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ABSTRACT

SNC nets are extended to deal with nets with assymetric
first order structures (FOS). They can be converted to a
General Petri net (GPN) and existing theory can be ap-
plied to study its liveness and boundedness properties.

1INTRODUCTION

Proving liveness or equivalently, solving the reachability
problem for Petri netsis a difficult problem since it takes
exponential time and space [6]. Unlike traditional classi-
fication by output conditions of places, Synchronized
Choice nets (SNC) were defined as a new class of nets
[2,3] characterized by bridges and handles satisfying re-
guirements R1 (R2): If acircuit Q hasaTP- (PT-) handle,
H’, then H’ is bridged to Q through a PT- (TP-) bridge, B’.
Figs. 1 to 4 are examples of SNC. Notethe net in Fig. 4 is
not an FC (free-choice) net. In Fig. 1, two handles H,=
[P, taps ts] @and Ho= [p, t, ps] start from the same place p,
but they join at atransition t;; thereis a bridge B,,= [t, p4]
from H, to H, and a bridge B,,= [t,p,] from H, to H,.

By examining the synthesis rules presented in [3], we
find that synthesized nets and SNC nets are closely re-
lated. R1 and R2 involve nodes in a global fashion; the
synthesis rules, nevertheless, involve nodes in a loca
fashion. Thus one can view the rules as localization of the
two requirements that reduces the complexity of analysis.
On one hand, the rules provide local conditions for a net
to be SNC similar to that for an FC [11]; on the other
hand, they are better than the two regquirements by [3]
which are global conditions. Note that any Ct (Consi stent)
& Cv (Conservative) FC isan SNC but not vice versa. An
arbitrary SNC net may not be SL. However, any SNC net
that isan FC, is structuraly live (SL) which is not true for
AC (asymmetric-choice).

Afirst-order structure (FOS) contains two directed paths
with identical start (called ny) and end nodes (ny). In [2],
we show that in an SNC, any FOS must be symmetrical;
that is, both n, and n, must be of the same type: they are
both transitions or are both places. An asymmetrical FOS
with n.eT(P) and n,eP(T) may result in unboundedness
(nonlive). To fix the problems, one way is to insert
bridges into the structure. This results in SNC [2].

Another way is to have a second asymmetrical FOS with
ne P(T) and n,e T(P) to absorb or provide the extra
tokens for the first asymmetrical FOS. An example is
shown in Fig. 5

Fig. 5(a) shows an asymmetrical TP FOS; the TP-path [t1
p4 t4 p3], which injects an extra token into the circuit in
each iteration, causing the Petri net unbounded. To con-
sume the extra token, a PT FOS should follow the above
FOS. In Fig. 5(b), an asymmetrical PT FOS; the PT-
path [p2 t4 p4 t3], makes t3 nonlive, and thus resultsin a
deadlock.

One way to fix the problem is to insert bridges into the
above FOS. This results in a new class of nets called
SNC whose properties have been studied in[2,3]. There
isonly one kind of bad siphon, causing an SNC to be not
live. Itisinteresting because it is bounded and the con-
dition for liveness is so simple that there exists an inte-
grated algorithm for SNC and liveness detection. How-
ever, this class of netsis limited. For instance, there is
no ordering of firings among a set of resource-sharing
transitions that are exclusive to each other. Sometimes,
these transitions must execute one by one. Also, if the
synthesized net is initialy safe, it stays to be safe for any
reachable marking. It is marking monotonic, that is, it
will not evolve into a deadlock by adding more tokens.
The synchronic distance between any two transitionsin a
synthesized net with safe marking is either one or infinite.

To create classes of nets with more general properties, we
have to find more alternatives to fix the problem. In
one dternative, the two asymmetrical FOS should be
combined asin Fig. 5(c).

Note that it must be that n,, <> ng.i.€., they arein acircle.
Otherwise, the PT FOS cannot consume the extra token
from the TP FOS. The net islive if the two output transi-
tions of the n, place of the PT FOS are synchronized to
have synchronic distance of one.

Note that in Fig. 5(c), one TP generation is immediately
followed by a PT generation. In general, several TP (PT)
FOS may be combined to form a composite structure so
that more than one extra token generated (consumed).
Also, there may be more than one TP FOS in combination
with more than one PT FOS as shown in Fig. 6. The
above conditions must be generalized and will be dealt
with in Section 4. We have extended this to allow min-

! The former name of the author is Yuh Yaw, which appeared in some of his earlier papers.



gling a number of TP and PT generations; thus, multiple
TP generations are followed by multiple PT generations.
Also PT FOS must consume multiple tokens generated
from TP FOS in a synchronized manner. One way to do
thisisto link all relevant PT FOS with aregulation circuit
(RC). Based on this, we will define a new class of net
caled ESNC (Expanded SNC). The class of synthe-
sized nets hence is extended. Liveness condition for
SNC is simple because there is only one kind of bad si-
phon (minimal deadlock with no traps). For ESNC, a
new kind of bad siphon emerges. The marking condition
for liveness will be derived based on results from [5].

Section 2 presents the preliminaries. Section 3 defines
handles, bridges, composite FOS (CFOS) and ESNC.
Section 4 derives the structure constraints for liveness
and boundedness of ESNC by transforming it into general
Petri nets (GPN) with multiple weights (called WSNC).
They are derived first for a subclass (called WMG) of
WSNC where the transformed GPN is a mark graph
(MG). The same constraint also holds for WSNC. The
marking constraint is derived first for RC with multiple
tokens in Section 5 based on a new kind of bad siphon.
Section 6 concludes the paper.

We assume that readers are familiar with the various ter-
minologies of PN; references for which can be found in

[71.

Definition 1[5]: For a Petri net (N,M), a non-empty sub-
set D of placesis called a deadlock if eDcDe, i.e., every
transition having an output place in D has an input place

in D. If M(D)=Y_ M(p)=0, D is called a token-free
peD

deadlock at M. A deadlock D,, is said to be minimal if it

does not contain a deadlock as a proper subset. Similar

definitions apply to trap with the change that eDcDe is

replaced by eDoDe.

Note that deadlock is also referred to as siphon in some
literatures and the sequel.

Lemma 1[5]: For a Petri net (N, M), if there does not
exist any firable transition, then there exist a token-free
deadlock at M.

Definition 2[3]: Given a Petri net N in which N’ is a
subnet of it and N' ( < N) is a T-component (P-component)
of N iff N is strongly connected marked graph (state ma-
chingandP'= - TUT «,(T=-P U P +).

In [3], we showed that any SNC could be decomposed
into a set of T- and P- components.

Definition 3(S-invariant & T-invariant): A'Y (X) vector
iscaled a$S- (T-) invariant iff Y (X)=0 and AY=0 (ATX=0)
where A is the incidence matrix.

The existence of S-invariants is equivalent to the preser-
vation of token load [5]. They values of all places for
the PN in Fig. 7 ensure that the y values are balanced at
each trangition.

Definition 4(P-semiflow & T-semiflow): Y (X) iscalled
a P- (T-) semiflow if Y (X) is integral and nonnegative

and AY =0 (A’X=0).

Definition 5(Conservative): A Petri net N is called con-
servative iff there exists a positive integer vector Y > 0
such that W(M)=MTY =M,TY=W(My)dOM e R(N,Mea

Lemma 2[3]: OPN, AY=0iff Ot €T, Y(+t) =Y(t-),

Y(Q) = ZyI w,, wherelQ=+t ort- and w, the
weight between p; and t. The
above condltlon is defined as the T-condition.

This T-condition is useful for finding Y in a step-by-step
fashion. We can assign arbitrary equa y values for input
places of a transition and compute the equal y value of
each of its output places. Continue this until al y values
of the S-invariant have been computed. We then multi-
ply or divide all y values by a factor such that all y are
integers and their greatest common factor is one. Exam-
ples are shown in Fig. 7.

Definition 6: Let D be a deadlock of N. p,QD and t,Qpe
iscalled adrain transition if t;eP; otherwise, it is called
atrap transition. pyiscalled adrain place. T, isthe set
of al such t,.

InFig. 7, p5isadrain place in the D,, which includes al
places with y>0 and Tp={t2 t}; tlis a trap transition,.
The corresponding Y vector is an S-invariant. Synchronic
distance is a concept closely related to the degree of mu-
tual dependence between two events in a condition/event
system. The definitions of Petri net language and syn-
chronic distance are given asfollows:

Definition 7(Language of a Petri Net): The language of
aPetri net N, L(N,M), isthe set of al firing sequences for
the net with the initial marking M: L(N.M)={ X
IM[>>MT.

Definition 8(Synchronic Distance): The synchronic
distance between two transitions t1 and t2 in a Petri net N
is defined as d;,= Max { 2(t1) - 2(t2), 2QL(N,M)}, where
2{t) isthe number of timest appearsin .

The deadlock-trap property is only a sufficient (but not
necessary) condition for liveness. Hencein alive net, a
minimal deadlock may not contain a trap; such a dead-
lock is called abad siphon. Consider the case that there
is only one drain place and its output transitions t1QD
and t2«P of the deadlock. If d, =+, then tokens in D
will be drained completely by a certain number of firings
of t2 without any firing of t1. This empty D will stay for-
ever and the N is not live. The general case is similar.
To prevent this, t1 and t2 must be synchronized with fi-
nite synchronic distance so that D cannot be empty.

3. HANDLES, BRIDGES, FIRST AND SECOND
ORDER STRUCTURES

We follow [2] for the definitions of handles, bridges, XY-
handles, and X Y- bridgeswhere X andY canbe T or P,

Definition 9: Let N=(P, T, F) and N;, N, partial subnets
of N. An elementary directed path H= [njyn, nnJ,
nQPUT, i=1, 2, , k, is caled a handle of N, if HN
N,={n,n}; n, and n, are caled the start and the enczj



n,Ng; Ny and n, are called the start and the end nodes of
the handle H, respectively. Note that n, and n, may be
identical. An elementary directed path B=[n,, ..., n] r=
2, isabridge from N, to N, iff BN(P,UT,) ={n;} and B
NP,UT, ={n}. pl= p2 if pl and p2 are on an ele-
mentary circuit. n,® n, if n1= n2 and there is an ele-
mentary directed path from n, to n, via nwhere n, is a
reference node (initially marked) called ahome place.

Definition 10: Handles H, and H, are said to be mutually
complementary if they share the samen,and n,; i.e., H; M
H,={n,n}. Let pQH; (i=1 or 2), pcn, and pcn,, then
define o=H; is a directed path on H; from n, to p,
n{p.,p,)=n, if there exists at least one 3 on a certain H;
that contains no other ng of another H;; ny(p,,p,) can be
defined in a dual fashion and nyp,,p,)=n, if there exists at
least one v; on a certain H; that contains no other n, of
another H;; where v#H; is adirected path on H, from p; to
n.. (P, P,) is caled a TP-inconsistent pair of places if
an(p,, p,) is atransition and Any(p,, p,) isaplace. (p,,
p,) is called a PT-inconsistent pair of placesif In(p,, p,)
isaplace and An(p,, p,) isatransition. Let Y= H;UH,,
H;=N; and H,=N,, H; (H,) is a prime handle to N, (N,)
(1) If there are no bridges B between N, and N, and Y is
defined to be afirst-order structure (FOS). If n QX and
nQY where X,Y=T or P, then I"(H, B) is said to be a
XY-path (XY-handle, XY-bridge). If X=Y, then the FOS
Y is said to be symmetrical; otherwise it is asymmetrical
(AFOS). (2) If B, (B,) isabridgefrom N, to N, (N, to N,),
then o= H,;UH,UB,UB, is defined to be a second-order
structure (SOS). (3) A strongly connected net is SNC
(Synchronized Choice net) if every TP-(PT-)handle to a
certain circuit has a PT- (TP-)bridge from its comple-
mentary TP-handle to itself. If X=Y, then the FOS ¢ is
said to be symmetrical; otherwise it is asymmetrical
(AFOS).

Note that for PT-inconsistent pair, it must be that every
ny(p;, P,) is a place. Otherwise, it may no longer be irre-
versible (Fig. 3). For TP-inconsistent pair, however, as
long as there exists atransition n(p,, p,), it isnot live.

[p. t, ps]l @nd [p, t, ps] in Fig. 1 are two prime handles
complementary to each other; n=p, and n.= p,. Note that
there are no bridges interconnecting them; hence, they
together form an FOS. Since X=Y =P, it is symmetrical. p,
and p, in Definition 16 are inconsistent because they are
concurrent (exclusive) and the tokensin them will flow to
a set of mutually exclusive (concurrent) places. Note
that n(pl, p2) and n(pl, p2) do not exist if p1l and p2 is
on an elementary circuit; instead we define pl= p2.

Note that any pair of places (excluding nand n,) in an
AFOSisaso inconsistent. Thisleads [2] to an integrat-
ed algorithm to detect SNC and liveness for an arbitrary
net.

Definition 11: A composite first-order structure (FOS)
Z is a set of first-order structures ¥, WV, .. ¥,, k=2, that
are (1) interconnected; that is, V¥, 3 ‘¥, such that
YY), if ig, (2) vpar of (n/ ,ng) and (nd,nd), if
Yn¥=¢, then n(ny,n)QT (P), and (3) VZ, Z;, 1>[ZZ|.

n(ny) of Z: ¥V n{ (n)) of ¥, either n=n or ne n/(n=n,
orne nj). Ifal¥ isof TP(PT) type thenitisaTP
(PT) composite first-order structure, CFOS with sym-
bol ZT (ZP); |Z| is the maximum number of tokens that can
be generated (consumed) at n, after all transitions have
been fired once. Note Z=¥,U¥,.. U¥,. Z is said to be
covered by ¥,,%,, .. ¥\, which is a minimum cover of Z
if no proper subset of itself is a cover of Z. A pure
CFOS is one where except for al n/ and n/, the rest no-
des have a single input and a single ouput node; i.e.,
vnQZ, neRC, ncn! and ncn. for any nlQZ, nlQz,
|en|=Ind=1 where RC is a regulation circuit explained
below. A tokenless Z is a Z with no tokens. (We as-
sume, unless otherwise stated, every Z istokenless.)

Examples of CFOS are shown in Figs. 6-7. A PT CFOS
will cause the net not live.  One way to make it liveisto
add aregulation circuit (RC), [t p1 t p2 t p3] in Fig. 7,
across al t4 (also Fig. 5(d)). Such a structure is no lon-
ger an FOS; however, for brevity, we shall still refer to it
CFOS in the rest of the paper. It is pureif the PT CFOSis
pure.

For an ESNC to be well-behaved (WB); i.e., bounded and
live, it must be correct in both static structure and dy-
namic marking behavior. In the sequel, we develop
theory for both separately.

4. STRUCTURE CONSTRAINT

There are two cases. (1) only one token (2) multiple to-
kensin the RC. Thefirst case is easier and the derived
structure constraint also holds for (2).

Case(1): Singletoken in RC

The net (Fig. 6) can be transformed into a General Petri
net (GPN) according to the following rule.

Rule of Transformation to GPN: Replacing every
CFOS by a single arc with two ends being n, and n,and
the arc weight being |Z|.

We consider only the case of weighted SNC (WSNC)
where the OPN (ordinary PN) version of the GPN; i.e., by
making all arc weights unity, isan SNC. Let the class of
nets transformed into WSNC be defined as ESNC (Ex-
panded SNC). The WB of WSNC does not, however,
imply the WB of ESNC. An example isshown in Fig. 8
where two identical PT CFOS shares the same n, and the
WSNC is live.  The tokens in n,could be trapped in
each PT CFOS without firing n, causing the net not live.
This token trapping does not happen, however, if the
WSNC is a MG caled Weighted MG (WMG). We in-
vestigate first the properties of WMG in the sequel.

Theorem 1: An ESNC is WB iff the transformed net is a
WMG and WB.

This theorem is significant because we can find how TP
and PT-CFOS are combined by studying the transformed
net that isa GPN. It does not hold if WMG is replaced
by WSNC because as shown in Fig. 8, the WSNC is live
but the corresponding ESNC is not.

The following theorem help determine the structural-
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liveness of WMG

Theorem 2[8]: For a WMG N, the following statements
are equivalent:

1. N is SL (structuraly live) and SB (structurally
bounded).

2. N is Ct (consistent) and Cv (conservative).

3. N is Ct and strongly connected.

4. N isstrongly connected and rank(A) = [T] -1.

Theorem 2 is very useful because if we can find vector X
for any strongly connected WMG satisfying the condi-
tionsin Theorem 2, the WMG is SL and SB.

We first consider the specia case of a MG followed by
SNC. When a WMG is consistent, there exists a firing
sequence to return the state to the original marking. Dur-
ing each iteration, each node n; executes R; (a finite num-
ber) times which constitutes a minimum nonzero T-
semiflow denoted as a [T|-vector (|T| being the number of
transitionsof aPN) R=[R, R, ...Rq]"

Case (2): Multipletokensin RC

The net (Fig. 7) cannot be transformed into a Genera
Petri net (GPN). Since transitionsin a RC can 4till fire
one by one in the same fashion as Case (1), the structure
constraint remains, however, the same as case (1). This
is to avoid continuous token generation and token ab-
sorption. Such a constraint will be referred to as the arc-
constraint. Another source for being not live comes from
inappropriate token distribution among output transitions
of a place. In other words, there exist bad siphons.
Thus, the marking constraints for WSNC and multiple
tokensin RC can be treated together based on Lemma 6.

For WSNC, the existence of TP-inconsistent pair of
places implies that of a bad siphon similar to SNC with
unit weights.  However, the presence of multiple
weights may not empty a bad siphon as shown in Fig. 9.
This does not imply live transitions in the bad siphon.
The following lemma shows WSNC is not SL if there
exists TP-inconsistent pair of places.

Lemma 3:dA WSNC is not SL if there exists TP-
inconsistent pair of places.

In the sequel, WSNC°deSNC°addenotes WSNC (SNC)
without TP-inconsistent pair of places.

lodMARKING CONSTRAINT

Lautenbach’s marking condition (Definition 12) can be
applied to provide a more generalized liveness condition
for sequential mutual exclusion (SME). Examples will
be provided. Case (1) includes Case (2). Hence we will
treat case (2) first and degenerate to case (1) subse-
quently.

The marking constraint for WSNC with multiple tokens
in RC is now investigated. A WSNC° ill hasD,,. In-
stead of loop, we consider a P-component Q in the
equivalent WSNC that is both a minimal siphon (or
deadlock) and a trap. In the WSNC, Qis expanded to (&
that contains D,,,.

Definition 12[5]: Let (N,M,) be a net-system, let i be an
S-invariant and let DeP be a deadlock of N. The dead-
lock is called controlled by the S-invariant i under M, iff
the marking condition is satisfied:
W(M,)=i"™M>0"<sy.P\D: i(s)=0.

Note that W(M)=i"M, can be separated into two parts:
o, and e . associated with D and i\D respectively
(W(Mg)=e p-e ).

Lemma 4[5]: Let (N,M,) be a net-system and let DeP be
a deadlock of N. If D is controlled by the S-invariant i
under M, then <M>[My>: D is marked under M.

Lemma 5[5]: Let (N,M,) be a net-system. N is weakly
live under M, if every minimal deadlock D, is controlled
by an S-invariant i under M,

Lemma 6[5]: Let N be a net which is bounded and cov-
ered by an elementary T-invariant j. If N is weakly live,
then N islive.

Note that the invariant is not strongly connected (see Fig.
7). Thisis due to the fact that some y valuesin it are
negative. If we reverse al the arcs in the invariant inci-
dent to places with negative y values, then it will become
strongly connected.

Let py beadrain place and T, the set of output transitions
to py that are not in the bad siphon. To derive the
marking constraint, we study the physical meanings of
they valuesinaD,, and i\D,,

Lemma 7: Let t be atransition in amarked ESNC N, tis
not live, iff there exists a minimal deadlock D,, contain-
ing a place pX>.ct and a reachable marking M such that D,
isempty in M.

This lemma implies that if every minimal deadlock is
never empty for all reachable markings in a WSNC, then
every transition is live. The only minima deadlocks
that can turn from nonempty to empty are bad siphons,
i.e, deadlocks that are not traps.  Without TP-
inconsistent pair of places in the equivalent WSNC, there
is only one kind of bad siphon shown in Fig. 7. In the
sequel, we develop theory for the marking condition (see
Theorem 3) for a bad siphon that cannot be emptied.
We will show that for the above bad siphon, if i*M>0,
then the D,, cannot be emptied; otherwise, if 03*M, the
D,, can be emptied. Hence, if «D,,, i*M>0 implies the
liveness of the WSNC and we have

Lemma 8: Let (N,M,) be a net-system. N is live under
M, if every minima deadlock D,, is controlled by an S-
invariant i under M,

Remark: The liveness depends on the existence of S
invariant which is ensured by the satisfaction of the
structure constraint.  From [2], a WSNC can be decom-
posed into a set of T- and P-components. For each P-
component Q) we can obtain a P-semiflow of N as follows.
We apply the procedure for R computation for €3 (reverse
of Qby interchanging places with transitions). R, for t>.CY
corresponds to y; (>0) for p>2Q2 The S-invariant corre-
sponding to the P-semiflow is obtained in Appendix A.



Lemma 8 implies that we can consider each D,, alone.
In the equivalent WSNC®, we can consider each P-
component alone similar to the WMG case where each
loop is considered alone. As long as each loop (P-
component) in a WMG (WSNC®) is live, the net is live.
To check i*M>0, we resort to the physical meanings of
the component e in i*M. Since every D, must be
checked, it implies that when we look at a specific D,
we can ignore all other D,,, and the tokens in this D,, can
flow freely independent of tokensin other D, Thisway,
we can figure out the physical meanings of e ...

The physical meaning of y for placesin i\D,,. We find
y values for places in i\D,, based on the T-condition. This
way, we can also see the physical meaning of y. Let
p2RC pXcty , then y=y,,+y,Where y, is the y value for
ps. InFig. 7, where there are 3 t;and p,=p5, y,=4, then

Yi=Yi1tYa )
y,=-8, and y,=-4. For atoken at p, to firet, it must fire
t2and t2first, and each firing of which consumes one to-

ken at p; The total number of tokens consumed is
2=ly,ly4|. The physical meaning of y is now clear:

For every token at p;, 3=ly//y4| (absolute value of
vilyy) is the maximum number of tokens in
(sucked from ) p, to be consumed by firing t4 not
in D,, without firingthetyin D,,.

The maximum number of tokens sucked from p,! due to a
single RC,, where m; isthe token at p, in RC,. Note that
there may be more than one RC associated with py .
Hence, the maximum number of tokens sucked from p,’is

° V£ jk. This is the maximum number of
k tokens to be consumed from p, !
without firing any t,>'ps/cin D,. The following lemma
isdueto Eq. (1)
Lemma 9: Let (1) RC; be the regulation circuit and
P/={p;| p;Z RC;, j=1,2,..k} be the set of all placesin RC;;
that iSRC=[pi; ti1 P tiz Pistis . Ptk Where k=a,(py); Pq
is the drain place for RC. (2) H, (P(H,) €D, be the PT-
handle associated with p, whose n=p, and t>H. (3)
Po2H.and p,2t.c  The following y values for p,, and
placesin RC, satisfy the T-condition:

DYi=YiatYa (ifi-1=0, yi1=Yi). (2) Yea=0, ¥ ;=-ys* (k- | +&-
Dok, 1=1,2,... k. (3)«pXH,, PYPy Y(P)= K*yy,

See Fig. 7 for the y values based on thislemma.

Corollary 1: Let D, .}, D2, ..., D,* be the set of D,, asso-
ciated with the RC in Lemma 9 and y,° (b=1,2,...,k) the y
value for pXRC and D,=D,?, then U constant e, e,
yP=-y* (I+€)%k and e-b is a constant for every b and I.

Theorem 3[8]:dck2d[,3d]e:de,:00:de, "dbeamarking
for a P-component Qin a WSNC°dwith every RC con-
taining tokens, then
odWelfa3e 9300
20deQ:d[,) is deadlocked, iff M=M,, where (¥ is
the equivalent of Q indthe ESNC of the
WSNC°

3od[=[, ifde€3, M) is deadlocked.
4odeQ2:d[ ) isliveif W(M,) > W(Mp).

Note that there are |p,| possible values for e . Each e, cor-
responds to a D, including at>. p;'c  The maximal e,
induces a maximal marking at p,' and its computation for
RC with multiple tokensis provided in Appendix B.

This theorem implies that Lautenbach’s marking condi-
tion is both a sufficient and necessary condition for live-
ness.

In the special case of the WSNC being a WMG, My(p)=
*.=a,(p,)-1, and we have the following theorem:

Theorem 4[20]:d Let M,3]a.ep,al~d a,ep,alUso0:
a,epga U "dbe amarking for loop L, then

1.(L, Mpa is deadlocked,

20 dQ, if (L, M) is deadlocked,

ca €L, My) isliveif W(My) > W(M,)a

]Lemma 10oLet H, and H, be a pair of PP-handles who-
se places are in a controlling S-invariant, then the number
of t; on H,; and H, must be identical.
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Appendix A: Procedure of Converting P-Semiflow ein
WSNC into S-invariant in ESNC

In WSNC, each P-component eis both aminimal deadlock and
an S-invariant. Each arc [t; p,,,] ([p; t;]) correspondsto a TP
(PT) CFOS in the ESNC where each minimal deadlock and its
controlled S-invariant correspond to a ein the WSNC.  Any
minimal deadlock in the ESNC includesin € al TP CFOS and
only one PT handle from each PT CFOS while the controlled S-
invariant includes the minimal deadlock and [Z]-1 arcs from
each RC for thecircuit. Themissing arc from aRC corre-
sponds to the place with | satisfying ((1+€)%k)=0 in Eq. (v) of
Appendix B. For an example, seeFig. 7. The procedureis
summarized as follows:

1. Findy valuesfor placesin €

2. For each place p, with input arc weights a,and y; the'y val-
ue for each place in each TP-handle of the corresponding TP
CFOS equalsy;,

3. For each place p, with output arc weights a and y, the'y for
each place in one PT-handle of the corresponding PT CFOS
equalsy, a_They for al the placesin the rest PT-handles of
the PT CFOS equals 0. For each place p, inthe RC, y..y,. ¥,
wherey’; is obtained based on the equation in Appendix B.

Appendix B: «xcomputation for RC with multiple tokens

Let RC, be the regulation circuit and P'={p; | p;~ RC;, j=1,2,.k}
be the set of all placesin RC; that iISRC=[p;; t;y Pat iz Pistia. Pt
i« Pi ] where k=a,(py); pgyisthe drain place for RC. Based on
yb
Corollary 1 and the physical meaning of EAN , the maximum
Yq
number of tokens sucked from D, at p, is

k k

k
e maxc. (M *y) » maxc(m * (| =6)%K)
a 1=1

e=ltok ol 1oL



TPFOS.

pl
p2 p3
t2 t3
p4
t4

Fig. 5(a) An asymmetrical

—@
Q

Fig. 1. An example of live &
reversible SNC with noin-

consistent pair.

tl
p3
t3
p4
Fig.2 Dud of thenetin Fig.1. Thisnet is t4
live and reversible without inconsi stent 5
t5 t6
p6 p7
t7

PT CFOS.

Fig. 3a Irreversible SNC with

PT-inconsistent pair (p13, p14)

Fig.4. Dual of thenet in Fig. 3a

The SNC is not live with TP-

inconsistent pair (p18, p19)

Fig. 5(c). Combining TP and

p4

S
5

]

Fig. 5(b) An asymmetrical
PT FOS

Fig. 5(d). Adding aRC in the PT
CFOS.

Fig.6. Extratokens generated from one TP FOS are not totally con-

sumed by one PT FOS. Thenet is SL& SB since theloop gainis

one. TheESNC on theleft isreduced to aWSNC on the right.



M(p0)* 12+(-3*2-2*3-8* 3)>0
Q= My(p0)*12
QO.=-3*2-2*3-8*3

M,(p0)>3

Fig. 8. Two identical PT CFOS sharing the same ng and the
WSNC islive but the ESNC isnot live.

Fig. 7. A more complicated example with multiple

tokensin theinitial marking of all RC.

Fig. 9. Net with TP inconsistent pair of places. Multiple arc weights may not prevent a bad

siphon from being emptied.



