Extended Synchronized Choice Nets

Daniel Yuh. Chao ${ }^{l}$ and Jose A. Nicdao
Department of Management and Information Science, National Cheng Chi University, Taipei, Taiwan, R.O.C
Email: yaw@mis.nccu.edu.tw

Abstract

SNC nets are extended to deal with nets with assymetric first order structures (FOS). They can be converted to a General Petri net (GPN) and existing theory can be applied to study its liveness and boundedness properties.

1.INTRODUCTION

Proving liveness or equivalently, solving the reachability problem for Petri nets is a difficult problem since it takes exponential time and space [6]. Unlike traditional classification by output conditions of places, Synchronized Choice nets (SNC) were defined as a new class of nets $[2,3]$ characterized by bridges and handles satisfying requirements $\mathbf{R 1}$ (R2): If a circuit Ω has a TP- (PT-) handle, H', then H' is bridged to Ω through a PT- (TP-) bridge, B'. Figs. 1 to 4 are examples of SNC. Note the net in Fig. 4 is not an FC (free-choice) net. In Fig. 1, two handles $\mathrm{H}_{1}=$ [$\left.p_{2} t_{4} p_{4} t_{3}\right]$ and $H_{2}=\left[p_{2} t_{2} p_{3}\right]$ start from the same place p_{2} but they join at a transition t_{3}; there is a bridge $B_{12}=\left[t_{4} p_{3}\right]$ from H_{1} to H_{2} and a bridge $B_{21}=\left[t_{2} p_{4}\right]$ from H_{2} to H_{1}.

By examining the synthesis rules presented in [3], we find that synthesized nets and SNC nets are closely related. R1 and $\mathbf{R 2}$ involve nodes in a global fashion; the synthesis rules, nevertheless, involve nodes in a local fashion. Thus one can view the rules as localization of the two requirements that reduces the complexity of analysis. On one hand, the rules provide local conditions for a net to be SNC similar to that for an FC [11]; on the other hand, they are better than the two requirements by [3] which are global conditions. Note that any Ct (Consistent) \& Cv (Conservative) FC is an SNC but not vice versa. An arbitrary SNC net may not be SL. However, any SNC net that is an FC, is structurally live (SL) which is not true for AC (asymmetric-choice).
A first-order structure (FOS) contains two directed paths with identical start (called n_{s}) and end nodes (n_{e}). In [2], we show that in an SNC, any FOS must be symmetrical; that is, both n_{s} and n_{e} must be of the same type: they are both transitions or are both places. An asymmetrical FOS with $n_{s} \in T(P)$ and $n_{e} \in P(T)$ may result in unboundedness (nonlive). To fix the problems, one way is to insert bridges into the structure. This results in SNC [2].

Another way is to have a second asymmetrical FOS with $n_{s} \in P(T)$ and $n_{e} \in T(P)$ to absorb or provide the extra tokens for the first asymmetrical FOS. An example is shown in Fig. 5

Fig. 5(a) shows an asymmetrical TP FOS; the TP-path [t1 p4 t4 p3], which injects an extra token into the circuit in each iteration, causing the Petri net unbounded. To consume the extra token, a PT FOS should follow the above FOS. In Fig. 5(b), an asymmetrical PT FOS; the PTpath [p2 t4 p4 t3], makes t 3 nonlive, and thus results in a deadlock.

One way to fix the problem is to insert bridges into the above FOS. This results in a new class of nets called $\mathbf{S N C}$ whose properties have been studied in [2,3]. There is only one kind of bad siphon, causing an SNC to be not live. It is interesting because it is bounded and the condition for liveness is so simple that there exists an integrated algorithm for SNC and liveness detection. However, this class of nets is limited. For instance, there is no ordering of firings among a set of resource-sharing transitions that are exclusive to each other. Sometimes, these transitions must execute one by one. Also, if the synthesized net is initially safe, it stays to be safe for any reachable marking. It is marking monotonic, that is, it will not evolve into a deadlock by adding more tokens. The synchronic distance between any two transitions in a synthesized net with safe marking is either one or infinite.
To create classes of nets with more general properties, we have to find more alternatives to fix the problem. In one alternative, the two asymmetrical FOS should be combined as in Fig. 5(c).

Note that it must be that $n_{\mathrm{el}} \leftrightarrow \mathrm{n}_{\mathrm{s} 2}$ i.e., they are in a circle. Otherwise, the PT FOS cannot consume the extra token from the TP FOS. The net is live if the two output transitions of the n_{s} place of the PT FOS are synchronized to have synchronic distance of one.

Note that in Fig. 5(c), one TP generation is immediately followed by a PT generation. In general, several TP (PT) FOS may be combined to form a composite structure so that more than one extra token generated (consumed). Also, there may be more than one TP FOS in combination with more than one PT FOS as shown in Fig. 6. The above conditions must be generalized and will be dealt with in Section 4. We have extended this to allow min-

[^0]gling a number of TP and PT generations; thus, multiple TP generations are followed by multiple PT generations. Also PT FOS must consume multiple tokens generated from TP FOS in a synchronized manner. One way to do this is to link all relevant PT FOS with a regulation circuit (RC). Based on this, we will define a new class of net called ESNC (Expanded SNC). The class of synthesized nets hence is extended. Liveness condition for SNC is simple because there is only one kind of bad siphon (minimal deadlock with no traps). For ESNC, a new kind of bad siphon emerges. The marking condition for liveness will be derived based on results from [5].
Section 2 presents the preliminaries. Section 3 defines handles, bridges, composite FOS (CFOS) and ESNC. Section 4 derives the structure constraints for liveness and boundedness of ESNC by transforming it into general Petri nets (GPN) with multiple weights (called WSNC). They are derived first for a subclass (called WMG) of WSNC where the transformed GPN is a mark graph (MG). The same constraint also holds for WSNC. The marking constraint is derived first for RC with multiple tokens in Section 5 based on a new kind of bad siphon. Section 6 concludes the paper.

We assume that readers are familiar with the various terminologies of PN ; references for which can be found in [7].

Definition 1[5]: For a Petri net (N,M), a non-empty subset D of places is called a deadlock if $\bullet \mathrm{D} \subseteq \mathrm{D} \bullet$, i.e., every transition having an output place in D has an input place in D. If $\mathrm{M}(\mathrm{D})=\sum_{p \in D} \mathrm{M}(\mathrm{p})=0, \mathrm{D}$ is called a token-free deadlock at M. A deadlock D_{m} is said to be minimal if it does not contain a deadlock as a proper subset. Similar definitions apply to trap with the change that $\bullet \mathrm{D} \subseteq \mathrm{D} \bullet$ is replaced by $\bullet \mathrm{D} \supseteq \mathrm{D} \bullet$.
Note that deadlock is also referred to as siphon in some literatures and the sequel.

Lemma 1[5]: For a Petri net ($\mathrm{N}, \mathrm{M}_{0}$), if there does not exist any firable transition, then there exist a token-free deadlock at M_{0}.
Definition 2[3]: Given a Petri net N in which N^{\prime} is a subnet of it and $N^{\prime}(\subseteq N)$ is a T-component (P-component) of N iff N^{\prime} is strongly connected marked graph (state machine) and $P^{\prime}=\cdot T^{\prime} \cup T^{\prime} \cdot,\left(T^{\prime}=\cdot P^{\prime} \cup P^{\prime} \cdot\right)$.

In [3], we showed that any SNC could be decomposed into a set of T- and P- components.
Definition 3(S-invariant \& T-invariant): A Y (X) vector is called a S - (T-) invariant iff $\mathrm{Y}(\mathrm{X}) \neq 0$ and $\mathrm{AY}=0\left(\mathrm{~A}^{\mathrm{T}} \mathrm{X}=0\right)$ where A is the incidence matrix.
The existence of S-invariants is equivalent to the preservation of token load [5]. The y values of all places for the PN in Fig. 7 ensure that the y values are balanced at each transition.
Definition 4(P-semiflow \& T-semiflow): $\mathrm{Y}(\mathrm{X})$ is called a P- (T-) semiflow if $\mathrm{Y}(\mathrm{X})$ is integral and nonnegative
and $A Y=0\left(A^{T} X=0\right)$.
Definition 5(Conservative): A Petri net N is called conservative iff there exists a positive integer vector $\mathrm{Y}>0$ such that $W(M)=M^{T} Y=M_{0}{ }^{T} Y=W\left(M_{0}\right) d \Omega M \in R\left(N, M_{0}\right.$ ea

Lemma 2[3]: $\Omega P N$, AY=0 iff $\Omega \mathrm{t} \in \mathrm{T}, \mathrm{Y}(\cdot \mathrm{t})=\mathrm{Y}(\mathrm{t} \cdot)$, $Y(Q)=\sum_{p_{i} \in Q} y_{i}^{*} w_{i}, \begin{aligned} & \text { where } Q=\cdot \mathrm{t} \text { or } \mathrm{t} \cdot \text { and } w_{i} \text { the } \\ & \text { weight between } p_{i} \text { and } \mathrm{t} .\end{aligned}$ above condition is defined as the T-condition.
This T-condition is useful for finding Y in a step-by-step fashion. We can assign arbitrary equal y values for input places of a transition and compute the equal y value of each of its output places. Continue this until all y values of the S-invariant have been computed. We then multiply or divide all y values by a factor such that all y are integers and their greatest common factor is one. Examples are shown in Fig. 7.
Definition 6: Let D be a deadlock of $N . p_{d} \Omega D$ and $t_{d} \Omega p \in$ is called a drain transition if $\mathrm{t}_{\mathrm{d}} \leftrightarrow Ð$; otherwise, it is called a trap transition. p_{d} is called a drain place. T_{D} is the set of all such t_{d}.
In Fig. 7, p5 is a drain place in the D_{m} which includes all places with $\mathrm{y}>0$ and $\mathrm{T}_{\mathrm{D}}=\left\{\mathrm{t}_{\mathrm{d}}{ }^{2}, \mathrm{t}_{\mathrm{d}}{ }^{3}\right\} ; \mathrm{t}_{\mathrm{d}}{ }^{1}$ is a trap transition,. The corresponding Y vector is an S -invariant. Synchronic distance is a concept closely related to the degree of mutual dependence between two events in a condition/event system. The definitions of Petri net language and synchronic distance are given as follows:
Definition 7(Language of a Petri Net): The language of a Petri net $\mathrm{N}, \mathrm{L}(\mathrm{N}, \mathrm{M})$, is the set of all firing sequences for the net with the initial marking $\mathrm{M}: \mathrm{L}(\mathrm{N}, \mathrm{M})=\left\{\quad \sum\right.$ $\mid \mathrm{M}\left[\Sigma>\mathrm{M}^{\prime}\right]$.
Definition 8(Synchronic Distance): The synchronic distance between two transitions t 1 and t 2 in a Petri net N is defined as $d_{12}=\operatorname{Max}\{\Sigma(\mathrm{t} 1)-\Sigma(\mathrm{t} 2), \Sigma \Omega \mathrm{L}(\mathrm{N}, \mathrm{M})\}$, where $\Sigma(\mathrm{t})$ is the number of times t appears in Σ

The deadlock-trap property is only a sufficient (but not necessary) condition for liveness. Hence in a live net, a minimal deadlock may not contain a trap; such a deadlock is called a bad siphon. Consider the case that there is only one drain place and its output transitions $t 1 \Omega D$ and $\mathrm{t} 2 \hookleftarrow$ of the deadlock. If $\mathrm{d}_{12}=\cdot$, then tokens in D will be drained completely by a certain number of firings of $t 2$ without any firing of $t 1$. This empty D will stay forever and the N is not live. The general case is similar. To prevent this, t 1 and t 2 must be synchronized with finite synchronic distance so that D cannot be empty.

3. HANDLES, BRIDGES, FIRST AND SECOND ORDER STRUCTURES

We follow [2] for the definitions of handles, bridges, XYhandles, and XY- bridges where X and Y can be T or P .
Definition 9: Let $\mathrm{N}=(\mathrm{P}, \mathrm{T}, \mathrm{F})$ and $\mathrm{N}_{1}, \mathrm{~N}_{2}$ partial subnets of N. An elementary directed path $H=\left[\begin{array}{ll}n_{s} n_{1} n_{2} & n_{k} n_{e}\end{array}\right]$, $n_{i} \Omega P \cup T, i=1,2, \quad, k$, is called a handle of N_{1} if $H \cap$ $N_{1}=\left\{n_{s}, n_{e}\right\} ; n_{s}$ and n_{e} are called the start and the end
$\left.n_{s}, n_{e}\right\} ; n_{s}$ and n_{e} are called the start and the end nodes of the handle H, respectively. Note that n_{s} and n_{e} may be identical. An elementary directed path $B=\left[n_{1}, \ldots, n_{r}\right], r \geqq$ 2, is a bridge from N_{1} to N_{2} iff $B \cap\left(P_{1} \cup T_{1}\right)=\left\{n_{1}\right\}$ and B $\cap\left(\mathrm{P}_{2} \cup \mathrm{~T}_{2}\right)=\left\{\mathrm{n}_{\mathrm{r}}\right\} . \mathbf{p} 1=\mathbf{p} 2$ if p 1 and p 2 are on an elementary circuit. $\mathbf{n}_{1} \bullet \mathbf{n}_{\mathbf{2}}$ if $\mathbf{n 1}=\mathbf{n 2}$ and there is an elementary directed path from n_{h} to n_{2} via n_{1} where n_{h} is a reference node (initially marked) called a home place.
Definition 10: Handles H_{1} and H_{2} are said to be mutually complementary if they share the same n_{s} and n_{e}; i.e., $\mathrm{H}_{1} \cap$ $\mathrm{H}_{2}=\left\{\mathrm{n}_{\mathrm{s}}, \mathrm{n}_{\mathrm{e}}\right\}$. Let $\mathrm{p}_{\mathrm{i}} \Omega H_{\mathrm{i}}(\mathrm{i}=1$ or 2$), \mathrm{p}_{\mathrm{i}} \mathrm{Q}_{\mathrm{s}}$ and $\mathrm{p}_{\mathrm{i}} \mathrm{E}_{\mathrm{e}}$, then define $\supseteq \neq H_{i}$ is a directed path on H_{i} from n_{s} to p_{i}, $\mathrm{n}_{\mathrm{s}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\mathrm{n}_{\mathrm{s}}$ if there exists at least one \supseteq on a certain H_{i} that contains no other n_{s} of another $\mathrm{H}_{\mathrm{j}} ; \mathrm{n}_{\mathrm{s}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ can be defined in a dual fashion and $n_{s}\left(p_{1}, p_{2}\right)=n_{e}$ if there exists at least one v_{i} on a certain H_{i} that contains no other n_{e} of another H_{j}; where $v_{i} \neq H_{i}$ is a directed path on H_{i} from p_{i} to n_{e}. $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is called a TP-inconsistent pair of places if $\exists n_{s}\left(p_{1}, p_{2}\right)$ is a transition and $\exists n_{e}\left(p_{1}, p_{2}\right)$ is a place. $\left(p_{1}\right.$, $\left.\mathrm{p}_{2}\right)$ is called a PT-inconsistent pair of places if $\exists \mathrm{n}_{\mathrm{s}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is a place and $\exists n_{e}\left(p_{1}, p_{2}\right)$ is a transition. Let $\Upsilon=H_{1} \cup H_{2}$, $\mathrm{H}_{1} \neq \mathrm{N}_{1}$ and $\mathrm{H}_{2} \neq \mathrm{N}_{2}, \mathrm{H}_{1}\left(\mathrm{H}_{2}\right)$ is a prime handle to $\mathrm{N}_{2}\left(\mathrm{~N}_{1}\right)$ (1) If there are no bridges B between N_{1} and N_{2} and Υ is defined to be a first-order structure (FOS). If $n_{s} \Omega X$ and $n_{\mathrm{e}} \Omega \mathrm{Y}$ where $\mathrm{X}, \mathrm{Y}=\mathrm{T}$ or P , then $\Gamma(\mathrm{H}, \mathrm{B})$ is said to be a XY-path (XY-handle, XY-bridge). If $\mathrm{X}=\mathrm{Y}$, then the $\mathbf{F O S}$ Υ is said to be symmetrical; otherwise it is asymmetrical (AFOS). (2) If $\mathrm{B}_{1}\left(\mathrm{~B}_{2}\right)$ is a bridge from N_{1} to $\mathrm{N}_{2}\left(\mathrm{~N}_{2}\right.$ to $\left.\mathrm{N}_{1}\right)$, then $\varphi=H_{1} \cup H_{2} \cup B_{1} \cup B_{2}$ is defined to be a second-order structure (SOS). (3) A strongly connected net is SNC (Synchronized Choice net) if every TP-(PT-)handle to a certain circuit has a PT- (TP-)bridge from its complementary TP-handle to itself. If $\mathrm{X}=\mathrm{Y}$, then the $\operatorname{FOS} \varphi$ is said to be symmetrical; otherwise it is asymmetrical (AFOS).
Note that for PT-inconsistent pair, it must be that every $\mathrm{n}_{\mathrm{s}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is a place. Otherwise, it may no longer be irreversible (Fig. 3). For TP-inconsistent pair, however, as long as there exists a transition $n_{s}\left(p_{1}, p_{2}\right)$, it is not live.
[$\left.p_{2} t_{2} p_{3}\right]$ and $\left[p_{2} t_{4} p_{3}\right]$ in Fig. 1 are two prime handles complementary to each other; $n_{s}=p_{2}$ and $n_{e}=p_{3}$. Note that there are no bridges interconnecting them; hence, they together form an FOS. Since $\mathrm{X}=\mathrm{Y}=\mathrm{P}$, it is symmetrical. p_{1} and p_{2} in Definition 16 are inconsistent because they are concurrent (exclusive) and the tokens in them will flow to a set of mutually exclusive (concurrent) places. Note that $\mathrm{n}_{\mathrm{s}}(\mathrm{p} 1, \mathrm{p} 2)$ and $\mathrm{n}_{\mathrm{e}}(\mathrm{p} 1, \mathrm{p} 2)$ do not exist if p 1 and p 2 is on an elementary circuit; instead we define $\mathbf{p} 1=\mathbf{p} 2$.
Note that any pair of places (excluding n_{s} and n_{e}) in an AFOS is also inconsistent. This leads [2] to an integrated algorithm to detect SNC and liveness for an arbitrary net.

Definition 11: A composite first-order structure (FOS) Z is a set of first-order structures $\Psi_{1}, \Psi_{2}, . . \Psi_{\mathrm{k}}, \mathrm{k} \geq 2$, that are (1) interconnected; that is, $\forall \Psi_{\mathrm{i}}, \exists \Psi_{\mathrm{j}}$ such that $\Psi_{\mathrm{i}} \cap \Psi_{\mathrm{j}} \Phi$, if ig, (2) \forall pair of $\left(\mathrm{n}_{\mathrm{s}}{ }^{\mathrm{i}}, \mathrm{n}_{\mathrm{e}}{ }^{\mathrm{i}}\right)$ and $\left(\mathrm{n}_{\mathrm{s}}{ }^{\mathrm{j}}, \mathrm{n}_{\mathrm{e}}{ }^{j}\right)$, if $\Psi_{\mathrm{i}} \cap \Psi_{\mathrm{j}}=\phi$, then $\mathrm{n}_{\mathrm{s}}\left(\mathrm{n}_{\mathrm{s}}{ }^{\mathrm{i}}, \mathrm{n}_{\mathrm{s}}^{\mathrm{j}}\right) \Omega \mathrm{T}(\mathrm{P})$, and (3) $\forall \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{j}}, 1 \geq\left|\mathrm{Z}_{\mathrm{i}} \cap \mathrm{Z}_{\mathrm{j}}\right|$.
$\mathrm{n}_{\mathrm{s}}\left(\mathrm{n}_{\mathrm{e}}\right)$ of $\mathrm{Z}: \forall \mathrm{n}_{\mathrm{s}}{ }^{i}\left(\mathrm{n}_{\mathrm{e}}{ }^{i}\right)$ of Ψ_{i}, either $\mathrm{n}_{\mathrm{s}}=\mathrm{n}_{\mathrm{s}}{ }^{i}$ or $\mathrm{n}_{\mathrm{s}} \bullet \quad \mathrm{n}_{\mathrm{s}}{ }^{i}\left(\mathrm{n}_{\mathrm{e}}=\mathrm{n}_{\mathrm{e}}{ }^{i}\right.$ or $n_{e} \bullet n_{e}{ }^{\mathrm{i}}$). If all Ψ_{i} is of TP (PT) type, then it is a TP ($\mathbf{P T}$) composite first-order structure, CFOS with symbol $Z^{T}\left(Z^{P}\right) ;|Z|$ is the maximum number of tokens that can be generated (consumed) at n_{e} after all transitions have been fired once. Note $Z=\Psi_{1} \cup \Psi_{2 . .} \cup \Psi_{k}$. Z is said to be covered by $\Psi_{1}, \Psi_{2}, . . \Psi_{k}$, which is a minimum cover of Z if no proper subset of itself is a cover of Z. A pure CFOS is one where except for all $n_{s}{ }^{i}$ and $n_{e}{ }^{i}$, the rest nodes have a single input and a single ouput node; i.e., $\forall \mathrm{n} \Omega Z, \mathrm{n} \leftrightarrow R \mathrm{RC}, \mathrm{n} \underline{-n}_{s}{ }^{i}$ and $n \underline{n}_{\mathrm{e}}{ }^{i}$ for any $\mathrm{n}_{\mathrm{s}}{ }^{i} \Omega Z, \mathrm{n}_{\mathrm{e}}{ }^{i} \Omega Z$, $|\in \mathrm{n}|=\mid \mathrm{n} \mathrm{A}=1$ where RC is a regulation circuit explained below. A tokenless Z is a Z with no tokens. (We assume, unless otherwise stated, every Z is tokenless.)

Examples of CFOS are shown in Figs. 6-7. A PT CFOS will cause the net not live. One way to make it live is to add a regulation circuit (RC), $\left[\mathrm{t}_{\mathrm{d}}{ }^{1} \mathrm{p} 1 \mathrm{t}_{\mathrm{d}}{ }^{2} \mathrm{p} 2 \mathrm{t}_{\mathrm{d}}{ }^{3} \mathrm{p} 3\right]$ in Fig. 7, across all t_{d} (also Fig. 5(d)). Such a structure is no longer an FOS; however, for brevity, we shall still refer to it CFOS in the rest of the paper. It is pure if the PT CFOS is pure.
For an ESNC to be well-behaved (WB); i.e., bounded and live, it must be correct in both static structure and dynamic marking behavior. In the sequel, we develop theory for both separately.

4. STRUCTURE CONSTRAINT

There are two cases: (1) only one token (2) multiple tokens in the RC. The first case is easier and the derived structure constraint also holds for (2).

Case (1): Single token in RC

The net (Fig. 6) can be transformed into a General Petri net (GPN) according to the following rule.

Rule of Transformation to GPN: Replacing every CFOS by a single arc with two ends being n_{s} and n_{e} and the arc weight being $|\mathrm{Z}|$.

We consider only the case of weighted SNC (WSNC) where the OPN (ordinary PN) version of the GPN; i.e., by making all arc weights unity, is an SNC. Let the class of nets transformed into WSNC be defined as ESNC (Expanded SNC). The WB of WSNC does not, however, imply the WB of ESNC. An example is shown in Fig. 8 where two identical PT CFOS shares the same n_{s} and the WSNC is live. The tokens in n_{s} could be trapped in each PT CFOS without firing n_{e} causing the net not live. This token trapping does not happen, however, if the WSNC is a MG, called Weighted MG (WMG). We investigate first the properties of WMG in the sequel.

Theorem 1: An ESNC is WB iff the transformed net is a WMG and WB.
This theorem is significant because we can find how TP and PT-CFOS are combined by studying the transformed net that is a GPN. It does not hold if WMG is replaced by WSNC because as shown in Fig. 8, the WSNC is live but the corresponding ESNC is not.

The following theorem help determine the structural-

liveness of WMG.

Theorem 2[8]: For a WMG N, the following statements are equivalent:

1. N is SL (structurally live) and SB (structurally bounded).
2. N is Ct (consistent) and Cv (conservative).
3. N is Ct and strongly connected.
4. N is strongly connected and $\operatorname{rank}(\mathrm{A})=|\mathrm{T}|-1$.

Theorem 2 is very useful because if we can find vector X for any strongly connected WMG satisfying the conditions in Theorem 2, the WMG is SL and SB.

We first consider the special case of a MG, followed by SNC. When a WMG is consistent, there exists a firing sequence to return the state to the original marking. During each iteration, each node n_{i} executes R_{i} (a finite number) times which constitutes a minimum nonzero T semiflow denoted as a $|\mathrm{T}|$-vector $(|\mathrm{T}|$ being the number of transitions of a PN) $\mathrm{R}=\left[\begin{array}{lll}\mathrm{R}_{0} \mathrm{R}_{1} & \ldots & \mathrm{R}_{\mathrm{TT}}\end{array}\right]^{\mathrm{T}}$.

Case (2): Multiple tokens in RC

The net (Fig. 7) cannot be transformed into a General Petri net (GPN). Since transitions in a RC can still fire one by one in the same fashion as Case (1), the structure constraint remains, however, the same as case (1). This is to avoid continuous token generation and token absorption. Such a constraint will be referred to as the arcconstraint. Another source for being not live comes from inappropriate token distribution among output transitions of a place. In other words, there exist bad siphons. Thus, the marking constraints for WSNC and multiple tokens in RC can be treated together based on Lemma 6.
For WSNC, the existence of TP-inconsistent pair of places implies that of a bad siphon similar to SNC with unit weights. However, the presence of multiple weights may not empty a bad siphon as shown in Fig. 9. This does not imply live transitions in the bad siphon. The following lemma shows WSNC is not SL if there exists TP-inconsistent pair of places.
Lemma 3:dA WSNC is not SL if there exists TPinconsistent pair of places.

In the sequel, $\mathrm{WSNC}^{\circ} \mathrm{deSNC}{ }^{\circ}$ addenotes WSNC (SNC) without TP-inconsistent pair of places.

lodMARKING CONSTRAINT

Lautenbach's marking condition (Definition 12) can be applied to provide a more generalized liveness condition for sequential mutual exclusion (SME). Examples will be provided. Case (1) includes Case (2). Hence we will treat case (2) first and degenerate to case (1) subsequently.

The marking constraint for WSNC with multiple tokens in RC is now investigated. A WSNC ${ }^{\circ}$ still has D_{m}. Instead of loop, we consider a P-component Ω in the equivalent WSNC that is both a minimal siphon (or deadlock) and a trap. In the WSNC, Ω is expanded to Ω that contains D_{m}.

Definition 12[5]: Let $\left(N, M_{0}\right)$ be a net-system, let i be an S-invariant and let $\mathrm{D} \in \mathrm{P}$ be a deadlock of N . The deadlock is called controlled by the S -invariant i under M_{0} iff the marking condition is satisfied: $\mathrm{W}\left(\mathrm{M}_{0}\right)=\mathrm{i}^{\mathrm{T}} * \mathrm{M}_{0}>0^{\wedge} \leftrightarrow \Sigma \mathrm{P} \backslash \mathrm{D}: \mathrm{i}(\mathrm{s})=0$.
Note that $\mathrm{W}\left(\mathrm{M}_{0}\right)=\mathrm{i}^{\mathrm{T}} * \mathrm{M}_{0}$ can be separated into two parts: \bullet_{D} and \bullet_{C} associated with D and i\D respectively $\left(\mathrm{W}\left(\mathrm{M}_{0}\right)={ }_{\mathrm{D}}{ }^{-\bullet}{ }_{\mathrm{C}}\right)$.

Lemma 4[5]: Let ($\mathrm{N}, \mathrm{M}_{0}$) be a net-system and let $\mathrm{D} \in \mathrm{P}$ be a deadlock of N . If D is controlled by the S -invariant i under M_{0}, then $\leftrightarrow M \Sigma\left[\mathrm{M}_{0}>\right.$: D is marked under M .

Lemma 5[5]: Let ($\mathrm{N}, \mathrm{M}_{0}$) be a net-system. N is weakly live under M_{0} if every minimal deadlock D_{m} is controlled by an S -invariant i under M_{0}.

Lemma 6[5]: Let N be a net which is bounded and covered by an elementary T -invariant j . If N is weakly live, then N is live.

Note that the invariant is not strongly connected (see Fig. 7). This is due to the fact that some y values in it are negative. If we reverse all the arcs in the invariant incident to places with negative y values, then it will become strongly connected.

Let p_{d} be a drain place and T_{D} the set of output transitions to p_{d} that are not in the bad siphon. To derive the marking constraint, we study the physical meanings of the y values in a D_{m} and $i \backslash D_{m}$.

Lemma 7: Let t be a transition in a marked ESNC N, t is not live, iff there exists a minimal deadlock D_{m} containing a place $\mathrm{p} \Sigma \Phi$ and a reachable marking M such that D_{m} is empty in M .

This lemma implies that if every minimal deadlock is never empty for all reachable markings in a WSNC, then every transition is live. The only minimal deadlocks that can turn from nonempty to empty are bad siphons, i.e., deadlocks that are not traps. Without TPinconsistent pair of places in the equivalent WSNC, there is only one kind of bad siphon shown in Fig. 7. In the sequel, we develop theory for the marking condition (see Theorem 3) for a bad siphon that cannot be emptied. We will show that for the above bad siphon, if $\mathrm{i}^{*} \mathrm{M}>0$, then the D_{m} cannot be emptied; otherwise, if $0 \equiv \mathrm{M}$, the D_{m} can be emptied. Hence, if $\leftrightarrow D_{\mathrm{m}}, \mathrm{i} * \mathrm{M}>0$ implies the liveness of the WSNC and we have

Lemma 8: Let ($\mathrm{N}, \mathrm{M}_{0}$) be a net-system. N is live under M_{0} if every minimal deadlock D_{m} is controlled by an Sinvariant i under M_{0}.

Remark: The liveness depends on the existence of Sinvariant which is ensured by the satisfaction of the structure constraint. From [2], a WSNC can be decomposed into a set of T- and P-components. For each Pcomponent Ω we can obtain a P -semiflow of N as follows. We apply the procedure for R computation for Ω (reverse of Ω by interchanging places with transitions). R_{i} for $\mathrm{t}_{\mathrm{i}} \sum \Omega^{r}$ corresponds to $y_{i}(>0)$ for $p_{i} \sum \Omega$ The S-invariant corresponding to the P-semiflow is obtained in Appendix A.

Lemma 8 implies that we can consider each D_{m} alone. In the equivalent WSNC°, we can consider each P component alone similar to the WMG case where each loop is considered alone. As long as each loop (Pcomponent) in a WMG (WSNC°) is live, the net is live. To check $\mathrm{i} * \mathrm{M}>0$, we resort to the physical meanings of the component \bullet_{C} in $i * M$. Since every D_{m} must be checked, it implies that when we look at a specific D_{m}, we can ignore all other D_{m} and the tokens in this D_{m} can flow freely independent of tokens in other D_{m}. This way, we can figure out the physical meanings of \bullet_{C}.

The physical meaning of \mathbf{y} for places in $\mathbf{i l D}_{\mathbf{m}}$. We find y values for places in $i \backslash D_{m}$ based on the T-condition. This way, we can also see the physical meaning of y. Let $p_{i} \sum R C, p_{i} \sum \subseteq t_{d}{ }^{i}$, then $y_{i}=y_{i-1}+y_{d}$ where y_{d} is the y value for p_{d}. In Fig. 7, where there are $3 t_{d}$ and $p_{d}=p 5, y_{d}=4$, then

$$
\begin{equation*}
y_{i}=y_{i-1}+y_{d}, \tag{1}
\end{equation*}
$$

$y_{1}=-8$, and $y_{2}=-4$. For a token at p_{1} to fire $t_{d}{ }^{1}$, it must fire $\mathrm{t}_{\mathrm{d}}{ }^{2}$ and $\mathrm{t}_{\mathrm{d}}{ }^{3}$ first, and each firing of which consumes one token at p_{d}. The total number of tokens consumed is $2=\left|y_{1} / y_{d}\right|$. The physical meaning of y is now clear:

> For every token at $p_{i}, \exists_{i}=\left|y_{i} / y_{d}\right|$ (absolute value of $\left.y_{i} / y_{d}\right)$ is the maximum number of tokens in $($ sucked from $) p_{d}$ to be consumed by firing t_{d} not in D_{m} without firing the t_{d} in D_{m}.

The maximum number of tokens sucked from $\mathrm{p}_{\mathrm{d}}{ }^{\mathrm{j}}$ due to a single RC_{k}, where m_{i} is the token at p_{i} in $R C_{k}$. Note that there may be more than one RC associated with $p_{d}{ }^{j}$. Hence, the maximum number of tokens sucked from $\mathrm{p}_{\mathrm{d}}{ }^{\mathrm{j}}$ is
$\bullet{ }_{j} v \neq \bullet{ }_{j}{ }^{k}$. This is the maximum number of tokens to be consumed from $\mathrm{p}_{\mathrm{d}}{ }^{\mathrm{j}}$ without firing any $\mathrm{t}_{\mathrm{d}} \sum \mathrm{p}_{\mathrm{d}}{ }^{\mathrm{j}} \subseteq$ in D_{m}. The following lemma is due to Eq. (1)
Lemma 9: Let (1) RC_{i} be the regulation circuit and $P_{r}^{i}=\left\{p_{i j} \mid p_{i j} \sum R C_{i}, j=1,2, . ., k\right\}$ be the set of all places in RC_{i}; that is $\mathrm{RC}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{i} 1} \mathrm{t}_{\mathrm{i} 1} \mathrm{p}_{\mathrm{i} 2} \mathrm{t}_{\mathrm{i} 2} \mathrm{p}_{\mathrm{i} 3} \mathrm{t}_{\mathrm{i} 3} . . \mathrm{p}_{\mathrm{ik}} \mathrm{t}_{\mathrm{ik}} \mathrm{p}_{\mathrm{i} 1}\right]$ where $\mathrm{k}=\mathrm{a}_{\mathrm{o}}\left(\mathrm{p}_{\mathrm{d}}\right) ; \mathrm{p}_{\mathrm{d}}$ is the drain place for RC. (2) $\mathrm{H}_{\mathrm{e}}\left(\mathrm{P}\left(\mathrm{H}_{\mathrm{e}}\right) \in \mathrm{D}_{\mathrm{m}}\right)$ be the PThandle associated with p_{ie} whose $\mathrm{n}_{\mathrm{s}}=\mathrm{p}_{\mathrm{d}}$ and $\mathrm{t}_{\mathrm{ie}} \sum \mathrm{H}_{\mathrm{e}}$. (3) $\mathrm{p}_{\mathrm{oe}} \sum \mathrm{H}_{\mathrm{e}}$ and $\mathrm{p}_{\mathrm{oc}} \sum \mathrm{t}_{\mathrm{ie}} \subseteq$ The following y values for p_{oe} and places in RC_{I} satisfy the T-condition:

$$
\begin{aligned}
& \text { (1) } \mathrm{y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}-1}+\mathrm{y}_{\mathrm{d}} \text {, (if i-1=0, } \mathrm{y}_{\mathrm{i}-1}=\mathrm{y}_{\mathrm{k}} \text {). (2) } \mathrm{y}_{\mathrm{e}-1}=0, \mathrm{y}_{l}=-\mathrm{y}_{\mathrm{d}} *(\mathrm{k}-l+\mathrm{e}- \\
& \text { 1) } \% \mathrm{k}, l=1,2, \ldots, \mathrm{k} .(3) \leftrightarrow \sum \mathrm{H}_{\mathrm{e}}, \mathrm{pr} \mathrm{p}_{\mathrm{d}}, \mathrm{y}(\mathrm{p})=\mathrm{k}^{*} \mathrm{y}_{\mathrm{d}} \text {, }
\end{aligned}
$$

See Fig. 7 for the y values based on this lemma.
Corollary 1: Let $\mathrm{D}_{\mathrm{m}}{ }^{1}, \mathrm{D}_{\mathrm{m}}{ }^{2}, \ldots, \mathrm{D}_{\mathrm{m}}{ }^{\mathrm{k}}$ be the set of D_{m} associated with the RC in Lemma 9 and $\mathrm{y}_{l}^{\mathrm{b}}(\mathrm{b}=1,2, \ldots, \mathrm{k})$ the y value for $\mathrm{p}_{l} \sum \mathrm{RC}$ and $\mathrm{D}_{\mathrm{m}}=\mathrm{D}_{\mathrm{m}}{ }^{\mathrm{b}}$, then \cup constant $\mathrm{e}, \mathrm{e} \supseteq 1$, $\mathrm{y}_{l}^{\mathrm{b}}=-\mathrm{y}_{\mathrm{d}} *(l+\mathrm{e}) \% \mathrm{k}$ and e-b is a constant for every b and l.

Theorem 3[8]: dck2d[$\left.{ }_{\mathrm{D}} 3 \mathrm{~d}\right] \bullet_{1}: \mathrm{d}_{{ }_{2}}: 00: \mathrm{d} \bullet_{\mathrm{v}}{ }^{\mathrm{T}} \mathrm{d}$ be a marking for a P-component Ω in a $\mathrm{WSNC}^{\circ} \mathrm{d}$ with every RC containing tokens, then

$$
{ }^{\circ} \mathrm{dWe} M_{\square} \mathrm{a} 3 \cdot{ }_{\mathrm{D}} \bullet_{\mathrm{C}} 30 \mathrm{o}
$$

2ode $\Omega: \mathrm{d}\left[{ }_{0}\right)$ is deadlocked, iff $\mathrm{M}_{0}=\mathrm{M}_{\mathrm{D}}$, where Ω is the equivalent of Ω ind the ESNC of the $\mathrm{WSNC}^{\circ}{ }_{0}$
$3 \operatorname{od}\left[=\left[{ }_{\mathrm{D}}\right.\right.$ i fde $\left.\Omega, \mathbf{M}\right)$ is deadlocked. 4ode $\Omega: \mathrm{d}\left[{ }_{0}\right)$ is live if $\mathrm{W}\left(\mathrm{M}_{0}\right)>\mathrm{W}\left(\mathrm{M}_{\mathrm{D}}\right)$.
Note that there are $\left|p_{d}{ }^{i}\right|$ possible values for \bullet_{i}. Each \bullet_{i} corresponds to a D_{m} including a $t_{d} \sum p_{d} \subseteq$ The maximal $\bullet{ }_{i}$ induces a maximal marking at $\mathrm{p}_{\mathrm{d}}{ }^{\mathrm{i}}$ and its computation for RC with multiple tokens is provided in Appendix B.
This theorem implies that Lautenbach's marking condition is both a sufficient and necessary condition for liveness.

In the special case of the WSNC being a WMG, $\mathrm{M}_{\mathrm{D}}\left(\mathrm{p}_{\mathrm{i}}\right)=$ $\bullet_{i}=a_{0}\left(p_{i}\right)-1$, and we have the following theorem:

Theorem 4[20]:d Let $\left.M_{D} 3\right] a_{0} e_{1} a \cup \cdot: \mathrm{d}_{0} \mathrm{ep}_{2} a \cup \cdot: 00$: $\mathrm{a}_{0} \mathrm{ep}_{\mathrm{K}} \mathrm{a} \cup \cdot{ }^{\mathrm{T}} \mathrm{d}$ be a marking for loop L , then

1. ($\mathrm{L}, \mathrm{M}_{\mathrm{D}} \mathrm{a}$ is deadlocked,
$20 \mathrm{~d} \Omega \mathrm{~d}_{\mathrm{D}}$ if (L, M) is deadlocked,
ea $\left(L, M_{0}\right)$ is live if $W\left(M_{0}\right)>W\left(M_{D}\right) a$
1Lemma 10 Let H_{1} and H_{2} be a pair of PP-handles whose places are in a controlling S-invariant, then the number of t_{d} on H_{1} and H_{2} must be identical.

7. CONCLUSION \& ACKNOWLEDGEMENTS

We can transform SNC with pure TP and PT into a GPN and apply existing theory to study its properties. The subclass of WMG is studied first and then extended to WSNC. Afterwards, we investigate the marking condition for WSNC. This work was sponsored under research grant number NSC88-2213-E-004-001.

REFERENCES

[1] K. Barkaoui, J. M. Couvreur, and C. Dutheillet, "On Liveness in Extended Non Self-Controlling Nets," In Application and Theory of Petri Nets 1995, LNCS, No. 935, SpringerVerlag, pp. 25-44.
[2] D. Y. Chao, Jose A. Nicdao, Jih-Hsin Tang and Yi-Kung Chen, "Second Order Structures for Synchronized Choice Ordinary Petri Nets," the Third World Multiconference on Systemics, Cybernetics and Informatics (SCI’99), Orlando, USA, 1999, Proceedings Volume 5 Computer Science and Engineering, pp. 336-343.
[3] Chao, D.Y., and D. Wang, "Two Theoretical and Practical Aspects of Knitting Technique - Invariants and A New Class of Petri Net," IEEE Transactions on System, Man, and Cybernatics, Vol. 27, No.6, 1997, pp.962-967.
[4] Chao, D.Y., and David Wang, "A Synthesis Technique for General Petri Nets," Journal of Systems Integration, Vol.4, No.1, 1994, pp.67-102.
[5] Lautenbach K. and H. Ridder, "Liveness in Bounded Petri Nets which are Covered by T-Invariants," In Application and Theory of Petri Nets 1994, Zaragoza, Spain, June 1994, LNCS, No. 815, R. Valette ed., Springer-Verlag, 1994, pp. 358-378.
[6] Lipton, R. J., "The reachability problem requires exponential space," New Haven, CT, Yale University, Dept. of Computer Science, Res. Rep. 62, 1976.
[7]Murata, T., "Petri Nets: Properties, Analysis and Applications," IEEE Proceedings, Vol. 77, No. 4, April 1989, pp. 541-
580.
[8] Teruel, E., Chrzastowski-Watchel, P., Colom, J.M., Silva, M., "On Weighted T-systems," in Jensen, K., "Application and Theory Of Petri Nets," Lecture Notes In Computer Science, Springer-Verlag, 1992, pp. 348-367.

Appendix A: Procedure of Converting P-Semiflow \in in WSNC into S-invariant in ESNC

In WSNC, each P-component \in is both a minimal deadlock and an S-invariant. Each arc $\left[\mathrm{t}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}+1}\right]\left(\left[\mathrm{p}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right]\right)$ corresponds to a TP (PT) CFOS in the ESNC where each minimal deadlock and its controlled S-invariant correspond to $\mathrm{a} \in$ in the WSNC. Any minimal deadlock in the ESNC includes in ϵ^{e} all TP CFOS and only one PT handle from each PT CFOS while the controlled Sinvariant includes the minimal deadlock and $|Z|-1$ arcs from each RC for the circuit. The missing arc from a RC corresponds to the place with l satisfying $((l+e) \% k)=0$ in Eq. (v) of Appendix B. For an example, see Fig. 7. The procedure is summarized as follows:

1. Find y values for places in \in
2. For each place p_{i} with input arc weights a_{o} and $y_{i,}$, the y value for each place in each TP-handle of the corresponding TP CFOS equals y_{i},
3. For each place p_{o} with output arc weights a_{i} and y_{o}, the y for each place in one PT-handle of the corresponding PT CFOS equals $y_{o^{*}} a_{i, \text {, }}$ The y for all the places in the rest PT-handles of the PT CFOS equals 0 . For each place p_{j} in the RC, $y_{j=} y_{o^{*}} y^{\prime}{ }_{j}$ where y^{\prime}, is obtained based on the equation in Appendix B.

Appendix B: $\stackrel{\leftrightarrow}{ } \mathbf{c o m p u t a t i o n ~ f o r ~ R C ~ w i t h ~ m u l t i p l e ~ t o k e n s ~}$

Let RC_{i} be the regulation circuit and $\mathrm{P}_{\mathrm{r}}=\left\{\mathrm{p}_{\mathrm{ij}} \mid \mathrm{p}_{\mathrm{ij}} \sum \mathrm{RC}_{\mathrm{i}}, \mathrm{j}=1,2, . . \mathrm{k}\right\}$ be the set of all places in $R C_{i ;}$, that is $R C_{i}=\left[p_{i 1} t_{i 1} p_{i 2} t_{i 2} p_{i 3} t_{i 3}\right.$.. $p_{i k} t$ ${ }_{i k} p_{i 1}$] where $k=a_{o}\left(p_{d}\right) ; p_{d}$ is the drain place for RC. Based on Corollary 1 and the physical meaning of $\left|\frac{y_{l}^{b}}{y_{d}}\right|$, the maximum number of tokens sucked from $D_{m}{ }^{b}$ at p_{d} is
$\leftrightarrow \bullet \max _{e=1 \text { tok }} \check{C}_{b=1}^{k} \cdot \complement_{l=1}^{k}\left(m_{l} * y_{l}^{b}\right) \bullet \max _{e=1 t o k} \cdot \complement_{l=1}^{k}\left(m_{l} *((l=e) \% k)\right)$

Fig. 1. An example of live \& reversible SNC with no inconsistent pair.

Fig. 2 Dual of the net in Fig.1. This net is live and reversible without inconsistent

Fig. 3a. Irreversible SNC with
PT-inconsistent pair (p13, p14)

Fig.4. Dual of the net in Fig. 3a. The SNC is not live with TPinconsistent pair (p18, p19)

Fig. 5(a) An asymmetrical TP FOS.

Fig. 5(c). Combining TP and PT CFOS.

Fig. 5(b) An asymmetrical PT FOS

Fig. 5(d). Adding a RC in the PT CFOS.

Fig.6. Extra tokens generated from one TP FOS are not totally consumed by one PT FOS. The net is SL\&SB since the loop gain is one. The ESNC on the left is reduced to a WSNC on the right.

Fig. 7. A more complicated example with multiple tokens in the initial marking of all RC.

Fig. 8. Two identical PT CFOS sharing the same n_{s} and the WSNC is live but the ESNC is not live.

Fig. 9. Net with TP inconsistent pair of places. Multiple arc weights may not prevent a bad siphon from being emptied.

[^0]: ${ }^{1}$ The former name of the author is Yuh Yaw, which appeared in some of his earlier papers.

