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Abstract

We give a new and simple proof of a key lemma on
the rank of a matrix in Leung's paper [3], where he
showed there exists a family of nondeterministic �nite
automata fAng, with n states and exponential ambi-
guity, such that any smallest equivalent polynomially
ambiguous �nite automaton has 2n � 1 states.

Keyword: nondeterministic automata, ambiguity, au-
tomata theory.

1 Introduction

Leung [3] resolved an open problem raised by
Ravikumar and Ibarra [4] on the succinctness of repre-
sentations relating to the types of ambiguity of �nite
automata. One of the main tools is �nding the rank of
some matrices corresponding to �nite automata.

In this note we give a much simpler proof on the
rank of a matrix, which is crucial for Leung's result.
Matrix rank method has been used in many proofs of
computational complexity problems [3, 1]. Not only
for automata theory, it has also been widely used for
communication complexity [5].

Given a non-deterministic �nite automaton (NFA)
M , the ambiguity of a string w is the number of di�er-
ent accepting paths for w in M . M is unambiguous if
the ambiguity of any string is either 0 or 1. Obviously,
deterministic �nite automata (DFA) is unambiguous.
For any length n, the ambiguity of M is the maximum
ambiguity of all strings of length n.

It is clear that the ambiguity of any NFA is bounded
by k0k

n, where k0 is the number of initial states and k

is the number of states.
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There are �ve types of automata classi�ed with
the degree of ambiguity [3, 4]: deterministic �-
nite automata(DFA), nondeterministic �nite au-
tomata(NFA), unambiguous NFA(UFA), �nitely am-
biguous NFA(FNA) and polynomially ambiguous
NFA(PNA). Following Leung's paper [3], let C1 and
C2be any two of these �ve classes of automata.

� C1 �p C2 (C1can be polynomially converted to
C2): If there exists a polynomial p such that for
any �nite automata in C1 with n states we can
�nd an equivalent �nite automata in C2 with at
most p(n) states.

� C1 =p C2 (C1 is polynomially related to C2): If
C1 �p C2 and C2 �p C1.

� C1 6=p C2: If C1 can be separated from C2.

� C1 <p C2 : If C1 �p C2 and C1 6=p C2.

It is clear that DFA �p UFA, UFA �p FNA, FNA
�p PNA, PNA �p NFA. Leung proved PNA < NFA
via a specially de�ned automata An [3] and resolved an
open problem proposed by Ravikumar and Ibarra [4].
Thus he established the relations: DFA <p UFA <p

FNA �p PNA <p NFA. However, it is still open for
FNA <p PNA. For any n, he considered automaton
An = (Q;�; Æ; fq1g; fq1g), where Q = fq1; � � � ; qng, q1
is the only starting state and �nal state, � = f0; 1g and
Æ(q1; 0) = fq1; q2g, Æ(qi; 0) = fqi+1g for 2 � i � n� 1,
Æ(qn; 0) = fq1g, Æ(q1; 1) = ;, and Æ(qi; 1) = fqig for
2 � i � n.

It is not hard to see L(An) = (0+(01�)n�10)�: Along
the way, he proved that the smallest DFA for L(An) has
2n states and the smallest UFA for L(An) has 2

n � 1
states. To prove the latter, the rank of a matrix related
to An is crucial. We give a simpler proof on proving
the rank of the matrix.

We give the basic de�nitions in section 2. Section 3
presents the main result.



2 Preliminaries

In this note we assume that the reader is famil-
iar with the basic terminologies in automata the-
ory [2]. Consider the family of automata An =
(Q;�; Æ; fq1g; fq1g) as de�ned above. For any P � Q,
let wP 2 �� be w10wn0wn�10 � � � 0w1 where wi = � if
qi 2 P and wi = 1 otherwise; and let uP be 0n�1wP .

Lemma 1 [3] For any P � Q, we have: (1)
Æ(P;wP ) = P ; (2) for any q 2 Q, fqg � Æ(q; wP );
(3) Æ(Q� P;wP ) = ;.

Corollary 2 For any P � Q; Æ(q1; uP ) = P:

Corollary 3 For any P and P 0 � Q; uPwP 0 2
prefix(L(An)) i� P \ P 0 6= ;.

As in Leung's paper [3], let Mn be a 2n� 1� 2n� 1
matrix over the �eld of characteristic 2 with rows
and columns indexed by the nonempty subsets of Q
such that Mn(P; P

0) = 1 if upw
0

p0
n�1 2 Ln, and

Mn(P; P
0) = 0 otherwise. By the above corollary,

as observed by Leung, we know Mn(P; P
0) = 1 if

P \ P 0 6= ; and 0 otherwise.

3 Main result

We give a new and simple proof of the following
lemma, which is crucial in Leung's paper.

Lemma 4 The rank of Mn is 2n � 1.

Proof. By de�nition, we can index rows and columns
ofMn by n-bit binary numbers in increasing order such
that any n-bit binary number bnbn�1 � � � b1 corresponds
to the nonempty subset P � Q with the property that
for any 1 � i � n , qi 2 P i� bi = 1. The indices
range from binary number of value 1 to binary number
of value 2n � 1. Let a and b be two n-bit binary num-
bers. Then Mn(a; b) = 1 if there is some i such that
ai = bi = 1, and 0 otherwise.The following matrix is
for n = 3.

M3 =

2
666666664

1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 1 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1

3
777777775

Also note that if a+ b > 2n� 1, then by pigeon hole
principle there exists some i such that ai = bi = 1 and
so Mn(a; b) = 1. For a + b = 2n � 1, Mn(a; b) = 0,
since a and b are complementary. Thus the entries on
the auxiliary diagonal (from top right to bottom left)
of Mn are all 1. The entries to the right of the auxil-
iary diagonal are all also 1. The entries on the diagonal
right above the auxiliary diagonal are all zero, since the
sum of their row and column indices are exactly 2n�1.
By a sequence of proper row operations, we can trans-
formMn into a triangular matrix with 0's on the lower
right part and 1's on the auxiliary diagonal. It is clear
that the rank of such triangular matrix is 2n�1. More
precisely, the row operations are: subtract row i � 1
from row i of Mn for i = 2n � 1 down to 2. This com-
pletes the proof. QED

By the lemma, Leung proved the following results
and eventually resolved an open queston proposed by
Ravikumar and Ibarra, i.e., NFA is more powerful than
PNA.

Lemma 5 [3] A smallest UFA recognizing L(An) has
2n � 1 states.

Theorem 6 [3] A smallest PNA recognizing L(An)
has 2n � 1 states.

4 Conclusion

We prove the rank of Mn in a much simpler way.
This result is crucial in Leung's paper. However, the
proof on the rank by Leung is complicated. Via a better
observation on the structure of the matrix we shorten
the proof signi�cantly.
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