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ABSTRACT 

In this work, we derive self-organization by constructing a 
generative mode, which is composed of piecewise multi-
variate Gaussian distributions for characterizing the 
parameter space. The fitness of this generative model to all 
parameters provides a smoothness criterion to the essential 
exploration of the clustering topology within the parameter 
space. Combined with the minimal wiring criterion pro-
posed by Durbin and Willshaw, the new criterion is able to 
produce faithful representations of self-organization. We 
apply a hybrid of the mean field annealing and the gradient 
descent method to the optimization of mathematical frame-
work in treatment of discrete combinatorial variables and 
continuous geometrical variables, and obtain three sets of 
interactive dynamics to which the corresponding unsu-
pervised learning process is termed as natural elastic net 
algorithm. If the covariance matrix of each piecewise mul-
tivariate Gaussian distribution is fixed as an identity matrix, 
the interactive dynamics describe a learning process for the 
elastic net of Durbin and Willshaw. 

 

I. INTRODUCTION 

A self-organizing algorithm aims to form a coherent map-
ping from a parameter space dR  to a cortex like space, 
such as a MM × two dimensional lattice structure. In the 
Kohonen algorithm [5] and the elastic net algorithm [2], 
each node on the lattice is attached with a cortical point 
and all cortical points collectively constitute internal rep-
resentations for the parameter space. These cortical points 
{ }21, MkRy d

k ≤≤∈  form a nonoverlapping Vo-

ronoi partition ( ){ }ykΩ  into the parameter space, where 

( ) { }d
jjk Rxkyxxy ∈=−=Ω ,minarg| , with 

yx −  as the Euclidean distance and the property of a 

nonoverlapping partition ( ) d

k
k Ry =Ω and 

( ) ( ) Φ=ΩΩ yy hk , for all hk ≠ . These two algo-
rithms aim to find cortical points by learning samples from 
the parameter space subject to prior criteria. By Voronoi 
partition, each point in the parameter space is mapped to 
one and only one node on the lattice, and this mapping is 
expected to produce a dimensional reduction mapping from 
d  to 2  with topology preserving properties. Such a di-

mensional-reduction mapping has been used to explore the 
embedded self-organization of ocular dominance bands 
and the orientation module of the visual cortex [1]. 

Proper prior criteria for a self-organizing algorithm are re-
viewed to include metric multidimensional scaling, mini-
mal wiring, minimal path length and minimal distortion [4], 
of which all are based on the Euclidean distance. In practi-
cal applications, parameter samples may be generated in a 
stochastic process that defines a statistical dependence 
among the components of them. This causes non-faithful 
representations for the parameter space in using the 
Euclidean distance for the measure of similarity measure 
[8]. This work explores weighted measures for similarity to 
release the assumption that components of samples are sta-
tistical independent and aims to achieve faithful represen-
tations [7][8] for the parameter space. Here the Mahalano-
bis distance measures the distance between two samples. 

The natural elastic net developed in this work possesses 
three sets of interactive dynamics for the competitive 
mechanism of underlying data clustering and independent 
component analysis. The elastic net algorithm of Durbin 
and Willshaw is proved to be a special case of the natural 
elastic net in this work. The natural elastic net is expected 
to provide an effective competitive mechanism to explor-
ing the formation of ocular dominance and orientation 
structure in primary visual cortex [10][11]. We start our 
derivation at a generative model, consisting of piece-wise 
multivariate Gaussian distributions, characterizing the pa-
rameter space. Then we consider a log likelihood function 
as the measure of the fitness of this generative model to all 
training samples. Combined with the criterion of the mini-
mal wiring principle, this measure forms a mathematical 
framework, including objectives and a set of constraints, 
for an essential coherent mapping. A hybrid of the mean 
field annealing and the gradient descent method is applied 
to the optimization of this mathematical framework. As a 
result, three sets of interactive dynamics are obtained for 
the unsupervised learning process of self-organization, of 
which an artificial temperature similar to the process of 
physical annealing modulates the evolution.  

This article is organized as follows. A mathematical 
framework for the natural elastic net is developed in sec-
tion II. Three sets of interactive dynamics for the natural 
elastic net are derived in section III. And we conclude our 
work in the last section. 



  

II. A MATHEMATICAL FRAMWORK FOR 

NATURAL ELASTIC NET 

Based on the Mahalanobis distance, a modified Voronoi 
partition of kernels { }ky  into parameter space contains a 

set of non-overlapping internal regions { }kΩ  with 

( ) { }d
Ajjk Rxkyxxy ∈=−=Ω ,minarg| , 

Kk≤≤1 , where Axxx t
A = . Each region kΩ  is asso-

ciated with a local generative model in a multivariate 
Gaussian distribution ( )xPk  centered at ky  with a 
common covariance matrix A like  
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 Where A  denotes the determinant of a matrix A . 

N membership vectors { }iδ  denote the mapping from N 
training samples to internal regions. Each vector 

{ }iKii δδδ ,,1．．．=  belongs the set { }Kkek ≤≤1, , 
where ek is a standard unitary vector with the kth element 
one and the others zero. That { }iδ  is equal to ke  repre-
sents the ith training sample is mapped to the kth region. 
For consistency of the internal representation, the log of 
the local likelihood function kl  measures the fitness of 

the local generative model kP  to all training samples in 
the kth region, where 
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By summing up all kl , we have the following log likeli-
hood function 
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By neglecting the last constant term, reversing the sign and 

using the fact 
11 −− = AA , we obtain the first objective 

for the natural elastic net as follows 

ANyxAyxE ki
t

ki
i k

ik log
2

)()(
2
1

1 −−−= ∑∑δ  (4) 

The maximization of l  turns to be the minimization of E1. 
The transition from the second line to the third line in the 
above derivation uses the fact 1=∑

k
ikδ  and 

k
k Φ=Ω . A coherent mapping insists on that nearby 

points in the parameter space are ordered as smooth as 
possible on the cortex-like map, and the objective function 
costs between neighboring cortical points are as smooth as 
possible. The resulting dimensional-reduction mapping 
possesses a high reliable topology preserving property. The 
objective 1E  circumspective sets up a smooth generative 
model for the parameter space. The minimal wiring princi-
ple used by Durbin and Willshaw proposes another crite-
rion 
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where ( )kNB  denotes all neighboring nodes of the kth 
node on the lattice.  

A weighted combination of minimizing 1E  and 2E , 
leads to the following mathematical framework for the 
natural elastic net, minimizing 
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Subject to  

1=∑
k

ikδ   ,  for every i     (7) 

 

III. DYNAMICS FOR THE NATURAL ELASTIC 

NET 

The above mathematical framework involves the optimiza-
tion of discrete combinatorial variables of { }iδ  and con-

tinuous geometrical variables of { }ky  and the matrix A , 
exactly forming a mixed integer and linear programming. 
Since the energy function that has discrete variables is not 
differentiable with respect to these discrete variables, the 
gradient descent method is not applicable. To overcome the 
computational difficulty, we relate each membership vector 

iδ  to a Potts neuron and use the mean field equation to 
find its mean activation at each temperature. The mean 
field equation can be derived by the following free energy, 



  

which is similar to that proposed by Peterson and Söder-
berg [9]. 
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where δ,Y  and u  denote the set { }ky , { }iδ  and 

{ }iu  respectively, β  is the inverse of an artificial tem-

perature, and each iu  is an auxiliary vector. 

By setting 
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∂
∂

ikδ
ψ

  for all i, k         (9) 
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   for all i, k        (10) 

We have the following mean field equation for evaluating 
mean activations of discrete neural variables 
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Based on the mean configuration, we can apply the gradi-
ent descent method to the adaption of each ky . That is 
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To an zero gradient 0=∆ ky , we have  
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Where kN  denotes the number of nodes in the set 

( )kNB . 

The updating method of each element abA  in the covari-
ance matrix is derived as follows 
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Again, when 0=∆ abA , we have  

( )tWA 1−=     (16) 

Where 
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The following step-by-step statement describes the natural 
elastic net algorithm for finding the minimum of the objec-
tive function (6). 

1. Initialize β  as a sufficiently small value, 

IA ×= 01.0  (identity matrix), ∑≈
i

ik x
N

y 1
, 

Kik
1≈δ  

2. Update ikδ  by equations (11) and (12). 

3. Update ky  by equation (14). 

4. Update A by equations (17) and (16). 

5. If θδ >∑∑ 2

i k
ik  then halt, else 

95.0
1×= ββ    Go to step2 

Where θ  is a threshold, ex. N×= 95.0θ . 

 

IV. NUMERICAL SIMULATIONS AND CONCLU-

SIONS 

Consider the 400 training parameters in figure 1a, which 
are generated by a linear mixture of two independent uni-
form distributions. Two components of these input pa-
rameters are not more statistical independent. We applied 
2×2 natural elastic net to learn this training set and ob-
tained an equivalent partition into the primitive cell as 
shown in figure 1b. When fixing A  as an identity matrix, 
we obtained a Voronoi partition as shown in figure 1c, a 
result of the elastic net proposed by Durbin and Willshaw. 
When we multiplied all input parameters and kernels by a 



  

de-mixing matrix B , which could be obtained by solving 
ABBt = , by the input space, a new system with inde-

pendent components. 

 

 

 

 

 

 

 

1a. Training parameters 

1b. A equivalent partition 
obtained by the natu-
ral elastic net 

1c. Voronoi partition ob-
tained by the elastic 
net. 

 

We have used piecewise multivariate Gaussian distribu-
tions to construct a generative model for input parameters 
in developing the natural elastic net. The fitness of this 
generative model to all training samples combined with the 
minimal wiring objective constitutes an optimization 
framework of the novel unsupervised learning. We have 
shown that a hybrid of mean field annealing and the gradi-
ent descent method is applicable to the development of in-
teractive dynamics of the natural elastic net. As a special 
case of fixing the covariance matrix in the generative 
model as an identity matrix, the elastic net of Durbin and 
Willshaw fails to produce faithful representations when 
facing a problem with statistical dependent components. 
This difficulty is properly overcome by the natural elastic 
net. Applying the natural elastic net to blind source separa-
tion and artificial visible systems is our urgent future work. 
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