
1

A SELF-STABILIZING ALGORITHM FOR FINDING DISTANCES IN

A DISTRIBUTED SYSTEM

Tetz C. Huang and Ji-Cherng Lin

Department of Computer Engineering and Science, Yuan-Ze University
135 Yuan-Tung Rd., Chung-Li Taoyuan 32026, Taiwan

Email: cstetz@cs.yzu.edu.tw, csjclin@cs.yzu.edu.tw

ABSTRACT

In this paper, we propose a self-stabilizing algorithm for
finding distances in a distributed system in which a central
daemon is assumed. The correctness of the proposed algo-
rithm is proved by using the bounded function technique.

I. Introduction

The notion of the self-stabilization in a distributed sys-
tem was first introduced by E. W. Dijkstra in his classic
paper [1] in 1974. According to him, a distributed system is
self-stabilizing if regardless of any initial global state, the
system can automatically adjust itself to eventually con-
verge to a legitimate state and then stay in legitimate state
thereafter unless it incurs a subsequent transient fault.

The main work in this paper is to provide a concise
proof for the correctness of a commonly used algorithm
for finding distances by employing the bounded function
technique. The inspiration of using the bounded function
in the proof comes from [2].

The rest of this paper is arranged as follows. In Section 2,
the algorithm is proposed and the meaning of the legitimate
state is explained. In Section 3, an example illustrates the
execution of the algorithm. In Section 4, the correctness
proof of the algorithm is given.

II. The Algorithm

As usual, we use a connected undirected graph G =
(V, E) to model a distributed system, with each node
i ∈ V representing a processor in the system and each
edge {i, j} ∈ E representing the bidirectional link connect-
ing processors i and j. Following Dijkstra[1], the system
assumes the presence of a central daemon who can ran-
domly select one among all the privileged processors to
make a move; the central daemon need not be fair in any
sense. We should mention here that for the shortest path
problem, it suffices to consider only simple graphs, i.e.,
graphs without any loop and multiple edge.

In the system, each edge e = {i, j} is preassigned a weight
(or length) w(e) = w(i, j), which is a positive integer. If
L = (e1, e2, . . . , et) is a path in G, the weight (or length)

of L, w(L), is defined to be
t∑

k=1

w(ek). For any two nodes

i and j in V , a shortest path between i and j is a path of
minimum weight which connects i and j; the weight of a

shortest path between i and j is called the distance between
i and j and is denoted by d(i, j).

The problem of finding distances can be phrased as fol-
lows: Suppose a node r in G is specified as the source of the
system. We want to find for each node i in G the distance
between i and the source r.

The self-stabilizing algorithm for finding distances in the
system is given below. Note that in the algorithm, d(i)
stands for a local variable of the node i and N(i) = {j ∈
V | {i, j} ∈ E} denotes the set of all neighbors of i. The
value of each local variable d(i) is in the range {0, 1, 2, . . .}.
Self-stabilizing algorithm for finding distances in a dis-
tributed system
{For the source r}
(R0) d(r) �= 0 → d(r) := 0.
{For node i �= r}
(R1) d(i) �= min

j∈N(i)
(d(j)+w(i, j))→ d(i) := min

j∈N(i)
(d(j)+

w(i, j)).

The legitimate states for the system is defined to be those
states in which d(r) = 0 and ∀i �= r, d(i) = min

j∈N(i)
(d(j) +

w(i, j)). The meaning of the legitimate states can be seen
from the following theorem.

Theorem 1: If the system G = (V, E) is in any legitimate
state, then ∀i ∈ V , d(i) = d(i, r).

Proof: First, let each node v �= r selects a neighbor
k with d(k) + w(v, k) = min

j∈N(v)
(d(j) + w(v, j)) to be its

predecessor, denoted by p(v). Since d(p(v)) + w(v, p(v)) =
min

j∈N(v)
(d(j)+w(v, j)) = d(v), we have d(p(v))+w(v, p(v)) =

d(v) and d(p(v)) < d(v) for any v �= r. Let i �= r be any
arbitrary node in V . If we trace predecessors from i on, we
will get a sequence (v0, v1, v2, . . .) with v0 = i and p(vk) =
vk+1 for any k = 0, 1, 2, If the tracing does not reach
the source r at any point, then the tracing will continue
indefinitely. That means the above sequence is infinite.
Since d(vk) = d(vk+1) + w(vk, vk+1) for any k, we then
have d(i) = d(v0) > d(v1) > · · · > 0, i.e., we get infinitely
many integers between d(i) and 0, which is a contradiction.
Therefore the tracing must reach the source r at a certain
point and then terminates. Consequently, the sequence
(v0, v1, v2, . . .) is actually a finite one (v0, v1, . . . , vt) which
terminates at vt = r. This sequence of nodes (v0, v1, . . . , vt)
defines a path from v0 = i to vt = r. The weight (or length)

2

of the path equals
w(v0, v1) + w(v1, v2) + · · ·+ w(vt−1, vt)
= w(v0, v1) + w(v1, v2) + · · ·+ (w(vt−1, vt) + d(vt))
= w(v0, v1) + w(v1, v2) + · · ·+ (w(vt−2, vt−1) + d(vt−1))
= · · · = w(v0, v1) + d(v1)
= d(v0)
= d(i)
So we get a path from i to r which has the weight d(i).
Therefore, d(i) ≥ d(i, r).

Next, we need only to show that d(i) ≤ d(i, r) for any
i. Let {d(i, r) | i ∈ V } = {d0, d1, . . . , dt} with 0 = d0 <
d1 < · · · < dt. For any node i with d(i, r) = d0, i must be
the source r and d(i) = 0. Thus d(i) ≤ d(i, r). Let k be
any integer, with 0 ≤ k < t. Assume that for any node i
with d(i, r) ≤ dk, d(i) ≤ d(i, r). Then consider any node i
with d(i, r) = dk+1. Let (v1, v2, . . . , vs) be a shortest path
connecting node i and the source r with v1 = i and vs = r.
Then (v2, v3, . . . , vs) is a shortest path connecting node v2

and r and d(v2, r) < d(i, r) = dk+1. Therefore d(v2, r) ≤ dk

and we have d(v2) ≤ d(v2, r) by the induction hypoth-
esis. But then d(i) = d(v1) = min

j∈N(i)
(d(j) + w(i, j)) ≤

d(v2) + w(i, v2) = d(v2, r) + w(i, v2) = d(i, r). Thus, we
have proved that for any i ∈ V , d(i) ≤ d(i, r). Conse-
quently, d(i) = d(i, r) for any i ∈ V .

Thus, as is obvious from the above theorem, there is
actually only one legitimate state and when the system is
in the legitimate state, our problem is solved.

III. An Illustration

Figure 1 illustrates the execution of the algorithm. There
are six states in Figure 1. In each state, the shaded nodes
represent privileged nodes whereas the shaded node with a
darkened circle stands for the privileged node selected by
the central daemon to make a move.

IV. Correctness Proof

For the sake of presentation, (R1) is split into two rules:
(R1-a) d(i) < min

j∈N(i)
(d(j) + w(i, j)) → d(i) :=

min
j∈N(i)

(d(j) + w(i, j)) and

(R1-b) d(i) > min
j∈N(i)

(d(j) + w(i, j)) → d(i) :=

min
j∈N(i)

(d(j) + w(i, j)).

In view of the algorithm, the following Lemma 1 and
Lemma 2 are obvious.

Lemma 2: (No deadlock) The system is deadlock-free in
each illegitimate state.

Lemma 3: (Closure) No node is privileged when the sys-
tem is in the legitimate state.

Next, we want to prove the convergence of the algorithm,
that is, we want to show: Starting with any initial state,
the system will converge to the legitimate state. So for the
following discussion, we let the initial state of the system be
fixed. For the sake of presentation in the following proofs,

we define some terminologies and design three bounded
functions. Since the system G = (V, E) is a connected
graph, a spanning tree T of G exists. If we choose the
source r to be the root, then T becomes a rooted tree. For
each node i in the system, let dinit(i) be the d(i) in the
initial state and let the value du(i) be defined recursively
by
(1) du(r) = dinit(r) ; and
(2) for i �= r, du(i) = max{dinit(i), du(p) + w(i, p)},

where p is the parent of i in T .

Lemma 4: For each node i in the system, d(i) ≤ du(i) at
any time.

A node i �= r is called a turn node whenever d(i) <
min

j∈N(i)
(d(j)+w(i, j)); otherwise, it is called a non-turn node.

If i is a turn node and d(i) = k then it is called a k-turn
node. By definition, A(k) is the set of all k-turn nodes in
the system and tk=| A(k) | is the cardinality of A(k). Let
m = max

i∈V
du(i) and let F1 = (t0, t1, . . . , tm), F2 =

∑

i∈V

d(i),

and F = (F1, F2). Note that all these functions including
A(k), tk, F1, F2 and F have a common domain, the set
of all global states. We compare the F1-values as well as
the F -values by lexicographic order. Thus, for any two
global states S1 and S2, F1(S1) < F1(S2) if and only if
there is a k ∈ {0, 1, . . . , m} such that tj(S1) = tj(S2) for
any j < k and tk(S1) < tk(S2) whereas F (S1) < F (S2)
if and only if F1(S1) < F1(S2) or [F1(S1) = F1(S2) and
F2(S1) < F2(S2)]. Obviously, all the F -values are bounded
below by (0, 0, . . . , 0) and between any particular F -value
and (0, 0, . . . , 0), there can be only finitely many F -values
possible.

The following lemmas lead eventually to Theorem 12
which claims the convergence of the algorithm. Since the
proofs of all these lemmas are of the same spirit, we pre-
sented here in details only that of Lemma 8.

Lemma 5: (1) A node which is a turn node right before
the system makes a move cannot contribute to the increase
of tk, for any k, after the move of the system.
(2) The source r can not contribute to the increase of any
tk.

Lemma 6: F1 does not increase each time after rule R(0)
is executed in the system.

Lemma 7: F2 decreases each time after rule R(0) is exe-
cuted in the system.

Lemma 8: F1 decreases each time after rule R(1-a) is
executed in the system.

Proof: Let node i be the node of the system which
executes the rule and let d(i) = l right before the execu-
tion.

(1) Since i is an l-turn node right before the execution of
rule R(1-a) and is a non-turn node after the execution, i
contributes to the decrease of tl by 1.
(2) By Lemma 4, the source and all those nodes which are
turn nodes right before the execution do not contribute to
the increase of any tk after the execution.

3

(3) If node j ∈ V − (N(i) ∪{i}) is a non-turn node right
before the execution, then by the same argument as in (2)
in the proof of Lemma 5, j remains a non-turn node after
the execution and therefore does not affect any tk.
(4) If node j ∈ N(i) is any non-turn node right before the
execution, then d(j) ≥ min

k∈N(j)
(d(k) + w(j, k)) right before

the execution. If d(i) + w(j, i) > min
k∈N(j)

(d(k) + w(j, k))

right before the execution, then after the execution, d(i)
increases and hence min

k∈N(j)
(d(k) + w(j, k)) remains un-

changed; and therefore, d(j) ≥ min
k∈N(j)

(d(k) + w(j, k)) still

and j remains a non-turn node. So in this case, j does not
affect any tk. If d(i)+w(j, i) = min

k∈N(j)
(d(k)+w(j, k)) right

before the execution, then d(j) ≥ d(i) + w(j, i) > d(i) = l;
and therefore, after the execution, j either remains a non-
turn node or becomes an s-turn node, where s = d(j) > l.
So in this case, j either does not affect any tk or can only
contribute to the increase of some ts with s > l.

From all above, we can see tl decreases by at least 1
and tk remains unchanged for any k < l and therefore F1

decreases after the execution of rule R(1-a).

Lemma 9: F1 does not increase each time after rule R(1-
b) is executed in the system.

Lemma 10: F2 decreases each time after rule R(1-b) is
executed in the system.

Theorem 11: F decreases each time after rule R(0), R(1-
a) or R(1-b) is executed in the system.

Proof: Obvious from above Lemmas 5-9.

Theorem 12: The algorithm is self-stabilizing.
Proof: The convergence property of the algorithm fol-

lows from Lemma 1, Theorem 2, the fact that F is bounded
below by (0, 0, . . . , 0) and the fact that between the initial
value and (0, 0, . . . , 0), there can only be finitely many F -
values possible; and the closure property of the algorithm
follows immediately from Lemma 2.

References

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed
control, Communications of the Association of the Computing
Machinery, 17, 643-644, (1974).

[2] S. T. Huang and N. S. Chen, A self-stabilizing algorithm for con-
structing breadth-first trees, Information Processing Letters, 41,
109-117, (1992).

r

i s

j k

4 1

35

2

Source r is privileged by R(0).
Node j is privileged by R(1).
Node k is privileged by R (1).
Node s is privileged by R (1).

r

i s

j k

4 1

35

2

Node j is privileged by R(1).
Node k is privileged by R (1).
Node s is privileged by R (1).

r

i s

j k

4 1

35

2

Node i is privileged by R(1).
Node s is privileged by R (1).

r

i s

j k

4 1

35

2

Node j is privileged by R(1).

r

i s

j k

4 1

35

2

The legitimate state

r

i s

j k

4 1

35

2

The initial state
Source r is privileged by R(0).
Node i is privileged by R(1).
Node j is privileged by R(1).
Node k is privileged by R(1).
Node s is privileged by R(1).

Central daemon picks
i to make a move.

Central daemon picks
r to make a move.

Central daemon picks
s to make a move.

Central daemon picks
i to make a move.

Central daemon picks
j to make a move.

d (r)=4

d(i)=3 d (s)=2

d (k)=4d(j)=5

d (r)=4

d (i)=4

d (s)=2

d (k)=4d(j)=5

d (r)=0

d (i)=4

d (s)=2

d (k)=4d(j)=5

d (r)=0

d (i)=4

d (s)=1

d (k)=4d(j)=5

d (r)=0

d (i)=3

d (s)=1

d (k)=4d(j)=5

d (r)=0

d (i)=3

d(s)=1

d (k)=4d(j)=6

2

2

2

2

2

2

Figure 1. An example which illustrates the execution of the algorithm.

1

