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ABSTRACT

SNC nets are extended to deal with nets with assymetric
first order structures (FOS). They can be converted to a
General Petri net (GPN) and existing theory can be ap-
plied to study its liveness and boundedness properties.

1. INTRODUCTION

Proving liveness or equivalently, solving the reachability
problem for Petri nets is a difficult problem since it takes
exponential time and space [6]. Unlike traditional classi-
fication by output conditions of places, Synchronized
Choice nets (SNC) were defined as a new class of nets
[2,3] characterized by bridges and handles satisfying re-
quirements R1 (R2): If a circuit � has a TP- (PT-) handle,
H’, then H’ is bridged to � through a PT- (TP-) bridge, B’.
Figs. 1 to 4 are examples of SNC. Note the net in Fig. 4 is
not an FC (free-choice) net. In Fig. 1, two handles H1=
[p2 t4 p4 t3] and H2= [p2 t2 p3] start from the same place p2

but they join at a transition t3; there is a bridge B12= [t4 p3]
from H1 to H2 and a bridge B21= [t2 p4] from H2 to H1.

By examining the synthesis rules presented in [3], we
find that synthesized nets and SNC nets are closely re-
lated. R1 and R2 involve nodes in a global fashion; the
synthesis rules, nevertheless, involve nodes in a local
fashion. Thus one can view the rules as localization of the
two requirements that reduces the complexity of analysis.
On one hand, the rules provide local conditions for a net
to be SNC similar to that for an FC [11]; on the other
hand, they are better than the two requirements by [3]
which are global conditions. Note that any Ct (Consistent)
& Cv (Conservative) FC is an SNC but not vice versa. An
arbitrary SNC net may not be SL. However, any SNC net
that is an FC, is structurally live (SL) which is not true for
AC (asymmetric-choice).

A first-order structure (FOS) contains two directed paths
with identical start (called ns) and end nodes (ne). In [2],
we show that in an SNC, any FOS must be symmetrical;
that is, both ns and ne must be of the same type: they are
both transitions or are both places. An asymmetrical FOS
with ns�T(P) and ne�P(T) may result in unboundedness
(nonlive). To fix the problems, one way is to insert
bridges into the structure.  This results in SNC [2].

Another way is to have a second asymmetrical FOS with
ns� P(T) and ne� T(P) to absorb or provide the extra
tokens for the first asymmetrical FOS.  An example is
shown in Fig. 5

Fig. 5(a) shows an asymmetrical TP FOS; the TP-path [t1
p4 t4 p3], which injects an extra token into the circuit in
each iteration, causing the Petri net unbounded.  To con-
sume the extra token, a PT FOS should follow the above
FOS.  In Fig. 5(b), an asymmetrical PT FOS; the PT-
path [p2 t4 p4 t3], makes t3 nonlive, and thus results in a
deadlock.

One way to fix the problem is to insert bridges into the
above FOS.  This results in a new class of nets called
SNC whose properties have been studied in [2,3].  There
is only one kind of bad siphon, causing an SNC to be not
live.  It is interesting because it is bounded and the con-
dition for liveness is so simple that there exists an inte-
grated algorithm for SNC and liveness detection.  How-
ever, this class of nets is limited.  For instance, there is
no ordering of firings among a set of resource-sharing
transitions that are exclusive to each other.  Sometimes,
these transitions must execute one by one. Also, if the
synthesized net is initially safe, it stays to be safe for any
reachable marking. It is marking monotonic, that is, it
will not evolve into a deadlock by adding more tokens.
The synchronic distance between any two transitions in a
synthesized net with safe marking is either one or infinite.

To create classes of nets with more general properties, we
have to find more alternatives to fix the problem. In
one alternative, the two asymmetrical FOS should be
combined as in Fig. 5(c).

Note that it must be that ne1 � ns2; i.e., they are in a circle.
Otherwise, the PT FOS cannot consume the extra token
from the TP FOS. The net is live if the two output transi-
tions of the ns place of the PT FOS are synchronized to
have synchronic distance of one.

Note that in Fig. 5(c), one TP generation is immediately
followed by a PT generation. In general, several TP (PT)
FOS may be combined to form a composite structure so
that more than one extra token generated (consumed).
Also, there may be more than one TP FOS in combination
with more than one PT FOS as shown in Fig. 6.  The
above conditions must be generalized and will be dealt
with in Section 4.  We have extended this to allow min-
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gling a number of TP and PT generations; thus, multiple
TP generations are followed by multiple PT generations.
Also PT FOS must consume multiple tokens generated
from TP FOS in a synchronized manner.  One way to do
this is to link all relevant PT FOS with a regulation circuit
(RC).  Based on this, we will define a new class of net
called ESNC (Expanded SNC).  The class of synthe-
sized nets hence is extended.  Liveness condition for
SNC is simple because there is only one kind of bad si-
phon (minimal deadlock with no traps).  For ESNC, a
new kind of bad siphon emerges. The marking condition
for liveness will be derived based on results from [5].

Section 2 presents the preliminaries. Section 3 defines
handles, bridges, composite FOS (CFOS) and ESNC.
Section 4 derives the structure constraints for liveness
and boundedness of ESNC by transforming it into general
Petri nets (GPN) with multiple weights (called WSNC).
They are derived first for a subclass (called WMG) of
WSNC where the transformed GPN is a mark graph
(MG).  The same constraint also holds for WSNC. The
marking constraint is derived first for RC with multiple
tokens in Section 5 based on a new kind of bad siphon.
Section 6 concludes the paper.

We assume that readers are familiar with the various ter-
minologies of PN; references for which can be found in
[7].

Definition 1[5]: For a Petri net (N,M), a non-empty sub-
set D of places is called a deadlock if �D�D�, i.e., every
transition having an output place in D has an input place

in D. If M(D)=�
�Dp

M(p)=0, D is called a token-free

deadlock at M. A deadlock Dm is said to be minimal if it
does not contain a deadlock as a proper subset. Similar
definitions apply to trap with the change that �D�D� is
replaced by �D�D�.

Note that deadlock is also referred to as siphon in some
literatures and the sequel.

Lemma 1[5]: For a Petri net (N, M0), if there does not
exist any firable transition, then there exist a token-free
�������� at M0.

Definition �	
���Given a Petri net N in which N’ is a
subnet of it and N’ ( � N) is a T-component (P-component)
of N iff N’ is strongly connected marked graph (state ma-
chine) and P’ = �T’�T’�, (T’ =�P’ � P’�).

  In [3], we showed that any SNC could be decomposed
into a set of T- and P- components.

Definition 3(S-invariant & T-invariant): A Y (X) vector
is called a S- (T-) invariant iff Y(X)	0 and AY=0 (ATX=0)
where A is the incidence matrix.

The existence of S-invariants is equivalent to the preser-
vation of token load [5].  The y values of all places for
the PN in Fig. 7 ensure that the y values are balanced at
each transition.

Definition 4(P-semiflow & T-semiflow):Y (X) is called
a P- (T-) semiflow if Y (X) is integral and nonnegative

and AY=0 (A�X=0).

Definition 5(Conservative): A Petri net N is called con-
servative iff there exists a positive integer vector Y > 0
such that W(M)=M�Y=M�

�Y=W(M0)��M�R(N,M���

Lemma 2[3]: �PN, AY=0 iff �t �T, Y(�t ) =Y( t�),
where�Q=�t  or t�� and���� � the
weight between pi and t.  The

above condition is defined as the T-condition.

This T-condition is useful for finding Y in a step-by-step
fashion.  We can assign arbitrary equal y values for input
places of a transition and compute the equal y value of
each of its output places.  Continue this until all y values
of the S-invariant have been computed.  We then multi-
ply or divide all y values by a factor such that all y are
integers and their greatest common factor is one. Exam-
ples are shown in Fig. 7.

Definition 6: Let D be a deadlock of N. pd�D and td�p�
is called a drain transition if td��D; otherwise, it is called
a trap transition. pd is called a drain place.  TD is the set
of all such td.

In Fig. 7, p5 is a drain place in the Dm which includes all
places with y>0 and TD={td

2, td
3}; td

1
 is a trap transition,.

The corresponding Y vector is an S-invariant. Synchronic
distance is a concept closely related to the degree of mu-
tual dependence between two events in a condition/event
system.  The definitions of Petri net language and syn-
chronic distance are given as follows:

Definition 7(Language of a Petri Net): The language of
a Petri net N, L(N,M), is the set of all firing sequences for
the net with the initial marking M: L(N,M)={ �

|M[�>M’].

Definition 8(Synchronic Distance): The synchronic
distance between two transitions t1 and t2 in a Petri net N
is defined as d12= Max {�(t1) - �(t2), ��L(N,M)}, where
�(t) is the number of times t appears in �.

The deadlock-trap property is only a sufficient (but not
necessary) condition for liveness.  Hence in a live net, a
minimal deadlock may not contain a trap; such a dead-
lock is called a bad siphon.  Consider the case that there
is only one drain place and its output transitions t1�D
and t2�D of the deadlock. If d12 =�, then tokens in D
will be drained completely by a certain number of firings
of t2 without any firing of t1. This empty D will stay for-
ever and the N is not live.  The general case is similar.
To prevent this, t1 and t2 must be synchronized with fi-
nite synchronic distance so that D cannot be empty.

3. HANDLES, BRIDGES, FIRST AND SECOND
ORDER STRUCTURES

We follow [2] for the definitions of handles, bridges, XY-
handles, and XY- bridges where X and Y can be T or P.

Definition 9: Let N=(P, T, F) and N1, N2 partial subnets
of N. An elementary directed path H= [nsn1n2� nkne],
ni�P�T, i=1, 2,� , k, is called a handle of N1 if H�

N1={ns,ne}; ns and ne are called the start and the end
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ns,ne}; ns and ne are called the start and the end nodes of
the handle H, respectively. Note that ns and ne may be
identical. An elementary directed path �=[n1, …, nr],  r�
2, is a bridge from N1 to N2 iff ��(P1�T1) = {n1} and �
�(P2�T2) ={nr}. p1� p2 if p1 and p2 are on an ele-
mentary circuit. n1� n2 if n1�  n2 and there is an ele-
mentary directed path from nh to n2 via n1where nh is a
reference node (initially marked) called a home place.

Definition 10: Handles H1 and H2 are said to be mutually
complementary if they share the same ns and ne; i.e., H1�

H2={ns,ne}. Let pi�Hi (i=1 or 2), pi�ns and pi�ne, then
define �i	Hi is a directed path on Hi from ns to pi,
ns(p1,p2)=ns if there exists at least one �i on a certain Hi

that contains no other ns of another Hj; ns(p1,p2) can be
defined in a dual fashion and ns(p1,p2)=ne if there exists at
least one 
i on a certain Hi that contains no other ne of
another Hj; where 
i	Hi is a directed path on Hi from pi to
ne. (p1, p2) is called a TP-inconsistent pair of places if
�ns(p1, p2) is a transition and �ne(p1, p2) is a place.  (p1,
p2) is called a PT-inconsistent pair of places if �ns(p1, p2)
is a place and �ne(p1, p2) is a transition.  Let �= H1H2,
H1	N1 and H2	N2, H1 (H2) is a prime handle to N2 (N1)
(1) If there are no bridges B between N1 and N2 and � is
defined to be a first-order structure (FOS). If ns�X and
ne�Y where X,Y=T or P, then �(H, B) is said to be a
XY-path (XY-handle, XY-bridge). If X=Y, then the FOS
� is said to be symmetrical; otherwise it is asymmetrical
(AFOS). (2) If B1 (B2) is a bridge from N1 to N2 (N2 to N1),
then �= H1H2B1B2 is defined to be a second-order
structure (SOS). (3) A strongly connected net is SNC
(Synchronized Choice net) if every TP-(PT-)handle to a
certain circuit has a PT- (TP-)bridge from its comple-
mentary TP-handle to itself. If X=Y, then the FOS � is
said to be symmetrical; otherwise it is asymmetrical
(AFOS).

Note that for PT-inconsistent pair, it must be that every
ns(p1, p2) is a place. Otherwise, it may no longer be irre-
versible (Fig. 3).  For TP-inconsistent pair, however, as
long as there exists a transition ns(p1, p2), it is not live.

�p2 t2 p3� and �p2 t4 p3� in Fig. 1 are two prime handles
complementary to each other; ns= p2 and ne= p3. Note that
there are no bridges interconnecting them; hence, they
together form an FOS. Since X=Y=P, it is symmetrical. p1

and p2 in Definition 16 are inconsistent because they are
concurrent (exclusive) and the tokens in them will flow to
a set of mutually exclusive (concurrent) places.  Note
that ns(p1, p2) and ne(p1, p2) do not exist if p1 and p2 is
on an elementary circuit; instead we define p1�  p2.

Note that any pair of places (excluding ns and ne) in an
AFOS is also inconsistent.  This leads [2] to an integrat-
ed algorithm to detect SNC and liveness for an arbitrary
net.

Definition 11: A composite first-order structure (FOS)
� is a set of first-order structures �1, �2, .. �k, k�2, that
are (1) interconnected; that is, ��i, � �j such that
�i��j��, if i�j, (2) �pair of (ns

i ,ne
i) and (ns

j,ne
j), if

�i��j=�, then ns(ns
i,ns

j)�T (P), and (3) �Zi, Zj, 1�|Zi�Zj|.

ns (ne) of �: � ns
i (ne

i) of �i, either ns=ns
i or ns�  ns

i (ne=ne
i

or ne�  ne
i).  If all �i  is of TP (PT) type, then it is a TP

(PT) composite first-order structure, CFOS with sym-
bol ZT (ZP); |�| is the maximum number of tokens that can
be generated (consumed) at ne after all transitions have
been fired once.  Note �=�1�2.. �k. � is said to be
covered by �1,�2, .. �k, which is a minimum cover of �
if no proper subset of itself is a cover of �.  A pure
CFOS is one where except for all ns

i and ne
i, the rest no-

des have a single input and a single ouput node; i.e.,
�n�Z, n�RC, n�ns

i and n�ne
i for any ns

i�Z, ne
i�Z,

|�n|=|n�|=1 where RC is a regulation circuit explained
below.  A tokenless Z is a Z with no tokens.  (We as-
sume, unless otherwise stated, every Z is tokenless.)

Examples of CFOS are shown in Figs. 6-7. A PT CFOS
will cause the net not live.  One way to make it live is to
add a regulation circuit (RC), [td

1 p1 td
2 p2 td

3 p3] in Fig. 7,
across all td (also Fig. 5(d)).  Such a structure is no lon-
ger an FOS; however, for brevity, we shall still refer to it
CFOS in the rest of the paper. It is pure if the PT CFOS is
pure.

For an ESNC to be well-behaved (WB); i.e., bounded and
live, it must be correct in both static structure and dy-
namic marking behavior.  In the sequel, we develop
theory for both separately.

4. STRUCTURE CONSTRAINT

There are two cases: (1) only one token (2) multiple to-
kens in the RC.  The first case is easier and the derived
structure constraint also holds for (2).

Case (1): Single token in RC

The net (Fig. 6) can be transformed into a General Petri
net (GPN) according to the following rule.

Rule of Transformation to GPN: Replacing every
CFOS by a single arc with two ends being ns and ne and
the arc weight being |�|.

We consider only the case of weighted SNC (WSNC)
where the OPN (ordinary PN) version of the GPN; i.e., by
making all arc weights unity, is an SNC.  Let the class of
nets transformed into WSNC be defined as ESNC (Ex-
panded SNC). The WB of WSNC does not, however,
imply the WB of ESNC.  An example is shown in Fig. 8
where two identical PT CFOS shares the same ns and the
WSNC is live.   The tokens in ns could be trapped in
each PT CFOS without firing ne causing the net not live.
This token trapping does not happen, however, if the
WSNC is a MG, called Weighted MG (WMG).  We in-
vestigate first the properties of WMG in the sequel.

Theorem 1: An ESNC is WB iff the transformed net is a
WMG and WB.

This theorem is significant because we can find how TP
and PT-CFOS are combined by studying the transformed
net that is a GPN.  It does not hold if WMG is replaced
by WSNC because as shown in Fig. 8, the WSNC is live
but the corresponding ESNC is not.

The following theorem help determine the structural-
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liveness of WMG.

Theorem 2[8]: For a WMG N, the following statements
are equivalent:

1. N is SL (structurally live) and SB (structurally
bounded).
2. N is Ct (consistent) and Cv (conservative).
3. N is Ct and strongly connected.
4. N is strongly connected and rank(A) = |T| -1.

Theorem 2 is very useful because if we can find vector X
for any strongly connected WMG satisfying the condi-
tions in Theorem 2, the WMG is SL and SB.

We first consider the special case of a MG, followed by
SNC. When a WMG is consistent, there exists a firing
sequence to return the state to the original marking. Dur-
ing each iteration, each node ni executes Ri (a finite num-
ber) times which constitutes a minimum nonzero T-
semiflow denoted as a |T|-vector (|T| being the number of
transitions of a PN) R = [R0 R1  . . . R|T|]

T.

Case (2): Multiple tokens in RC

The net (Fig. 7) cannot be transformed into a General
Petri net (GPN).  Since transitions in a RC can still fire
one by one in the same fashion as Case (1), the structure
constraint remains, however, the same as case (1).  This
is to avoid continuous token generation and token ab-
sorption. Such a constraint will be referred to as the arc-
constraint. Another source for being not live comes from
inappropriate token distribution among output transitions
of a place.  In other words, there exist bad siphons.
Thus, the marking constraints for WSNC and multiple
tokens in RC can be treated together based on Lemma 6.

For WSNC, the existence of TP-inconsistent pair of
places implies that of a bad siphon similar to SNC with
unit weights.  However, the presence of multiple
weights may not empty a bad siphon as shown in Fig. 9.
This does not imply live transitions in the bad siphon.
The following lemma shows WSNC is not SL if there
exists TP-inconsistent pair of places.

Lemma 3:�A WSNC is not SL if there exists TP-
inconsistent pair of places.

In the sequel, WSNC���SNC���denotes WSNC (SNC)
without TP-inconsistent pair of places.

���MARKING CONSTRAINT

Lautenbach’s marking condition (Definition 12) can be
applied to provide a more generalized liveness condition
for sequential mutual exclusion (SME).  Examples will
be provided. Case (1) includes Case (2). Hence we will
treat case (2) first and degenerate to case (1) subse-
quently.

The marking constraint for WSNC with multiple tokens
in RC is now investigated.  A WSNCo still has Dm.  In-
stead of loop, we consider a P-component � in the
equivalent WSNC that is both a minimal siphon (or
deadlock) and a trap. In the WSNC, � is expanded to �e

that contains Dm.

Definition 12[5]: Let (N,M0) be a net-system, let i be an
S-invariant and let D�P be a deadlock of N.  The dead-
lock is called controlled by the S-invariant i under M0 iff
the marking condition is satisfied:
W(M0)=iT*M0>0^�s�P\D: i(s)�0.

Note that W(M0)=iT*M0 can be separated into two parts:
� D and � C associated with D and i\D respectively
(W(M0)=� D-� C).

Lemma 4[5]: Let (N,M0) be a net-system and let D�P be
a deadlock of N. If D is controlled by the S-invariant i
under M0, then �M�[M0>: D is marked under M.

Lemma 5[5]: Let (N,M0) be a net-system. N is weakly
live under M0 if every minimal deadlock Dm is controlled
by an S-invariant i under M0.

Lemma 6[5]: Let N be a net which is bounded and cov-
ered by an elementary T-invariant j. If N is weakly live,
then N is live.

Note that the invariant is not strongly connected (see Fig.
7).  This is due to the fact that some y values in it are
negative.  If we reverse all the arcs in the invariant inci-
dent to places with negative y values, then it will become
strongly connected.

Let pd be a drain place and TD the set of output transitions
to pd that are not in the bad siphon.  To derive the
marking constraint, we study the physical meanings of
the y values in a Dm and i\Dm.

Lemma 7: Let t be a transition in a marked ESNC N, t is
not live, iff there exists a minimal deadlock Dm contain-
ing a place p��t and a reachable marking M such that Dm

is empty in M.

This lemma implies that if every minimal deadlock is
never empty for all reachable markings in a WSNC, then
every transition is live.  The only minimal deadlocks
that can turn from nonempty to empty are bad siphons,
i.e., deadlocks that are not traps.  Without TP-
inconsistent pair of places in the equivalent WSNC, there
is only one kind of bad siphon shown in Fig. 7.  In the
sequel, we develop theory for the marking condition (see
Theorem 3) for a bad siphon that cannot be emptied.
We will show that for the above bad siphon, if i*M>0,
then the Dm cannot be emptied; otherwise, if 0�i*M, the
Dm can be emptied.  Hence, if �Dm, i*M>0 implies the
liveness of the WSNC and we have

Lemma 8: Let (N,M0) be a net-system. N is live under
M0 if every minimal deadlock Dm is controlled by an S-
invariant i under M0.

Remark: The liveness depends on the existence of S-
invariant which is ensured by the satisfaction of the
structure constraint.  From [2], a WSNC can be decom-
posed into a set of T- and P-components.  For each P-
component �, we can obtain a P-semiflow of N as follows.
We apply the procedure for R computation for �r (reverse
of � by interchanging places with transitions). Ri for ti��

 r

corresponds to yi (>0) for pi��.  The S-invariant corre-
sponding to the P-semiflow is obtained in Appendix A.
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Lemma 8 implies that we can consider each Dm alone.
In the equivalent WSNCo, we can consider each P-
component alone similar to the WMG case where each
loop is considered alone.  As long as each loop (P-
component) in a WMG (WSNCo) is live, the net is live.
To check i*M>0, we resort to the physical meanings of
the component � C in. i*M.  Since every Dm must be
checked, it implies that when we look at a specific Dm,
we can ignore all other Dm and the tokens in this Dm can
flow freely independent of tokens in other Dm.  This way,
we can figure out the physical meanings of � C.

The physical meaning of y for places in i\Dm.  We find
y values for places in i\Dm based on the T-condition. This
way, we can also see the physical meaning of y.  Let
pi�RC, pi�� td

i
 , then yi=yi-1+yd where yd is the y value for

pd.  In Fig. 7, where there are 3 td and pd=p5, yd=4, then

yi=yi-1+yd,                             (1)

y1=-8, and y2=-4.  For a token at p1 to fire td
1, it must fire

td
2 and td

3 first, and each firing of which consumes one to-
ken at pd. The total number of tokens consumed is
2=|y1/yd|. The physical meaning of y is now clear:

For every token at pi, �i=|yi/yd| (absolute value of
yi/yd) is the maximum number of tokens in
(sucked from ) pd to be consumed by firing td not
in Dm  without firing the td in Dm.

The maximum number of tokens sucked from pd
 j

 due to a
single RCk, where mi is the token at pi in RCk.  Note that
there may be more than one RC associated with pd

 j.
Hence, the maximum number of tokens sucked from pd

 j
 is

This is the maximum number of
tokens to be consumed from pd

 j

without firing any td�pd
 j� in Dm.  The following lemma

is due to Eq. (1)

Lemma 9: Let (1) RCi be the regulation circuit and
Pr

i={pij | pij� RCi, j=1,2,..,k} be the set of all places in RCi;
that is RCi=[pi1 t i1 pi2 t i2 pi3 t i3 .. piktikpi1] where k=ao(pd); pd

is the drain place for RC. (2) He (P(He) �Dm) be the PT-
handle associated with pie whose ns=pd and tie�He. (3)
poe�He and poe�tie�.  The following y values for poe and
places in RCI satisfy the T-condition:

(1)yi=yi-1+yd, (if i-1=0, yi-1=yk). (2) ye-1=0, y l=-yd*(k- l +e-
1)%k, l=1,2,…,k. (3)�p�He, p�pd, y(p)= k*yd,

See Fig. 7 for the y values based on this lemma.

Corollary 1: Let Dm
1, Dm

2, …, Dm
k be the set of Dm asso-

ciated with the RC in Lemma 9 and yl
b (b=1,2,…,k) the y

value for pl�RC and Dm=Dm
b, then  constant e, e�1,

yl
b=-yd*(l+e)%k and e-b is a constant for every b and l.

Theorem 3[8]:�����	�
��� ���� ������� �
��be a marking

for a P-component � in a WSNC��with every RC con-
taining tokens, then

���W����
� ��� �
���

��������		) is deadlocked, iff M0�MD, where �e is
the equivalent of � ��� the ESNC of the
WSNC��

���	�	�
�����
�, M) is deadlocked.

��������		) is live if W(M	) > W(MD).

Note that there are |pd
i| possible values for � i. Each � i cor-

responds to a Dm including a td� pd
 i�.  The maximal � i

induces a maximal marking at pd
 i and its computation for

RC with multiple tokens is provided in Appendix B.

This theorem implies that Lautenbach’s marking condi-
tion is both a sufficient and necessary condition for live-
ness.

In the special case of the WSNC being a WMG, MD(pi)=
� i=ao(pi)-1, and we have the following theorem:

Theorem 4[20]�� Let M�
����������� ������������

��������
��be a marking for loop L, then

1. (L, MD� is deadlocked,
��������if (L, M) is deadlocked,
���(L, M0) is live if W(M0) > W(MD)�

�Lemma 10�Let H1 and H2 be a pair of PP-handles who-
se places are in a controlling S-invariant, then the number
of td on H1 and H2 must be identical.

7. CONCLUSION & ACKNOWLEDGEMENTS

We can transform SNC with pure TP and PT into a GPN
and apply existing theory to study its properties. The sub-
class of WMG is studied first and then extended to
WSNC.   Afterwards, we investigate the marking con-
dition for WSNC. This work was sponsored under re-
search grant number NSC88-2213-E-004-001.
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Appendix A: Procedure of Converting P-Semiflow � in
WSNC into S-invariant in ESNC

In WSNC, each P-component � is both a minimal deadlock and
an S-invariant.  Each arc [ti pi+1] ([pi ti]) corresponds to a TP
(PT) CFOS in the ESNC where each minimal deadlock and its
controlled S-invariant correspond to a � in the WSNC.  Any
minimal deadlock in the ESNC includes in �e all TP CFOS and
only one PT handle from each PT CFOS while the controlled S-
invariant includes the minimal deadlock and |Z|-1 arcs from
each RC for the circuit.  The missing arc from a RC corre-
sponds to the place with l satisfying ((l+e)%k)=0 in Eq. (v) of
Appendix B.  For an example, see Fig. 7.  The procedure is
summarized as follows:

1. Find y values for places in �.
2. For each place pi with input arc weights ao and yi,, the y val-
ue for each place in each TP-handle of the corresponding TP
CFOS equals yi,,
3. For each place po with output arc weights ai and yo, the y for
each place in one PT-handle of the corresponding PT CFOS
equals yo* ai,. The y for all the places in the rest PT-handles of
the PT CFOS equals 0. For each place pj in the RC, yj=yo* y’j

where y’j is obtained based on the equation in Appendix B.

Appendix B: �i computation for RC with multiple tokens

Let RCi be the regulation circuit and Pr
i={pij | pij� RCi, j=1,2,..k}

be the set of all places in RCi; that is RCi=[pi1 t i1 pi2 t i2 pi3 t i3 .. pik t
ik pi1 ] where k=ao(pd); pd is the drain place for RC. Based on

Corollary 1 and the physical meaning of 
d

b
l

y

y
, the maximum

number of tokens sucked from Dm
b
 at pd is

)))%((*(.max)*(.max
1

1
11

1
kelmym

k

l
l

toke

b
l

k

l
l

k

b
toke

i ���� ���
�

�

��

�
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t19 t20

p20

p19

t15

t16

t17 t18

p17p16

p15

p18

Fig.4. Dual of the net in Fig. 3a.

The SNC is not live with TP-

inconsistent pair (p18, p19)

Fig. 3a. Irreversible SNC with

PT-inconsistent pair (p13, p14)

         

p9

t9

t12

t13 t14

t11

p14

p12

p13

p11

p10

t10

Fig.2 Dual of the net in Fig.1. This net is

live and reversible without inconsistent

Fig. 1. An example of live &

reversible SNC with no in-

consistent pair.

p1

t1

t2

t3

t4

p3 p4

p2

p5

t5

t6

t7

p8

p7

t8

p6

p1

p2 p3

p4

t2 t3

t4

Fig. 5(a) An asymmetrical

TP FOS.

p1

p3 p4

t1

t2 t3

Fig. 5(b) An asymmetrical

PT FOS

p1

p2 p3

p4

p5

p6 p7

t1

t2 t3

t4

t5 t6

t7

Fig. 5(c). Combining TP and

PT CFOS.

p1

p2 p3

p4

p5

t1

t2

t4

Fig. 5(d). Adding a RC in the PT

CFOS.

TP Structure

PT Structure

Fig.6. Extra tokens generated from one TP FOS are not totally con-

sumed by one PT FOS.  The net is SL&SB since the loop gain is

one.   The ESNC on the left is reduced to a WSNC on the right.

3

4

2
3

2
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Fig. 7. A more complicated example with multiple

tokens in the initial marking of all RC.

M0(p0)*12+(-3*2-2*3-8*3)>0

�D= M0(p0)*12

�C=-3*2-2*3-8*3

M0(p0)>3

y=12

y=3
y=3y=3y=3

y=3

y= -3
y=6

y=2 y=2

y=2

y=2

y= -2
y=4

y=4
y1= -8

y= 12 y2= -4

p5

td
1 td

2td
3

p1

p0

p2p3

a

  

t19 t20

p20

p19

t15

t16

t21

t18

p17p16

p15

p18

2

2

3

33 2

t17

p21p22

t22

Fig. 9. Net with TP inconsistent pair of places. Multiple arc weights may not prevent a bad

siphon from being emptied.

      

a

  

t19 t20

p20

t15

t16

t21p16

p15

p18

2

2
2

t17

p21

2

Fig. 8. Two identical PT CFOS sharing the same ns and the

WSNC is live but the ESNC is not live.


