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ABSTRACT

In this paper, we have proposed a cost-optimal

parallel algorithm to �nd the solution of n simulta-

neous linear equations on RCC-FULL �(N;L) net-

work. The algorithm is designed following the strat-

egy of the sequential Gaussian Elimination algo-

rithm. The algorithm utilizes strength of the RCC-

FULL network which helps to reduce the time com-

plexiety and has the time complexity of O(n) with

O(n2) processors.

1 INTRODUCTION

Gaussian Elimination is classical well known

method for solving system of linear equations. The

method requires O(n3) number of operations where

n is number of unknowns to be determined. Number

of operations can be reduced signi�cantly in case of

a sparse system [2] by suitable data structure taking

advantage of the sparsity. If the system is dense it

requires O(n2) divisions, O(n3) multiplications and

additions for computing the upper triangular ma-

trix. However, computation time can be reduced

by parallel processing. But the phenomenon of cost

optimality will come into picture. A cost optimal

parallel algorithm can be designed by selecting a

proper model. In this paper we have proposed a

parallel algorithm to solve a system of simultane-

ouse n linear equations on RCC-FULL network [3].

The algorithm is designed based on the classical se-

quential Gaussian Elimination algorithm. The al-

gorithm has the time complexity of O(n) time with

O(n2) processors and is cost-optimal.

In section 2 the model of computation RCC-

FULL network has been discussed. Section 3 gives

overview of sequential algorithm for Gaussian Elim-

ination. In section 4 the cost-optimal parallel al-

gorihm has been presented. An example has been

considered in section 5 to illustrate the example.

Finally conclusion is given in section 6.

2 MODEL OF COMPUTATION :

RCC-FULL

In this section we describe the model of computation

which is a recusively compounded graph proposed

by Hamid and Hall [3]. RCC-FULL is constructed

incrementally by systematically connecting together

a number of basic atoms. A basic atom is a set

of fully interconnected nodes. An RCC-FULL net-

work (�) is de�ned by two parameters: number of

processing elements in basic atom (N) and level of

recursion (L). Let �(N;L) be a network having N

processing elements in a basic atom and L level of

recursion. The network �(N; 0) is a complete graph

of N processing elements e.g. �(2; 0) is shown in

Figure 1.

The network �(N;L) is constructed using N2L�1

copies of �(N;L � 1) network.It can be viewed as

N2L�1�N2L�1 matrix, by treating each �(N;L�1)

as a row. Each node in �(N;L) is speci�ed by an

m bit binary number where m = 2L logN bits.

The most signi�cant 2L�1 logN bits identify the

�(N;L � 1) network that this node belongs to and

the least signi�cant 2L�1 logN bits identify the

node within the �(N;L � 1). The links between

these �(N;L�1) networks are called as L-transpose
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Figure 1. RCC-FULL for different N and L
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Figure 2. Recursive RCC-FULL �(N;L)

links as shown in Figure 2 and are formed by con-

necting PEij to PEj;i, with i 6= j, where i and j

are binary numbers of length 2L�1 logN . Figure 2

shows view of �(N;L) network in terms of �(N;L�

1) and interconnection among them. The diameter

of the network �(N;L) is �(N;L) = 2L+1 � 1 while

the degree of the network is �(N;L) = L+N � 1.

It is shown in [3] that the RCC-FULL network is

equally powerful like hypercube with less intercon-

nection.

3 SEQUENTIAL GAUSSIAN

ELIMINATION ALGORITHM

Suppose we have sytem of n equations each consists

of same n variables as follows:

a11x1 + a12x2 + ::::::+ a1nxn = a1(n+1)
a21x1 + a22x2 + ::::::+ a2nxn = a2(n+1)

.

.

an1x1 + an2x2 + ::::::+ annxn = an(n+1)

Gaussian Elimination method does solution in

two phases. The �rst phase reduces the system of

linear equtaions to an equivalent upper triangular

form Ux=c, where U is an n� n upper triangular

matrix and c is a vector of length n. In the sec-

ond phase the system of equations of this form is

solved by Back Substitution. The sequential Gaus-

sian Elimination algorithm [4] may be written as

follows.

Phase I- Upper Triangularization

for (k = 1; k < n; k++)

for (i = k+1; i � n; i++)

u = aik=akk;

for (j = k; j � n+ 1; j++)

aij = aij - u � akj ;

Phase II- Back Substiution

xn = an(n+1)=ann
for (i = n� 1; i � 1; i- -)

sum = 0;

for (j = i+ 1; j � n; j++)

sum = sum+ aij * xj ;

xi = (ai(n+1) � sum)=aii;

Algorithm: Gaussian Elimination

4 COST-OPTIMAL ALGORITHM ON

RCC-FULL

In this section we describe a cost-optimal parallel al-

gorithm to solve the simultaneous linear equations

on RCC-FULL �(N;L). It is based on the strategy

used in sequential Gaussian Elimination algorithm

which has been discussed in the previous section.

The algorithm uses the power of interconnection

network of RCC-FULL in such a way that the al-

gorithm becomes cost optimal. Algorithm exploits

some characteristic operations of RCC-FULL such

as broadcast and transpose to acheive the desired ef-

�ciency. Transpose on this network takes O(1) time



and complexity of broadcast depends on the diam-

eter of the network.

We assume, RCC-FULL �(N;L) network with

(n + 1)2 processors such that n + 1 = N2L�1 . All

these processors can be thought in the form of a

two dimensional (n + 1) � (n + 1) array. Let the

processor Px lie in the j-th column of the i-th row

and be logically indexed as Pij . Observe that x can

be expressed by 2 log(n + 1) bits. Most signi�cant

log(n+1) bits form i while least signi�cant log(n+1)

bits give j. Each processor Pij has at least two

registers Rs and Rr. Initially, the coeÆcient aij is

available in Rs register of Pij .

4.1 Some Basic Operations

Some important operations used in the main al-

gorithm are described below. In all these operations

it is assumed that n equations are available to solve

and each equation has n + 1 coeÆcients, hence set

of equations form (n+1)� (n+1) matrix (with one

dummy equation). Each row of this matrix repre-

sent one equation.

4.1.1 Row Broadcast Operation

Broadcast (register R) operation is used to

broadcast the content of the register R of a pro-

cessor to all the processors lying in that row. Since

a row of RCC-FULL �(N;L) is also a RCC-FULL

�(N;L � 1), so the broadcast in a row is same as

broadcast in a whole RCC-FULL with just one less

level.

To broadcast the content of a speci�ed register

of processor Pij , the processor �rst broadcasts the

data in its basic atom, then all nodes in basic atom

send data on their level 1 link. Now all the pro-

cessors receiving on link 1 broadcast the data in

their own basic atoms. This completes broadcast of

Pi's register in 1 level RCC-FULL. Figure 3 shows

broadcast operation from processor P00 in �(4; 1).

Numbers on the links show the sequence in which

data transfer happens. To broadcast in multilevel

RCC-FULL following broadcast algorithm can be

used recursively. The algorithm to broadcast data

from Pij in to its L level network is given below:

1. Processor Pij broadcasts data in its L-1 level

network.
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Figure 3. Broadcast operation in �(4; 1)

2. All the processors lying in that L-1 level net-

work of Pij send the data on their respective L

level links.

3. All processors receiving data from the L level

links broadcast data in their respective L-1

level network.

Steps 1 and 3 broadcast data on one less level of

network. So by recursive calls we arrive to level 0

and then we need only to broadcast data into the

basic atoms. This operation is required to broad-

cast the value of aii in i-th column, to broadcast

multiplication factor aii
aji

in j-th row and so on. It is

easy to show that the complexity of this operation

depends on the diameter of the network i.e. O(2L).

4.1.2 Parallel Exchange Operation

Parallel exchange (register R) operation is a

characteristic operation of the RCC-FULL. In this

operation processors Pij and Pji interchanges con-

tents of their speci�ed register R. More clearly, this

operation transposes the (n + 1) � (n + 1) matrix

constructed by coeÆcients of the n equations. Since

in RCC-FULL there exist a direct link between Pij
and Pji, this operation can be performed in O(1)

time.

Structure of RCC-FULL is such that some op-

erations like broadcast can be performed easily on

row but not on column. Thus in order to perform

some operation on the elements of column, one can

follow the following steps:



1. Perform Parallel exchange operation to bring

elements of columns into their corresponding

rows

2. Perform the desired operation on the elements

of the row

3. Finally again perform Parallel exchange opera-

tion to send back the elements into the column.

For example, in order to broadcast aij in j-th

column, we follow the following steps:

1. Perform Parallel exchange operation to bring

aij at Pji

2. Broadcast Pji into j-th row

3. Finally perform Parallel exchange operation to

send back aij to Pij and also to send the broad-

casted aij into j-th column from j-th row

4.1.3 Right Neighbour Fetch Operation

Fetch right neighbour operation is used to get

data by a processor from its right neighbouring

processor. Processor Pij gets data from its right

neighbourPij+1. To perform Fetch right neighbour

operation, following routing algorithm can be used

recursively. Routing algorithm to send data from

Pi1j1 to Pi2j2 is given below:

1. Send data from Pi1j1 to Pi1i2 (in same row)

2. Send data from Pi1i2 to Pi2i1 (Send on L level

link)

3. Send data from Pi2i1 to Pi2j2 (in same row)

Steps 1 and 3 send data between elements of same

row and since row is nothing but a RCC-FULL of

one less level, hence routing algorithm must be fol-

lowed recursively till level reduces to 0 i.e. row re-

duces to basic atom. This operation is required to

1. Get computed constant from its neighbour to

calculate the value of xi's at Pii. Note that

the value of xi is -(computed constant of right

neighbour)/coeÆcient of xi's available at Pii).

2. Get computed constant from its right neigh-

bour to calculate its own computed constant.

Computed constant of Pij is
Pn

k=j Cik * Xk +

Consti where Cik is the coeÆcient of k-th variable

of i-th equation, xk is the value of the k-th variable

computed at Pkk and Consti is the constant term

of the i-th equation.

4.2 Cost-optimal Algorithm

The parallel algorithm for RCC-FULL network

works as follows. First it �nds the upper tringular

matrix of the system of n equations in n � 1 iter-

ations. In i-th iteration coeÆcients of xi are made

zero from the last n � i equations. Finally, it per-

forms back substitution to calculate the values of

variables. Back substitution phase requires n itera-

tions.

To eliminate xi's coeÆcient from rest n� i equa-

tions, aii is broadcasted in i-th column (S�1:1; S�

1:2 of the Phase I algorithm). Processors in i-th

column i.e.Pji for all j > i calculates multiplying

factor ( aii
aji

) for its row and this multiplying factor

is broadcasted in j-th row (S � 1:3). This factor

is multiplied with coeÆcient of Pjk 8 k (S � 1:4).

Now the coeÆcient of Pji for all j is equal to aii,

hence subtracting corresponding coeÆcient of i-th

equation from j-th equation eliminates the xi's co-

eÆcient from later equation. So to subtract i's co-

eÆcient from the last n� i equations, coeÆcient aij
is broadcasted in j-th column and subtracted from

the last n�i rows in that column (S�1:5 to S�1:8).

Phase I: Upper Triangularization

for i = 1 to n� 1 do

/* Pii broadcasts aii in the i-th row */

S � 1:1 : Processor Pii does the following:

- Initiate to broadcast Rs to all

processors Pij 8 j

S � 1:2 : Perform parallel exchange operation to

interchange Rr contents between Pkl
and Plk 8 k, l

/*Multiplying factor aii
aji

calculated for

each row greater than i and broadcast

the factor in the corresponding row */

S � 1:3 : For all processors Pki,k > i do the

following:

- Modify Rr by
Rr

Rs

- Initiate broadcast Rr all processor

Pkl for all l



/* Multiply the factor to coeÆcients */

S � 1:4 : Forall processors Pkj ; k > i and forall j do

- Modify Rs by Rs �Rr

/*Transpose so that ith row becomes

i-th column*/

S � 1:5 : Perform parallel exchange operation to

interchange Rs contents between Pkl
and Plk 8 k; l

/* Broadcast j-th coeÆcient of i-th

equation into j-th row */

S � 1:6 : Processor Pji does the following:

- Initiate to broadcast Rs to all

processors Pjk 8 j and k

/*Transpose to restore the equation into

rows with aij available in j-th row*/

S � 1:7 : Perform parallel exchange operation to

interchange Rs and Rr contents between

Pkl and Plk for all k; l

/*Now coeÆcients of i-th equation are

available in corresponding columns*/

/*Subtract i-th equation from rest n� i

equations*/

S � 1:8 : Forall processors Pkj ; k > i and forall j do

- Modify Rs by Rs-Rr

Back-substitution is used to calculate the values of

variables. In (n � i + 1)-th iteration, Pii performs

Fetch right neighbour to get computed constant of

its right neighbour and calculates the value of xi
which is - (computed constant of right neighbour)/

aii and is calculated in S � 2:1 of the following al-

gorithm. This value is broadcasted in i-th column

so that Pji for all j < i can calculate its computed

constant by adding aji with the computed constant

of its right neighbour (S � 2:1 to S � 2:3). After n

iterations, values of xi, for all i become available at

Pii.

Phase II: Back Substitution

for i = n to 1 do

/* Pii fetches data from its right

neighbour and calculate xi's value*/

/* broadcast computed value into the

i-th row*/

S � 2:1 : Processor Pii does the following:

- Get Rs of it's right neighbour

using Fetch right neighbour operation

- Modify Rr by - Rr=Rs

- Initiate broadcast Rr all

processors Pij 8 j

/*Transpose i-th row so that value of xi
becomes available in i-th column*/

S � 2:2 : Perform parallel exchange operation to

interchange Rr contents between Pij
and Pji 8 j

/*Calculate computed constant of Pji
for all j < i */

S � 2:3 : For all processors Pji, where j < i do

the following:

S � 2:3:1 - Modify Rs by Rs �RRr

- Get Rs of its right neighbour

using Fetch right neighbour

- Modify Rs by Rs + Rr

4.3 Time Complexity

The dominating operations in the main algo-

rithm are: Broadcast in a row, Parallel exchange,

Fetch right neighbour and their complexities are

O(2L � 1) ,O(1), O(2L � 1) respectively. So the

complexity of main algorithm is O(n � 2L). Now

if L is kept constant then the time complexity of

the algorithm becomes O(n). Hence the cost of the

algorithm is O(n3) which is comparable to the op-

timal sequential algorithm [1].

5 AN EXAMPLE

To illustrate the execution of the algorithm let us

consider a a system of 3 linear equations and a RCC-

FULL �(4; 1) with 16 processors. Initially, coeÆ-

cients are in Rs registers. Steps used to reach the

next stage are mentioned on the !. Data stored

in Rr register at any stage are encircled and shown

only whenever they are needed.

6 CONCLUSION

In this paper, a cost-optimal parallel algorithm to

�nd the solution of n simultaneous linear equations

has been presented. The algorithm uses RCC-FULL

�(N;L) network and is designed following the strat-

egy of the sequential Gaussian Elimination algo-

rithm. It has the time complexity of O(n) with

O(n2) processors and has been tested under the sim-

ulated environment using PVM 3.0.
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