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ABSTRACT 

Given a set S of n disjoint convex polygons {Pi | 1 ≤ i ≤ n} in 
a plane, each with ki vertices, the transversal problem is to 

determine whether there exists a straight line that goes 

through every polygon in S.  We show that the transversal 

problem can be solved in O(N + n log n) time, where 

N=∑
=

n

i
ik

1
is the total number of vertices of the polygons. 

1.  INTRODUCTION 

Given a set S of n objects, a transversal or stabber is a 

straight line which intersects every member of S.  Edels-

brunner et al [7] gave an O(n log n) algorithm to construct a 

transversal of n line segments.  If S consists of n parallel line 

segments, then a transversal can be found in O(n) time by 

reducing the problem to a 2-variable linear programming 

problem with 2n constraints [5, 8, 9].  In [6], Edelsbrunner 

extended the linear programming method to show that a 

transversal of n rectangles can also be found in O(n) time, 

and a transversal of n homothetsξ in O(n log n) time.  In fact, 

it has been shown [3] that there exists an Ω(n log n) lower 
bound for finding a transversal of n homothets (even for 

translates) of a circle. 

Let S = {P1, …, Pn}, Pi be a convex polygon of ki vertices, 

and N = ∑
=

n

i
ik

1
  be the total number of vertices of these n 

convex polygons. The transversal of n polygons was studied 

in [2].  Two vertices p1 and p2 of a polygon P are an an-

tipodal pair if there exist two parallel lines supporting P at 

p1 and p2.  By finding all the antipodal pairs in n polygons, 

arranging them according their orientations and solving N 

transversal problems of n line segments, the transversal of n 

polygons can be found in O(nN + N log N) time.  In [1], the 

transversal problem of n convex k-gons was studied and 

solved in O(N log N α(n)) time where N = kn and α(n) is the 
inverse of the Ackermann function.  
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In this paper, we shall use an approach similar to the one 

given in [1] to solve the transversal problem of n disjoint 

polygons with a total of N vertices.  With a new trick and 

careful analysis of the algorithm, we show that this trans-

versal problem can be solved in O(N +n log n) time. 

2.  UPPER AND LOWER ENVELOPED CURVES 

The primal-dual transformation [4] is applied to solve this 

transversal problem.  A point p = (a, b) in the primal plane 

will be transformed to a dual line p* = {(u,v) | v = au + b } in 

the dual plane, similarly a line l = {(x, y) | y = mx + c} in the 

primal plane to a dual point l* = (-m, c) in the dual plane.  A 

convex polygon is transformed to two polygonal curves, an 

upper enveloped curve f and a lower enveloped curve g in 

the dual plane as given in Figure 1.  It is easy to show that a 

convex polygon P with k vertices has two polygonal curves 

in the dual plane with a total of k+2 edges and k vertices. 
 
 
 
 
 
 
 
 
 
 
 

(a) Primal Plane 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Dual Plane 
 
Figure 1.  A Polygon in Primal Plane and its enveloped 
curves in Dual Plane 
 

A stabbing line of the polygon in the primal plane corre-

sponds to a dual point that lies within the strip bounded by 

the two enveloped polygonal curves in the dual plane.  Thus 

the stabbing line to a set of n polygons can be found by 

finding the intersection of n regions bounded by their pairs 

of enveloped curves, in other words, the regions bounded by 

the minima curve Un(u) of the upper enveloped curves {fi(u) 

| 1 ≤ i ≤ n} and the maxima curve Vn(u) of the lower en-

veloped curves {i(u) | 1 ≤ i ≤ n}, i.e., the region between 

Un(u) = ( ){ }ufi
ni

min
1 ≤≤

 and Vn(u) = ( ){ }ugi
ni

max
1 ≤≤

.  Thus, for 

any u, if the minima curve is vertically above the maxima 

curve, i.e. Un(u) ≥ Vn(u) , then there exist stabbing lines for 
this set of polygons.  From the definitions of Un(u) and Vn(n), 

Un(u) and Vn(u) are formed by edges of the upper and lower 

enveloped curves respectively.   

Let u+ denote the half-plane of u ≥ 0 and u− the half-plane of 
u < 0 in the dual plane.  The following lemmas prove the 

properties of Un(u) and Vn(u). 

Lemma 1: Given two disjoint convex polygons, P1 and P2.  
Let fi and gi be the upper and lower enveloped curves of Pi 

where i = 1 and 2.  Then f1 and f2, g1 and g2 will intersect at 

most one point in u+ and at most one point in u−. 

Proof:  Between any two disjoint convex polygons, there 

are exactly four common tangents of these two polygons 

(Figure 2), which are represented by the four intersection 

points of the enveloped curves. 

Let us consider the outer common tangents only, i.e., l2 and 

l3.  A common tangent is called the upper (lower) common 

tangent if there exist no parts of the polygons lying above 

(below) the tangent.  As given in Figure 2, there are nor-

mally one upper common tangent and one lower common 

tangent represented by the intersections of f1 with f2 and g1 

with g2 in the dual plane, respectively.  Thus, f1 intersects f2 

and g1 intersects g2 exactly at one point either in u+ or u−.  
The claim of the lemma holds trivially.   

However, in some situations, e.g., when two polygons are 

placed one on top of the other, the two outer common tan-

gents can be both upper or both lower (Figures 3 and 4). 
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(a)  Primal Plane 
 
 
     

 

 

 

 

 

 

 
(b)  Dual Plane 

Figure 2.  Two Polygons and Their Enveloped Curves in the 
Dual Plane 
 

 

 

 

 

 

(a)  Primal Plane 

    

 

 

 

 

 

 

 

 
 

 
 

(b)  Dual Plane 
 
Figure 3.  Two Vertically-placed Polygons with Two Lower 
Common Outer Tangents and Their Enveloped Curves in 
Dual Plane 

 
 

 

 

 

 
 

(a)  Primal Plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  Dual Plane 
 
Figure 4.  Two Vertically-placed Polygons with Two Upper 
Common Outer Tangents and Their Enveloped Curves in 
Dual Plane  

 

In either case, one of the outer common tangents is with a 

positive slope (i.e., u ≥ 0) and the other with a negative slope 
(i.e., u < 0).  Thus, one of the intersection points must lie in 

u+ and the other in u−.  Thus, the lemma is also proved.  

�  
 

Although every two upper (lower) enveloped curves must 

intersect each other at most one point in u+ and at most one 

in u− (Lemma 1), the following lemma (Lemma 2) shows 
that the minima (maxima) curve of n upper (lower) envel-

oped curves does not necessarily have O(n2) vertices/edges.  

As the algorithms of the minima and maxima curves are 

similar, only the algorithm for the minima curve Un(u) will 

be discussed in this section. 
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Lemma 2: Given a set of n disjoint convex polygons with a 
total of N vertices, the minima(maxima) curve of their up-

per(lower) enveloped curves in the dual plane has at most 

O(N) edges and vertices. 

Proof:  Given a set of n disjoint convex polygons, the ver-

tices in the minima curve in the dual plane must come from 

either the vertices of the upper enveloped curves or the in-

tersection points of the upper enveloped curves.  Consider 

an intersection point in the minima curve, it represents an 

upper common outer tangent of two polygons in the primal 

plane (Figure 5).  Let us define such tangent as an upper 

limiting line.  As there are normally at most two upper lim-

iting lines (one on the left and one on the right) associated 

with each polygon, there exist at most 2n intersection points 

of enveloped curves in the minima curve.  If the polygons 

are stacked up one above the other, each polygon might 

associate with four upper limiting lines, two having positive 

slope and the other two having negative slopes (Lemma 1).  

Since there exist a total of O(N) vertices in the upper en-

veloped curves, and N > n, there are at most  O(N) vertices 

in the minima curve.  

�  
 

 

 

 

 

 

 

Figure 5.  Upper Limiting Lines of a Set of Polygons 

 

3.  THE ALGORITHM 

The minima curve of the upper enveloped curves can be 

constructed incrementally.  The enveloped curves in u− are 
added according to the decreasing order of their values at 

negative infinity (or their slopes at negative infinity), i.e., 

f1(u) > f2(u) > … > fn(u) when u → -∝ .  Assume Um is the 
minima curve formed by the first m upper enveloped curves, 

i.e., Um(u) = ( ){ }ufi
ni

min
1 ≤≤

.  Um+1 in u− is formed by 

sweeping Um and fm+1 from left to right until they intersect or 

u = 0.  If Um and fm+1 intersect in u−, then Um+1 is formed by 
replacing the left part of Um by the left part of fm+1 (Figure 6), 

otherwise, replacing the whole Um by fm+1.  Um+1 in u+ is 

formed similarly by inserting the enveloped curves one by 

one according to the descending order of their values at 

positive infinity (or their slopes at positive infinity), and the 

sweeping is performed from right to left until u = 0.   

 

 

 

 

Figure 6.  Construction of Um+1 in u− from fm+1 and Um 

 

Lemma 3: The upper(lower) enveloped curve fm+1(gm+1) 
will intersect the minima(maxima) curve Um(Vm) at most one 

point in u+ and at most one point in u−. 

Proof:  When sweeping the functions from left to right in u−, 

i.e., starting from u = −∞ , assume fm+1 intersects Um at some 
position (u < 0) from below, say with an edge of an upper 

enveloped curve fk, where k ≤ m.  As fk must locate on or 

above Um in u− after (on the right of) the intersection point 

and fm+1 will intersect fk at most one point in u− (Lemma 1), fk 
will form a shield to prevent fm+1 from intersecting Um again 

in u−.  The proof is similar for Um in u+ and the sweep is 
from right to left, i.e., starting from u = ∞ . 

�  
 

Theorem 4: The transversal for a set of n convex polygons 
with a total of N vertices can be found in O(N + n log n) 

time. 

Proof:  Let’s consider the half-plane u− in the dual plane 
only, and the half-plane u+ can be handled similarly.  As the 

vertices of the polygons are given in order, the upper and 

lower enveloped curves in the dual plane can be constructed 

in linear time, i.e., O(N) time. After that, it takes O(n log n) 

time to sort the enveloped curves at the negative infinity.  

Assume {P1 … Pm} has a total of M vertices, the minima 

curve Um will have at most O(M) edges (Lemma 2).  

Sweeping Um and fm+1 (with km+1 vertices) from left to right 

enveloped curve m+1 (fm+1) 

enveloped curve k (fk) 

minima curve of upper enveloped curves 1 to m (Um)
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until they intersect or u = 0 takes at most O(km+1 + c) time, 

assuming there are c edges of Um+1 on the left of the inter-

section point or in the half-plane u− if Um and fm+1 do not 

intersect in u−.  By Lemma 3, those edges of Um and fm+1 
after (on the right of) the intersection point will not be 

processed, then Um+1 will have at most M – c + km+1 edges.  

Note that not all the edges in fm+1 are included in Um+1 and, 

for those edges in fm+1 which are included, they will be re-

moved immediately if they are processed during the con-

structing of Uk for some k > m+1.  As each edge in the en-

veloped curve is processed at most twice, by amortized 

analysis, the minima curve Un can be constructed in O(N) 

time.  

Finally, sweeping the minima and maxima curves to see 

whether there exists a u such that Un(u) ≥ Vn(u) takes at most 
O(N) time. Therefore, the transversal problem can be solved 

in O(N + n log n) time. 

�  
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