLERANT ALGORITHM FOR FAST

FOURIER TRANSFORM ON HYPERCUBES

Yu–Wei Chen Kuo–Liang Chung

Department of Computer and Department of Information Management and
Information Science Institute of Information Engineering
Aletheia University National Taiwan University of

Science and Technology
No. 32, Chen–Li Street, Tamsui, No. 43, Section 4, Keelung Road,
Taipei, 25103 Taiwan, R. O. C. Taipei, Taiwan 10672, R. O. C.
Email: ywchen@email.au.edu.tw Email: klchung@cs.ntust.edu.tw

ABSTRACT

This paper presents an efficient fault–tolerant al-
gorithm for Fast Fourier Transform (FFT) with
2n data on an n–dimensional hypercube with n−
1 faulty nodes in 9n − 15 communication steps
and O(n) computation steps. To the best of our
knowledge, this is the first time that such a fault–
tolerant algorithm for FFT on hypercubes is pro-
posed in the literature.

Keywords: Fast Fourier Transform (FFT), fault
tolerance, faulty hypercube, free dimensions, par-
allel algorithm.

1. INTRODUCTION

Fast Fourier Transform (FFT) is one of the most
useful algorithms in the community of computer
science and electrical engineering [?]. Hypercube
is one of the most versatile and popular networks
due to its low degree of diameter, good connec-
tivity, and symmetry [?, ?]. Therefore, how to
design an efficient FFT algorithm on hypercubes
is a significant research topic. Without providing
fault–tolerant capability, some efficient FFT algo-
rithms [?, ?, ?, ?] have been designed on hyper-
cubes. Considering faulty hypercubes, it is an im-

portant issue to design an efficient fault–tolerant
FFT algorithm and it leads to this research.

Consider an input sequence of 2n data and an
n–dimensional hypercube, Hn, with n − 1 faulty
nodes. Employing the free–dimension concept [?],
this paper presents an efficient fault–tolerant al-
gorithm for FFT with these 2n data on the faulty
Hn in 9n−15 communication steps and O(n) com-
putation steps. To the best of our knowledge, this
is the first time that such a fault–tolerant algo-
rithm for FFT on hypercubes is proposed in the
literature.

The remainder of this paper is organized as fol-
lows. The next section describes some prelimi-
naries. Section 3 presents our fault–tolerant al-
gorithm for FFT. Finally, some conclusions are
addressed in Section 4.

2. PRELIMINARIES

This section consists of three subsections. The
first subsection introduces some notations of hy-
percubes and the fault model used. The second
subsection describes the FFT algorithm on the
fault–free Hn. The third subsection reviews the
free–dimension (FD) concept [?] in hypercubes.
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2.1 Notations and Fault Model Used

An n–dimensional Hn has 2n nodes and n2n−1

edges. Each node in Hn is labeled by bnbn−1 · · ·
b2b1, bj ∈ {0, 1} for 1 ≤ j ≤ n, where j de-
notes the corresponding dimension. Two nodes
are connected via an edge if and only if their bi-
nary strings differ in exactly one bit. For exam-
ple, node bnbn−1 · · · bj+1bjbj−1 · · · b2b1 and node
bnbn−1 · · · bj+1b̄jbj−1 · · · b2b1 are adjacent along di-
mension j, where b̄j denotes the complement of bj .
Fig. 1 illustrates an H4.
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Fig. 1. An H4.

Hn can be partitioned into 2n−k SHk’s, where
each SHk is a k–dimensional subcube, spanned
by the same k dimensions. For example, H4 can
be partitioned into four SH2’s labeled by 00 ∗ ∗,
01∗∗, 10∗∗, and 11∗∗. Two SH2’s are adjacent if
their ternary representations differ in exactly one
symbol.

The fault model used in this paper follows the
total fault model [?]. In this fault model, it as-
sumes that the functions for computation and com-
munication in the faulty node are all lost.

2.2 FFT on a Fault–Free Hn

Consider an input sequence X =< X0,X1, · · · ,
XN−1 > of N = 2n data. The corresponding
discrete Fourier transform of the sequence X is
the sequence Y =< Y0, Y1, · · · , YN−1 >, where

Yi =
N−1∑

k=0

Xkw
ki, 0 ≤ i < N. (1)

In Equation (1) [?], w is the Nth complex root of

unity; that is, w = e2π
√−1/N , where e is the base

of the natural logarithm.

The basic concept of FFT algorithm is that
the computation for the discrete Fourier trans-
form with N data can be split into two discrete
Fourier transforms, each with N/2 data. There-
fore, Equation (1) can be rewritten as:

Yi =
N/2−1∑

k=0

X2kw2ki +
N/2−1∑

k=0

X2k+1w
(2k+1)i

=
N/2−1∑

k=0

X2ke2(2π
√−1/N)ki +

N/2−1∑

k=0

X2k+1w
ie2(2π

√−1/N)ki

=
N/2−1∑

k=0

X2ke2π
√−1ki/(N/2) +

wi
N/2−1∑

k=0

X2k+1e
2π

√−1ki/(N/2). (2)

Let w̄ = e2π
√−1/(N/2) = w2 which is the primitive

(N/2)th complex root of unity. Thus, Equation
(2) can be rewritten as:

Yi =
N/2−1∑

k=0

X2kw̄ki + wi
N/2−1∑

k=0

X2k+1w̄
ki. (3)

The FFT algorithm can be easily implemented
on Hn [?, ?]. Fig. 2 illustrates an FFT with 8 data
< X0,X1, · · · ,X7 > on a fault–free H3. Initially,
each node b3b2b1 for b3, b2, b1 ∈ {0, 1} in H3 holds
Xi for 0 ≤ i = b1b2b3 ≤ 7 as shown in the first row
in Fig. 2. For example, letting b3b2b1 = 100, node
4 holds X1. In Fig. 2, such an FFT with 8 (=23)
data performed on H3 takes three stages as shown
in the second, third, and fourth rows. In each
stage, each node does an exchange–compute (EC)
operation which is defined as: in Stage j for 1 ≤
j ≤ n, the pair nodes bnbn−1 · · · bj+1bjbj−1 · · · b2b1

and bnbn−1 · · · bj+1b̄jbj−1 · · · b2b1 on Hn exchange
their intermediate values and compute their new
intermediate values, respectively.



For example, in Stage 2 as shown in Fig. 2,
nodes 0 and 2 exchange their intermediate values
X0 + X4 and X2 + X6 and then compute their
new intermediate values X0 + X2 + X4 + X6 and
X0 + w4X2 + X4 + w4X6, respectively. An EC
operation takes one communication step and O(1)
computation steps. Finally, the desired result Yi

resides in node i (= b1b2b3) in H3. The interesting
readers are referred to [?, ?] for detail.
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Fig. 2. An FFT with eight data on
a fault–free H3.

In general, an FFT with N (=2n) data per-
formed on Hn takes n stages, i.e., n communica-
tion steps and O(n) computation steps [?, ?].

2.3 The Free–Dimension (FD) Concept

Previously, Raghavendra et al. [?] defined that a
dimension d in Hn is called a free dimension (FD)

if there is no pair of faulty nodes across a dimen-
sion d. For example, suppose the faulty nodes of
H4 in Fig. 1 are {0000, 1000, 1001, 1010} such that
there exists only one FD, i.e., dimension 3. Based
on the FD concept, they presented the following
result.

Lemma 1. [?] Given f faulty nodes, 0 ≤ f ≤ n,
Hn can be partitioned into 2f−1 SHn−f+1’s such
that each SHn−f+1 is spanned by the same n −
f +1 FDs and contains at most one faulty node.

In addition, they also presented a distributed
algorithm in O(n) for finding the FDs in the Hn

with f faulty nodes such that each fault–free node
can identify these FDs [?].

3. FAULT–TOLERANT ALGORITHM
FOR FFT

In this section, we present a fault–tolerant algo-
rithm for FFT with an input sequence X =<
X0,X1, · · · ,XN−1 > of N = 2n data on Hn with
n−1 faulty nodes in 9n−15 communication steps
and O(n) computation steps.

3.1 Two Preprocessing Steps: Relabeling
Process and Data Assignment

Before presenting the proposed algorithm, we first
relabel the faulty Hn. Using Lemma 1 and the
FD–finding algorithm [?], we can find two FDs,
say dimensions i and j, on the faulty Hn. Each
node bnbn−1 · · · bi+1bibi−1 · · · bj+1bjbj−1 · · ·
b2b1, bk ∈ {0, 1} and 1 ≤ j < i ≤ n, in the faulty
Hn is relabeled as bnbn−1 · · · bi+1bi−1 · · · bj+1bj−1

· · · b2b1bibj . For clarity, hereafter, we assume that
the label bnbn−1 · · · bi+1bi−1 · · · bj+1bj−1 · · · b2b1bibj

of each node is reindexed as bnbn−1 · · · b2b1 such
that the dimensions 1 and 2 are two FDs.

Because dimensions 1 and 2 are two FDs, by
Lemma 1, we know that each SH2 labeled by
bnbn−1 · · · b4b3∗∗ contains at most one faulty node.
Therefore, if node bnbn−1 · · · b2b1 in Hn is faulty,
then fault–free node bnbn−1 · · · b2b̄1 takes over the



task of the faulty node bnbn−1 · · · b2b1.

Consider an input sequence X =< X0,X1, · · · ,
XN−1 > of N = 2n data. Each Xi for 0 ≤ i = b1b2

· · · bn−1bn ≤ 2n − 1, bk ∈ {0, 1} and 1 ≤ k ≤ n,
is assigned to node bnbn−1 · · · b2b1 in Hn if such a
node is fault–free. If node bnbn−1 · · · b2b1 is faulty,
then Xi is assigned to node bnbn−1 · · · b2b̄1.

3.2 The Main Body of the Proposed Algo-
rithm

The basic concept of the proposed fault–tolerant
algorithm for FFT is described below. There are
n stages in the proposed algorithm. In Stage j for
1 ≤ j ≤ n, if both nodes bnbn−1 · · · bj+1bjbj−1 · · ·
b2b1 and bnbn−1 · · · bj+1b̄jbj−1 · · · b2b1 are all fault–
free, then they do the EC operations defined in
Subsection 2.2. After performing the EC opera-
tions, the fault–free nodes without obtaining the
new intermediate values must perform the update
operations to obtain the corresponding intermedi-
ate value for FFT at this stage. The detailed up-
date operation will be defined later. Continuing
this way, after performing n stages, the desired
Y =< Y0, Y1, · · · , YN−1 > will be obtained.

In Stage 1, if both nodes b3b2b1 and b3b2b̄1 are
all fault–free, then they do the EC operations. If
node b3b2b1 is fault–free and node b3b2b̄1 is faulty,
then node b3b2b1, which keeps two data sequen-
tially, computes the two corresponding interme-
diate values for FFT. Specifically, it is impossible
that both nodes b3b2b1 and b3b2b̄1 are all faulty
because dimension 2 and 1 are two FDs such that
each SH2 labeled by b3 ∗ ∗ contains at most one
faulty node. That is, each pair nodes contain
at most one faulty node. Consequently, Stage 1
takes one communication step and O(1) compu-
tation steps.

In Stage 2, if both nodes b3b2b1 and b3b̄2b1 are
all fault–free, then they first do the EC opera-
tions. Because node 011 (110) can not do the EC
operation with the faulty node 001 (100) whose
task is taken by node 000 (101), node 011 (110)

exchanges its own intermediate value X2 + w4X6

(X3+X7) with the intermediate value X0+w4X4

(X1 + X5) of node 000 (101). In addition, both
nodes 011 and 000 (110 and 101) compute their
new intermediate values. The above process is
called an update operation. It is easy to know
that the update operation at Stage 2 is performed
in two communication steps and O(1) computa-
tion steps. Consequently, Stage 2 takes 3 (=1+2)
communication steps and O(1) computation steps.

In Stage 3, if both nodes b3b2b1 and b̄3b2b1 are
fault–free, then they first do the EC operations.
Because each of both SH2’s labeled by 0 ∗ ∗ and
1 ∗ ∗ contains only one faulty node, at most two
fault–free nodes in each SH2 are needed to per-
form the update operations. Both nodes 000 and
101, each of which holds two intermediate values,
do the update operations twice such that node
000 obtains Y0 and Y1 and node 101 obtains Y4

and Y5. For analyzing the communication steps
of the update operation in this stage, we need
the result [?]: the diameter of H3 with two faulty
nodes is 4 (=3+1). Consequently, Stage 3 takes
9 (=1+2*4) communication steps and O(1) com-
putation steps. As a result, an FFT of eight data
X0,X1, · · · ,X7 can be performed on a faulty H3

with two faulty nodes in 13 (=1+3+9) commu-
nication steps and O(1) computation steps. Al-
though the above small example has eight data
and eight processors, it is applicable to extend it
to the general case with 2n data.

In general, consider an FFT with 2n data on
Hn with n − 1 faulty nodes. In Stage j for 4 ≤
j ≤ n, if both nodes bnbn−1 · · · bj+1bjbj−1 · · · b2b1

and bnbn−1 · · · bj+1b̄jbj−1 · · · b2b1 are all fault–free,
then both nodes do the EC operations. If any one
of the two nodes is faulty, then the update oper-
ations will be performed. Both SH2’s labeled by
bnbn−1 · · · bj+1bjbj−1 · · · b4b3∗∗ and bnbn−1 · · · bj+1

b̄jbj−1 · · · b4b3 ∗ ∗ can be treated as the two SH2’s
labeled by 0 ∗ ∗ and 1 ∗ ∗ at Stage 3. Thus, the
time required in Stage j for 4 ≤ j ≤ n is the same
as that in Stage 3.

As a result, Stage 1 takes 1 communication step;



Stage 2 takes 2 communication steps; by the re-
sult [?], the number of communication steps re-
quired from Stage 3 to Stage n is 9(n − 2). Con-
sequently, the proposed algorithm takes 9n − 15
(= 1+2+9(n−2)) communication steps and O(n)
computation steps. Based on the above analysis,
we have the following main result.

Theorem 2. The proposed fault–tolerant algo-
rithm for FFT with 2n data can be performed on
Hn with n − 1 faulty nodes in 9n − 15 communi-
cation steps and O(n) computation steps.

4. CONCLUSIONS

The main contribution of this paper is presenting
a fault–tolerant algorithm for FFT with 2n data
on an Hn with n− 1 faulty nodes in 9n− 15 com-
munication steps and O(n) computation steps. In
addition, using the same communication scheme
of the proposed fault–tolerant algorithm for FFT,
all algorithms designed on the n–dimensional but-
terfly network [?] can be directly performed on an
Hn with n − 1 faulty nodes under the same com-
plexity.
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