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Abstract

Tom Head[4] introduced the exciting concept of splicing system as an e�ective mathematical
model for representing the reactionary behaviors of DNA molecules under the inuence of certain
restriction enzymes and ligases in a test tube environment. A corresponding splicing language
can be generated by splicing system. In this paper, we have given some new characterizations
for splicing languages, analyzed various types of splicing systems and brought out a number of
new algebraic properties.

1 Introduction

The genome of complex organisms are organized into chromosomes which contain genes arranged
in linear order. It is true that DNA is a language for specifying the structures and processes
of life. Recently, it has been proved that very simple genes could be described by means of
regular grammars[2]. In the course of its evolution, the genome of an organism mutates by
di�erent processes. At the level of individual genes the evolution proceeds by local mutations
which substitute, insert and delete nucleotides of DNA sequence. These operations reveal the
evolutionary and functional relationships between genes. Also, it has been found that there
are a number of large-scale rearrangements in one evolutionary event. They are inversion,
transposition, duplication and splicing. In particular, we are to discuss about the e�ects of
splicing operation on DNA sequences.

DNA(deoxyribonucleic acid [8]) is found in all living organisms as the storage medium for
genetic information. It consists of polymer chains, customarily referred to as DNA strands.
A chain is composed of nucleotides, also referred to as bases. The four DNA nucleotides or
bases are denoted by A(adenine), C(cytosine), G(guanine),and T(thymine). The DNA alphabet
�DNA = fA;C;G; Tg. Thus, DNA strands may be viewed as words over the DNA alphabet.
A restriction enzyme has the capability of recognizing short sequences of double-stranded DNA
molecules and cuts it in a speci�c way. The following matter appears to be of interest from the
computational biology point of view.

Suppose we are given a �nite set M of DNA molecules and a �nite set N of restriction
enzymes. What is the nature of the language consisting of all DNA molecules that can arise
through the action of the N number of restriction enzymes on the set M of DNA molecules?.

Tom Head proposed a mathematical model for this biological problem by introducing a novel
concept called splicing operation as a language theoretic operation. Here we are to discuss and
analyze some of the interesting properties of splicing languages and in that process we have
introduced a number of useful characterizations and results.

2 Some terminologies on Splicing system

We now recall some de�nitions and notations from formal language theory and formalize the
operations mentioned above.
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Let � be an alphabet; we denote by ��, the set of all strings over �, by �, the empty word,
�+ = �� � f�g,and by jwj the length of w 2 ��. The families of �nite, regular, linear, context-
free, context-sensitive and recursively enumerable languages are denoted by FIN, REG, LIN,
CF, CS, RE, respectively and Pref(x) denotes the set of all pre�xes of x.

Further, we de�ne the mirror image mi(x) of a word x = a1a2a3:::an; ai 2 � for 1 � i � n,
by mi(a1a2:::an) = anan�1:::a1 and for a word x 2 ��, let Perm(x) = fy=jyja = jxja8a 2 �g,
be the set of all words over V which are permutations of x.

For a string x 2 ��, the inversion is de�ned as Inv(x) = fx1mi(x2)x3=x = x1x2x3; x2 2 ��g.
For a string x 2 ��, the transposition is de�ned as Tr(x) = fx1x3x4x2x5x6 for x =

x1x2x3x4x5x6; (x2; x4; x5) 2 (��)3g.

For a string x in ��, the duplication is de�ned as Dupl(x) = fx1x2x3x4x2x5x6 for x =
x1x2x3x4x5x6; (x2; x4; x5) 2 (��)3g.

For all S 2 fmi; Perm; Inv; Transp;Duplg, the operations can naturally be extended to
languages by S(L) = [x2LS(x) [1].

The iterated versions of the above operations are naturally de�ned as follows:

For S 2 fInv; Transp;Duplg, we get S0(L) = L, Si+1(L) = S(Si(L)), S� = [i�0S
i(L).

For example, if we take the language L with a single word abab and (ab; a; b) 2 (��)3 and it
is easy to see that the iterated duplication Dupl�(L) = fanbnanbn=n � 1; m � 1g.

The full quotient of N � �� by M � ��, written MnnN is de�ned as follows:

MnnN = fu 2 ��=9w 2M , wu 2 N ^ 8v 2 pref+(u),wv 3Mg

A self cross-over system is a triple: SCO = (V;A;R), where V is an alphabet, A is a �nite
subset of V �, and R is a �nite commutative relation, R � (V � � V �)2.

With respect to a self cross-over system as above, for x 2 V +, x ./ y i� i) x = x1��x2 =
x3�x4 ii) y = x1��x4 iii) (�; �)R(; �). The language generated by a self cross-over system as
above is

L(SCO) = fx 2 V �jw ./� x, w 2 Ag
This section formally de�nes splicing system, which was �rst introduced in [4].

2.1 De�nition

A splicing system is a quadruple S = (�; I; B;C), where
� : a �nite alphabet,
I : a set of initial strings in �� and
B;C : �nite sets of triples (a; x; b); a; x; b 2 ��.

The sets B and C are called left-hand patterns and right-hand patterns respectively. String x
is called the crossing of the site axb. (In a biological interpretation, one may take I as the initial
set of DNA molecule sequences, B and C as the sets of splicing rules speci�ed by restriction
enzymes and a ligase).

2.2 De�nition

For a splicing system S = (�; I; B; C), L(S) is the set of strings generated by S which is formally
de�ned as follows. If w1 = uaxbv and w2 = pcxdq are in I and axb and cxd are sites of the same
hand, then w3 = uaxdq and w4 = pcxbv are in I1.

If w1 and w2 are two strings in I [ I1, then I2 contains w3 and w4.
For a set of initial strings I � ��, the non-iterated splicing operation is de�ned as follows:
L(S) = I [ I1 and the iterated splicing operation is de�ned as L�(S) = I [ I1 [ I2:::, i.e.,

L�(S) is the minimal subset of �� which contains I and is closed under the operation of splicing.

2



2.3 De�nition

A splicing system S = (�; I; B;C) is persistent if, for each pair of strings uaxbv and pcxdq in
�� with sites axb and cxd of the same hand, it has the following property: if y is a substring
of uax(respectively, xdq) that is the crossing of a site in uaxbv (respectively, pcxdq), then this
same substring y of uaxdq `contains an occurrence of' the crossing of a site in uaxdq.(Intuitively,
in a persistent splicing system, it is possible to apply consecutive splicing operations in�nitely
many times).

A splicing system is permanent [3] if the words `contains an occurrence of' in the above
de�nition, is replaced by `is'.

A null context splicing system is a splicing system S = (�; I; B;C) for which each cleavage
pattern in B and each in C has the form (1; x; 1) and a uniform splicing system is a null context
splicing system S = (�; I;X;X),where X = B [ C, for which there is a positive integer P such
that X = �P .

2.4 De�nition

A splicing system S = (�; I; B;C) is crossing disjoint if there do not exist patterns (a; x; b) in
B and (c; x; d) in C with the same crossing x.

The set of patterns in S is full context if when (a; x; d) and (c; x; d) are in B or C, then
(a; x; d) is in B or C.

3 Examples and Counter-Examples

3.1 Proposition

Let S be a splicing system with only one crossing. If there is only one occurrence of the crossing
in all the initial strings for a splicing system S, then the splicing language and its Kleene's closure
are one and the same, i.e., L(S) = L�(S).

Consequently, if there are more than one crossing or more than one occurrence of crossing
in any one of the initial strings, then the resulting splicing language is in�nite.

3.2 Example

Let � = fa; b; c; dg; I = fabcd; dcbag; B = f(1; b; 1); (1; c; 1)g; C = ;. Then the splicing language
is L(S) = fa(bc)+d; d(cb)+a; aba; dcd; abcba; dcbcd; :::g, an in�nite language and

let � = fag; I = faaag; B = f(1; aa; 1)g; C = ;, then the splicing language L(S) = fa3a�g,
an in�nite language.

3.3 Lemma

For any family F of languages, F � L�(S), S is the splicing system with F as the initial set.

As the relevant processing is being initiated on the initial set of strings, it is obvious that
the initial set is a subset of the resulting set what ever be the initial set.

3.4 Theorem

The families FIN and RE are closed under non-iterated splicing operation[7].

Clearly, L�(S) is �nite for any set of patterns and for any �nite initial language FIN. Using
previous lemma, the closure of the family FIN is proved.
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For the family RE, we use previous lemma and Church's Thesis.

3.5 Lemma

The families REG ,CF and RE are closed under L�(S) and the family FIN is not closed under
L�(S).

Note A splicing language need not be a strictly locally testable language and hence a per-
sistent splicing language.

Let S = (�; I; B;C) be a splicing system where � = fa; b; cg,

I = fbaa; bb; aaac; cc; acg,

B = f(b; a;^); (ba; a;^); (^; b;^); (^; aa; c); (^; aa; ac); (^;^)g,

C = ;.

Here L�(S) = bb�a� + a�c�c and L is neither strictly locally testable nor persistent.

3.6 Examples

Let S = (�; I; B;C) be a splicing system with � = fag and I = faag; B = f(1; a; 1)g, C = ;.
The language generated by S is L�(S) = fan : n � 1g.

If � = fa; bg and I = fab; bag, B = f(1; a; 1); (1; b; 1)g, C = ;, then L�(S) = f(ab)namg [
f(ba)nbm : n;m � 0g.

The language L�(S) = faibjambng is a splicing language and can not be generated by any
self cross-over system.

The self cross-over language fba2nb : n � 0g [ fbbg can not be generated by any splicing
system.

The regular language (aa)� is not a splicing language.

3.7 Results

The family of splicing languages L�(S) is incomparable with the families of regular, self cross-over
and context-free languages.

The family of splicing languages is incomparable with each of the following families: DOL
languages, OL languages, EOL languages.

4 Closure and Decidability Properties

In this section, we shall discuss about the closure and decidability properties of splicing lan-
guages.

4.1 Theorem

The family of splicing languages is an anti-AFL and it is not closed under left/right derivatives
and complement too.

Proof:

1. Union: The languages L1 = fa(xb)nxc : n � 0g and L2 = fd(xb)nxf : n � 0g are two
splicing languages but not their union.

2. Concatenation: The catenation of above two splicing languages can not be generated by
any splicing system and thus under kleene's operation.
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3. Intersection with regular language: Consider the intersection between the splicing language
fan : n � 1g and the regular language fa2n : n � 1g, which is not a splicing language.

4. Morphisms: Take the morphism h : fa; bg� ! fa; �g� de�ned by h(b) = �; h(a) = a and
the splicing language is L = b(aa)�. However, h(L) = (aa)� is not a splicing language.

5. Inverse homomorphisms: The image of a splicing language is not a splicing language under
inverse homomorphism.

6. Left derivatives: Take L�(S) = b(aa)�, a splicing language. But @(L) = (aa)� is not a
splicing language.

4.2 Proposition

It is algorithmically decidable whether a splicing system S is persistent as well as permanent.

4.3 Proposition

For S = (�; I; B;C) , a crossing disjoint, reduced, permanent splicing system, it is algorithmic
to determine if L�(S) is a �nite language and to determine the equivalence of two languages
L�(S) and L(S0).

Note Every persistent splicing system need not be permanent.

For instance, let � = fa; b; c; d; x; yg, B = f(a; xy; b); (c; xy; d); (ax; y; d); (c; x; yb)g, C = ;.

On splicing any two arbitrary initial strings axyb and cxyd using their respective patterns
(a; xy; b) and (c; xy; d) with the crossing `xy0, we get axyd and cxyb. But there is no pattern
with crossing 'xy' with a site in axyd. Thus, this splicing system is not permanent.

However, this is persistent, since the same crossing `xy' containing y, which is a crossing
occurs in a site in axyd.

5 Some observations on Persistence and Permanence

� Let S = (�; I; B; C) be a full context splicing system. If the length of crossing in all the
patterns is equal, then X = B [ C is both persistent and permanent.

� If there are no patterns with crossings which are substrings of other crossings of the patterns
in X, then X is both persistent and permanent.

� If (a; p; b); (c; pq; d) and (ap; q; b) and/or (a; p; qb) are in X, then (ap; q; d) and/or (a; p; qd)
should be in X for S to be both persistent and permanent.

6 Characterizations of Splicing languages by syntactic congru-

ence

To each language L, we associate canonically a congruence for all x; y 2 ��. The congruence
�L for u; v 2 �� by u �L v i� xuy and xvy are both in L or both in �� n L for all x; y 2 ��.
The congruence �L is called the syntactic congruence of L and the monoid M(L) = ��n �L is
called the syntactic monoid of L. Kleene's theorem shows that a language L over � is regular
i� its syntactic monoid is �nite. That is, there exists a smallest deterministic �nite automaton
recognizing L. Every persistent splicing language is regular.
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6.1 Proposition

Let S = (�; I; B;C) be a splicing system with only one crossing. If the crossing occurs only once
in all the initial strings and the symbols are single letters, then the resulting splicing language
is �nite and L�(S) = I0 [ I1 and I2; I3,... are ; and every element is square-free.

If the symbols are strings, i.e., suppose w 2 I, the set of initial strings, is such that w =
uaxbv = u0axbv0v, where v0 2 �+ and u; a; x; b; v 2 ��. On splicing and recombination, we get
uaxbv0v and u0axbv.

Now, uaxbv0v = u0axbv0v0v = u0axb(v0)2v
On continuing, we get L�(S) = fuaxb(v0)nv : n � 0g
Thus, we get an in�nite language even with a single occurrence of the crossing in the initial

string.

6.2 Proposition

If at least one initial string contains more than one occurrence of the same crossing, then the
resulting splicing language is in�nite and L�(S) = I0 [ I1 [ � � �. and the elements are non
square-free.

6.3 Example

Let S = (�; I; B;C) be a splicing system, where I = faxbxc; dxexfg and B = f(1; x; 1)g; C = ;.
The language generated by S is L�(S) = fa(xb)m(xe)nxcg[fa(xb)m(xe)nxfg[fd(xb)m(xe)nxcg[
fd(xb)m(xe)nxfg;m; n � 0. The automaton recognizing this language is as follows:

Note There will not be any loop in the automaton recognizing a �nite language and there
will be only one loop in the state graph of the automaton recognizing an in�nite language with
the same crossing being repeated in the initial strings.

Otherwise, there will be as many loops as the number of di�erent crossings. This gives an
idea for the following two propositions.

6.4 Proposition

The syntactic monoid generated by a �nite splicing language does not have any idempotent
element other than the zero element.

6.5 Proposition

The syntactic monoid for an in�nite splicing language should have at least one idempotent
element other than the zero element.

Notes The idempotent elements are of the form fxb and fbx where `x' is the crossing and `b'
is the symbol found in between the occurrences of the crossing `x' in the words of the in�nite
splicing language. The number of idempotent elements in the syntactic monoid for an in�nite
splicing language is two times the number of di�erent crossings.

7 Properties of Persistent Splicing system

7.1 De�nition

Let S1 = (�1; I1; B1; C1) and S2 = (�2; I2; B2; C2) be two splicing systems.

Then the union of S1 and S2 is de�ned as S = (�1 [ �2; I1 [ I2; B1 [ B2; C1 [ C2) and the
intersection is de�ned as S = (�1 \ �2; I1 \ I2; B1 \B2; C1 \ C2).
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7.2 De�nition

Let S1 and S2 be two splicing systems.The concatenation is de�ned as follows:

Let �; �; � =2 �1 [ �2. Let �1 = �1 [ f�; �g;�2 = �2 [ f�; �g; I1 = fu��ju 2 I1g; B =
B1 [B2 [ f(^; �;^)g; C = C1 [ C2 and S = (�; I; B; C).

7.3 Proposition

The union of two persistent splicing systems need not be persistent.

Let S1 = (�1; I1; B1; C1) and S2 = (�2; I2, B2; C2) be two persistent splicing systems, where
�1 = fa; b; c; xg, �2 = fe; b; f; xg, I1 = faxbxcg, I2 = fexbxfg, B1 = f(a; x; b); (b; x; c); (a; x; c); (b; x; b)g,
B2 = f(e; x; b); (e; x; f); (b; x; f); (b; x; b)g, C1 = C2 = ;.

Consider the strings axbxc and exbxf from I1 [ I2. On splicing these two strings and
recombining the pieces obtained, we get axbxf; axf; exbxc; exc. But there is no pattern with
site axf; exc in B. Thus, S is not persistent.

Note If the alphabet sets for the two persistent splicing systems are distinct, then union is
persistent. Similarly we can prove the following one.

7.4 Proposition

The class of persistent splicing systems is not closed under concatenation and under Kleen's
closure.

Note If B1 [ B2 is not full context, the union and concatenation of two persistent splicing
systems are not persistent.

7.5 Proposition

The left full quotient of a persistent splicing language by a deterministic context free language
is not necessarily persistent.

Consider a persistent splicing language L�(S) = fa+b+a+b+g and CF = fanbnambm=n 2
N n 0;m 2 Ng. Then LnnR=f� [ b+ [ b+a+b+ [ fanbm=n > m > 0gg, which is not persistent.
We now discuss about existence and e�ective construction of test set

7.6 De�nition

We say that a �nite subset F of a language L is a test set for L, if for any pair of homomorphism
(g; h); g(x) = h(x) for all x in L i� g(x) = h(x) for all x in F . That is, g and h are equivalent
on L i� g and h are equivalent on F [5].

7.7 Example

Take L�(S) = fa(xb)nxc : n � 0g, a persistent splicing language. Let F = faxc; axbxcg be the
test set for L�(S).

We know from the literature if h(uv) = g(uv) for a pair of homomorphisms h; g 2 ��,
where u; v; q; q0 2 ��, h(uqv) = g(uqv), h(uq0v) = g(uq0v), then h(uqq0v) = g(uqq0v). Thus, if
h(axc) = g(axc), h(axbxc) = g(axbxc) for every axc; axbxc 2 F , then h(axbxbxc) = g(axbxbxc).

Continuing in this way, we get h(a(xb)nxc) = g(a(xb)nxc) for every n � 1. Thus, F is the
test set for L�(S).
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7.8 Theorem

Every persistent splicing language has the test set.
We know that every persistent splicing language ,as a subclass of regular languages, recog-

nized by a �nite automaton should have the test set.

The e�ective and accurate procedure for obtaining the test set of a persistent splicing lan-
guage is taking the initial strings in the splicing system in addition to the words accepted by
the automaton without entering into the loop.

Conclusions

One of the most recent suggestions in developing new types of computers consists of consid-
ering computers based on molecular interactions, which under some circumstances, might be an
viable alternative to the classical Turing/Von Neumann notion of computing. There are several
theoretical as well as practical proposals for achieving universal programmable molecular com-
puter in the near future. But still many hurdles have to be crossed to embracing the molecular
age. The concept of splicing system serves as one of the strong proposals for attaining DNA
based computations as it has been proved theoretically that splicing operation can generate re-
cursively enumerable language under certain restrictions and thus has the full computing power
of Turing Machines [6].
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