Separation of Internal Representations of the
Hidden Layer

Cheng-Yuan Liou, Hwann-Tzong Chen, Jau-Chi Huang
Dept. of Computer Science and Information Engineering
National Taiwan University
Email cyliou@csie.ntu.edu.tw

Abstract— We devise a method to separate the inter-
nal representations of the hidden layer where the Ham-
ming distance between every two representations is re-
quired to be as large as possible. Each representation
is isolated as far as possible from all others in the layer
space. When the representations of certain patterns can
be isolated within a Hamming radius, we can discrimi-
nate these patterns from all other patterns using a sin-
gle neuron in the next upper layer. This space is a
hypercube which is different from the grid plane used
in a self-organizing map. Such representations will ex-
haust this hypercube uniformly and have tolerance for
noisy patterns. This method directly resolves the am-
biguous internal representation problem, which causes
back-propagation learning to be inefficient. The layered
network is developed as an adjustable kernel to separate
multiple classes as much as possible. By employing this
method along with the back-propagation learning algo-
rithm, multilayer networks can be trained for various
tasks.

Keywords: Neural networks, ambiguous internal rep-
resentation, unfaithful representation, tiling algorithm,
multilayer perceptron, internal representation, inner-
product kernel, support vector machine, polychotomy,
image restoration

Acknowledgment: This work was supported by the Na-
tional Science Council under projects number NSC 89-
2213-E-002-066

Correspondence: Cheng-Yuan Liou, Department of
Computer Science and Information Engineering, Na-
tional Taiwan University, Taipei, Taiwan, 10636, R.O.C.

I. INTRODUCTION

The multilayer networks [20] have simple hierarchi-
cal architectures and are capable of pattern classifica-
tion and recognition. Such networks consist of a set
of sensory units that constitute the input layer, one or
more hidden layers of computation units, and an out-
put layer of computation units. The input signal prop-
agates through the network in a forward direction from
lower layers to upper layers. These networks are usu-
ally trained by the back propagation (BP) algorithm
[19] [27]. This algorithm is a supervised algorithm
where we provide the desired output for each input
pattern during training. This algorithm measures the
difference between the desired output and the actual
output and adjusts the weights to reduce this differ-
ence. The ambiguous internal representation problem
or the unfaithful representation problem[10] [15] is se-
vere for this algorithm. Patterns will be misclassified
when patterns of different classes are mapped to a same
internal representation in any hidden layer. This rep-

resentation is called the ambiguous internal represen-
tation(AIR). When an AIR exists in a lower hidden
layer, it is impossible to classify these patterns no mat-
ter how many neurons or layers we add on to its upper
layers. The AIR may cause premature saturation [9].
One phenomenon is that the output error remains a
significantly high constant for an unpredictable period
during training. One may follow the instruction in [10]
and modify the algorithm in [6] to construct a multi-
layer network forwardly without the occurrence of AIR
as done in [3]. The tiling construction for the multilayer
network in [15] does not have the AIR problem.

Following the instruction in[10], we will resolve this
AIR problem by constructing a network forwardly with
enlarged basins as possible. One way to do this is
to separate these representations as much as possible
on each hidden layer from lower layers to upper lay-
ers such that each class has its own representation in
each layer. The output of each hidden layer is in a hy-
percube space, and each output is a corner of this hy-
percube. The representations are the outputs of their
corresponding patterns and are distributed at certain
hypercube corners. These representations must be sep-
arated such that different classes have different repre-
sentations. We may use all the corners freely to achieve
this separation. We impose a requirement to isolate
each representation. We require the basin of each rep-
resentation to be as large as possible. This means that
the distance between a representation and its closest
neighbor representation is as large as possible. All rep-
resentations are allowed to evolve in the hypercube and
compete for basins under this requirement. We will
develop this evolution in the next section. Note that
when the internal representations are given, we can use
the algorithms in [12] to enlarge their basins for each
neuron layer.

Another way to fully use the all the corners is to re-
quire that the topographic structure of these represen-
tations in the hypercube resemble that of the patterns
in the input space. This is somewhat similar to the
method in [16]. That method transforms the patterns
into new representations on a grid plane according to
the nonlinear mapping of a trained multilayer network.
These new representations have the property that sim-
ilar patterns have near representations in the plane. It
is expected that the topography [8] of patterns can be

perfectly preserved on the plane. That method com-
bines both unsupervised learning and supervised learn-
ing to force the patterns to be mapped on a plane ac-
cording to their geometric topography. Its goal is to
accomplish a perfect topographic mapping.on a grid
plane such that one can manipulate many recognition
and classification tasks on this plane (or display). To
preserve topology, we may modify the method in [16]
for each layer’s hypercube instead of the grid plane.
This is not our goal. We will develop internal repre-
sentations in each hidden layer s hypercube which will
facilitate operation of the network.

Our goal is to resolve the AIR problem by develop-
ing a self-organization evolution to separate the inter-
nal representations as much as possible. This is also
the goal of the transformation kernels used in the
support vector machine [2] 5], which employs inner-
product kernels to transform difficult patterns into
high-dimensional representations and then attempts to
construct an optimal hyperplane to separate these rep-
resentations in the high-dimensional space. This high-
dimensional space is not a hypercube, and these repre-
sentations are not allowed to evolve in this hypercube
freely. This is because this machine uses fixed and lim-
ited mapping kernels. We use the layered network as
an adjustable and flexible kernel which can be trained
by patterns. We formulate a simple case in the next
section to demonstrate the method. An extended case
is also included in the next section. We then present
applications in the third section. Discussion is included
in the last section.

II. "SEPARABLE INTERNAL REPRESENTATION
METHOD

A. Single-layer perceptrons

We will now formulate the separable internal repre-
sentation (SIR) method used to solve the AIR problem
and derive its algorithm for the single-layer perceptron.
Assume that the values of input units can only be —1
or 1. Consider the distance (or repellence) energy [17]
(14] [26] [18],

P P
1
rep __ ___ (P1) (P2)))2
B = LSy, y)

Pr P2

P P
= EZEIMPQ

Py D2

E™ = —) —vE)*)

Mz

DO =

P P
P1 P2
where y(P1) (y(P3)) is an M-dimensional output repre-
sentation corresponding to the pyth (path) pattern. M

is the number of neurons. This repellence energy will
force the representations to evolve in an M-dimensional

m=1

'1519 T 1,1,1
1,1

-1 /14’_1

I,-1,-1

Fig. 1. The 3-cube.

Fig. 2. The Hamming distance is 2 between any two corners
{(1-1-1),(-111), (11-1)}.

hypercube space. Instead of the Hamming distance,
the Euclidean distance is used as the distance func-
tion d to ease the derivation. Consider P input pat-
terns {x(1),x(® ..., x(®)}, where the rth pattern x(*) =
[x(lr) x§) . x(Nr) ‘ is an N-tuple bipolar binary vector.
In this case, each pattern has its own class. Therefore,
there are P classes. The vector y(™ is the output vec-
tor of the hidden neurons corresponding to the input
pattern x(*). The goal is to maximize the distance be-
tween every pair of output representations such that
each representation is isolated from all others as far as
possible. The balance of all distances is indicated by
the extreme value of the energy. For example, to uni-
formly distribute three representations in a 3-cube as
shown in Figure 1, {{ -1 -1 -1]*,[1 1 —-17]
,{ =1 1 1]*} is one of the ideal solutions and
ffr 11,01 -1 -1)*,[-11 -1]t} is
another. In this case, the balanced Hamming distance
for all three representations is the same, which is 2 as
shown in Figure 2.

To achieve this goal, we reduce the energy E by
means of the gradient descent rule. The algorithm
for adjusting the weights to decrease this energy is de-
scribed below.

By differentiation, the gradient descent of each indi-
vidual energy Ej p, is

M (p1) (p2)
_ Z (y(m) - y(P2)> Oyrn _ Oym”
m m awij 310,']'

m=1

aEPle —
aw,;j

_ _% ((p1) yz(m)) %
{((m))) (1 (5)) x§pz>}
here '

E wijrj, and

v = f(net;), net;

1 — exp(—net;)

ti) =t 2 - explneti)
f(net;) = tanh (0.5net;) = TF exp(—nety)

Note that
(p1) (p2)
d(nety'’) _ _ O(netm™) — 0 form#£i
Bwij Bw,]

The updating equations for the weights are

OE
Lt

(2)

Wij = Wi —

where 7 is a positive learning constant. The threshold
values w;(n41) are updated in exactly the same way as
are the weights. Their updating equations are

WiN+1) T WiN+) Ty ((pl) y,(m))x

()" - ()").

and the fixed input is of value xny41 = —1.

The initial weights are set as w;; = 0 for all i # j
and w;; = 1 for ¢ = j. These are orthogonal weights.
All the patterns will map to themselves using these
weights. We then feed patterns one by one into the
network and save their corresponding output vectors
in an array. We calculate the Euclidean distance be-
tween every pair of output vectors. We use a square
matrix D to store these distances. The value of its en-
try D, is the distance between the output vector y®)
and the output vector y(® (in response to the rth pat-
tern and the sth pattern). Thus, the distance matrix
D is symmetric and has zeros in all its diagonal entries.
Among all the pairs of output vectors, we find one pair
that has the minimum distance. Then we use this pair
of output vectors (indexed as p; and py) together with
their corresponding patterns in Equation 2 to increase
their distance.

For the next iteration, we feed all the patterns into
the network again. We update the distance matrix D
and increase the minimum distance. We repeat this
procedure until the minimum distance cannot be in-
creased or it is greater than a prespecified value.

We can extend this algorithm to the case of noisy
patterns. Assume the patterns belong to classes
X(o0), X(€), ..., X(K), where class X(||) contains Py

patterns {x(1), x(?) . x(Pw)} The goal is to maximize
the distance between every pair of output vectors that
belong to different classes and minimize the distance
between every pair of output vectors that belong to
the same class. To achieve this goal, we need an al-
gorithm that can provide the attraction force for the
same class patterns. This can be done by reversing the
sign of the energy function, Equation 1. We include
the algorithm below.

The energy function and the attraction force[17] [14]
[26] [18], are

P, P
Eatt — _ZZ(d(y(pk) y(pk)))
Py Py
P, Py
= ZZ pLp? (3)
pk pk
and
OEpip} ®h) _ D\ ok
R — \Pi i) _ (Pk) (_Pk)
T P — y#0) x {(1 (s) >z]
2
— (1 (yz(l’k)))xg'pk)}v (4)
where
1 2
Epkpk = (d(y(pk),y(pk)))l’

Sl R R

-

I
-

(y(pi) _ y(pi))2
1 T :

2.

To minimize E®*, we update the weights using the
method of steepest descent as follows:

sirt ®)

6’!1),' 5

Wij « Wi5 — 17

for k = 1,..., Py. The thresholds are adjusted in a sim-
ilar way as that for E7°P.

The procedure for operating this algorithm is similar
as the former one. We randomly pick a pair of patterns
from class X(||). We use these two patterns as input
vectors (denoted as x(Px) and x(P%)) and feed them
into the network to obtain output responses (denoted
as y(pb and y(pﬁ)). We calculate the distances between
every pair of output vectors which are produced by
patterns in the same class. We find the pair which has
the maximum distance use this pair of output vectors
and their corresponding input patterns in Equation 5
to decrease the distance.

We employ a mixed strategy to operate the repel-
lence force in Equation 2 and the attraction force in
Equation 5 in a sequential mode. We randomly select
two patterns from all classes. When these two pat-
terns come from a same class, we use Equation 5 to

pull them close together; when they come from differ-
ent classes we use Equation 2 to push them far apart
from each other. The network is trained until the fol-
lowing two conditions are satisfied: (1) The maximum
distance among all the pairs of output vectors belong-
ing to the same class is below a prespecified thresh-
old. (2) The minimum distance among all the pairs
of output vectors belonging to different classes exceeds
a prespecified threshold. Otherwise, the training will
continue until no more improvement in either the max-
imum or minimum distance can be achieved.

B. Multilayer perceptrons

There are two ways to apply the above idea to a
multilayer perceptron. Let us start with the one used
to solve the AIR problem. The training process starts
from the bottom layer of the network. At the begin-
ning, we focus on the input layer and the first hidden
layer. They are viewed as a single-layer perceptron,
and we use the SIR method for the single-layer percep-
tron to adjust the weights between these two layers.
When the training is finished, we collect all the output
responses of the first hidden layer as the first group
of internal representations for the patterns. Then we
shift to the second hidden layer. We train the weights
between the first hidden layer and the second hidden
layer using the collected first internal representations
as inputs and using the SIR method for the single-layer
perceptron. We then collect the second group of inter-
nal representations of the second hidden layer as inputs
to train the weights between the second hidden layer
and the 3rd layer. We proceed from the bottom hid-
den layer to the top layer until the output layer is com-
pleted. In this procedure the updating equations Equa-
tion 2 and Equation 5 are used repeatedly layer after
layer with refined internal representations. We use for-
ward training for the network and refine the represen-
tations layer after layer. After the training is finished,
the representations of different classes are separated as
much as possible, and representations of a class are
clustered (or merged) together as closely as possible.
This is different from the BP approach. This forward
training is free from the premature saturation prob-
lem and the AIR problem. We may add other kinds of
forces to obtain certain desired outputs gradually.

The other approach to applying the single-layer
method to the multilayer perceptron shown in Figure
3 is to extend this algorithm backwards to a deep bot-
tom layer as the BP algorithm does. The reason for
doing so is that we can take advantage of the nonlinear
mapping ability of a multilayer perceptron to obtain
ideal representations in the output layer. We expect
that a multilayer perceptron will have the potential to
uniformly distribute the representations on hypercube
corners and to map the fewest corners for each class of
noisy patterns. The derivation is similar to that for the
BP algorithm. As before, we require that the distances
between the output representations of different classes

Fig. 3. A multilayer network.

must be maximized. The weights between the output
layer and the top hidden layer are adjusted based on
the same updating rule used in Equation 2. All the
lower hidden layers are trained backwards without any
free evolution. The local gradient of the upper layer is
propagated to the next lower layer, and their weights
are adjusted accordingly. The energy function is

rep 1= ¢ (P1) o(P2)))2
o DD MCC SN

1 P P I
ETeP — _5 Z Z Z (p1) _ (pz) (6)

The local gradient §,, for the output neuron o; is de-
fined as

OF Boi

5, = & 90
: Jdo; Onet;

where o; is obtained much as in Equation (2). We
calculate the local gradients for different input patterns
p1 and po. They are

58 = (oﬁ’”) —o§p2)> (% (1 - (ogp‘))2)> and
6% = (o - ofr)) (% (1 _ (ng’z))2>) _

Accordingly, the local gradients for hidden neurons are
obtained as

521) — % (((Pl))) Zé(?l)wm

50 = % ((=) >Zé<p2)wrﬁ

293 (1= 7)) Sk

5P) = % (1 - (y,‘j’”)2> 36y,

The equations listed above show that the local gradi-
ents are the weighted sums of the local gradients of
their connected upper layer. Then the weights can be
updated by the local gradient:

Awij — 6{()1:1)2?71) _ 65,::,’2)2‘}1,2),

Avjk = 6£fl)yl(cp1) _ 62};2)%?’2),
and then
Auyy = 6§z1)x§p‘) - 65’;2).1'1(”2).

We may reverse the sign of E™°P to obtain the at-
traction energy. This energy provides attraction forces
among representations in the same class. We omit its
algorithm. We operate these two kind energies for ev-
ery two patterns according to their class membership.

III. SIMULATIONS
A. Characters Recognition

In this section we test the proposed method with ex-
periments. The first experiment is recognition of char-
acters. The pattern set contains 52 characters (A to Z
and a to z). Each character is stored as a binary image
of size of 16pixels x 16pixels as shown in Figure 4. Each
pattern is a vector containing one image. Each pattern
is a class of its own. We construct a single-layer percep-
tron with 256 + 1 input units and 256 output neurons.
Each output neuron is fully connected with all input
units and a threshold unit. The training results are
shown in Figure 5, Figure 6 and Figure 7. In Figure 5,
we plot the sorted 52 minimum Hamming distances for
all 52 characters where each minimum distance is the
distance between one pattern and its closest pattern.
For each output representation, we calculate the Ham-
ming distances to all other 51 output vectors and record
the minimum one. We plot the performances of the SIR
method under different initial conditions. As shown in
Figure 5, the minimum distances for all patterns are all
less than 90 (the curve marked with -input-). The min-
imum distances of the output representations are all
greater than 100. The performance curve marked with
-output 1- is obtained by using the orthogonal initial
weights. The curve marked with -output 2- is obtained
by using the small random initial weights. We also use
the multilayer perceptron as in Figure 3 to do this ex-
periment and plot the performances in this figure. In
this multilayer perceptron, each layer has 256 neorons.
The performance curve marked with -output 3- is ob-
tained by setting the orthogonal initial weights for all

Fig. 4. A character image.

layers. The curve marked with -output 4- is obtained
by setting the random initial weights. From this figure,
the representations have larger distances than those of
patterns. It will be relatively easier to separate these
representations in the hidden layer space than separate
the image patterns in the input space.

To see the distribution of these representations, we
assume each representation shares equal number of
basin corners, (22%6/52), in the hidden hypercube and
these corners are connected neighbors in this hyper-
cube. The output representation of each pattern is
considered as the center of these corners. Therefore, a
center should be at a 222 Hamming distance to another
center. The radius of the basin is less than 111 because
it (%56) > 2256 /52, Thus the distance between two
centers is approximately 222. This kind round basins
are ideal. The experiments show that we can separate
the representations with a distance more than half the
idea radius. To show the sizes of these trained basins,
we plot the maximum Hamming distance between a
representation and all others in Figure 6. We also plot
the averaged Hamming distance for each representa-
tion in Figure 7. As shown in Figure 6, several max-
imum Hamming distances approach the ideal radius
222. With such well separated representations, one can
restore noisy representations using the Hamming dis-
tance.

When we use the output representations obtained by
this single layer perceptron as inputs to train the second
hidden layer. Then use the output representations of
the second hidden layer as inputs to train the third
hidden layer. The output representations of the third
hidden layer will approach to the performance curve,
the -output 4-. In this case all layers have 256 neurons.

B. Recurrent Associative Memory

In this test, we use the SIR method to develop the
network shown in Figure 8 as an associative memory.
There are three layers in this network, the input units,
the hidden layer, and the output layer. This network
is similar to the replicator network [7] with feedbacks.
The response of the output layer will be send back to
the input layer in the next iteration. There are only two
layers with sigmoid function neurons. The input layer
distributes signals to the hidden layer directly without
any modification. The input layer and the hidden layer
are used to develop highly separable international rep-
resentations for the above 52 patterns to tolerate noisy
patterns. The output layer is used to index these rep-
resentations to their corresponding patterns. As an

1490

120

1ol

¢ tmou

0 10 2 30 40 5 60

Fig. 5. The minimum Hamming distances for the 52 represen-
tations by SIR method.

220r

e depd

0 60

Fig. 6. The maximum distances for the 52 representations by
SIR method. ”

associative memory, the output will evolve to a stable
state gradually. This stable state is the place where we
store the pattern. Given a corrupted pattern (search
argument), one corresponding stored pattern will be re-
called through the association of this corrupted pattern
and this memorization mechanism.

The training algorithm of this network is divided into
two stages. In the first stage, we evolve the weights
between the input units and the hidden layer by the
SIR method. In the second stage, we train the weights
between the hidden layer and the output layer by the
BP algorithm using the 52 internal representations as
inputs and their corresponding patterns as the desired
outputs. In this case, each layer contains 256 neurons
plus one fixed unit with value —1. All neurons in a layer
are fully connected to the neurons of the next upper
layer. In the first stage, we use small random numbers

150

Oulput 4

LT o) S - Ouput 2

- Sigdd

0}) L pu
//qu
— e
0 . s " i

0 10 2 30 40 8 60

Fig. 7. The averaged Hamming distances for the 52 representa-
tions by SIR method.

eedback
X' XM

x'

X

Fig. 8. The recurrent network.

as initial weights to start the training of the weights
between the input units and the hidden layer. The
results of the SIR training are included in the former
section. We then save the 52 internal representations as
inputs and their corresponding patterns as the desired
outputs, {(y?,2?), P =1,..,52}, and use them to train
the weights between the hidden layer and the output
layer. In the second stage, all trained weights between
the input units and the hidden layer must be fixed. In
this stage, we only train the weights between the hidden
units and the output layer using the BP algorithm:

Uki < Vgi + 77% (zf — 2%) (1 - (:r’k)Q) ygp).
This is the delta training rule for the bipolar contin-
uous activation function. The desired output for the
representation yP is xP and the network output is x
The training will stop when the network outputs are
the same as the their corresponding patterns.

G

10 0D <ECHOOTR-OMOD
NXECmITI——TFhOgNX<—1g9Z2~<T oD

NXCm PO IH=THOgNX <My Zr-=TI Moo

NXC MO I H—THOgNX <MD Z~~T Qg

Fig. 9. Evolutionary recall of characters. The training character
is in the first column. The 30% corrupted character is in
the second column.The recalled characters for the first five
iterations are in the rest five columns.

After training, we feed corrupted patterns to the net-
work. The corrupted patterns are generated by ran-
domly reversing 30% of the 256 image pixels. Succes-
sive responses of the output layer are recorded in Fig-
ure 9. Figure 9 shows the refined characters for the first
five iterations. Most corrupted patterns will evolve to
stable patterns within five iterations.

The SIR method has been used as the side direc-
tion method in [11] to solve the handprinted character
recognition problem. This method has been used to
solve the uniform resource placement problem [4] [13].

IV. DISCUSSIONS

The SIR method will exhaust the hidden space and
maximize the utility of all neurons to accomplish highly
separable representations of patterns. We can develop
refined representations for patterns layer after layer or
train a multilayer network backwardly to obtain such
representations. We use the network as an adjustable
kernel to transform the patterns to a hypercube space
with much isolated representations. We summary the
relations between the SIR method and other methods.

A. Hebbian Learning
2
In the updating equations , the terms (1 - (y}p ‘)))

2 .
and (1 — (yfp 2))) have nonnegative values. These

two terms are the derivatives of the activation func-

tion f(net;) = tanh (0.5net;). Their values approach 1
when y§p 1) and y§p 2) approach —1 or 1. If we substitute

1 for these terms, the learning rule becomes
wi(n+1) — wyn)+n (3P (0) -y () x
CRORERO) ™

which is in some similar to the Hebbian learning. The
activation strength is proportional to the difference
between two patterns and between postsynaptic re-
sponses(output vectors). The increase of the strength
of a synapse is proportional to such differences on both
sides of that synapse synchronously. To compare, a
Hebbian learning form is

wgj (n + 1) — wi; (n) +ny; (n) z; (n). (8)

Another interesting form called the covariance hypoth-
esis was introduced in [22] [23]. According to this hy-
pothesis, the learning applied to the synaptic weight
w;; is defined by

e~ wi(n) + 7 (yi(n) —g(n)) x
(z(n) — T(n)) 9)

where T(n) and 7(n) denote the time-averaged values of
x; and y;, respectively. Comparing Equation 8 with the
Equation 9, the differences between them are the presy-
naptic and postsynaptic reference thresholds, which de-
termine the sign of synaptic modification. In Equation
7, instead of the time-averaged references, the presy-
naptic signal and the postsynaptic signal use the other
signals as the references. From Equation 7 we see that
the synaptic weight w;; is enhanced when (a) the con-
ditions xg-p D a:g.p 2) and y*) > y®?) are satisfied or

(b) the conditions a:;-p 1)

satisfied.

wij(n + 1)

< :t;m) and yfp‘) < y§p2) are

B. Mutual Information

The proposed algorithms are based on the maxi-
mization the representations “distances among the dif-
ferent class representations and the minimization the
distances among the same class representations. There
is a similar network [1] with two modules and a different
goal. It maximizes the mutual information, I (Ya; Yp)
, where Y, and Y}, are the output vectors correspond-
ing to the input patterns X, and Xp. This mutual in-
formation is defined as

14 (Ya + Yb)

I =0.5log 7 (¥a = Yo)

where V is the variance over the responses of the train-
ing samples. This network is shown in Figure 10. The
goal of this network is to make the outputs Y, and Yy,

Y, max / Yy
11 1
hidden hidden
units units
1J 1
Xa Xb

Fig. 10. The two-module network.

maximizing
Ya Yb Hamming distance

1

hidden
units

U

Xa Xp

Fig. 11. The single-module network.

of the two modules to agree closely (i.e., to have a small
expected squared difference) corresponding to a closely
related pair of input patterns X, and Xp. In the same
time, the two modules can not just produce constant
outputs that is unaffected by the input patterns, other-
wise, they convey no information. The outputs of these
two modules should vary as the inputs are varied. If we
replace this two-module network with a single-module
network as shown in Figure 11 and confine the output
responses in a hypercube space. We then train this
network to maximize the object information function
I'=05log V(Ya—Yp) for different class patterns
and minimize this function for patterns in the same
class. We obtain similar results as those using the SIR
method.

Note that this object function will weight frequent
patterns. In our experiments all patterns have equal
appearance (uniform probability distribution). The
mean value of the vector (y(P?) —y(P2)) is zero. Assume
each pattern of {x) x(®, ... x(P)} has its own repre-
sentation, y(Pt) # y(P2) for p; # ps, and equal proba-
bility of appearance, P~1. Then I = 0.5log {-2E™"}
— log P. The information function , I, is coherent with
the repellence energy or the attraction energy. These
two energies also have mutual information content.

Since E™°P = —1 Z; Z:; Z,f:l(yﬁr’il) - yﬁrfz))Q, the
SIR method tends to maximize (or minimize) the vari-

ance of each neuron’s output difference, V(y,(,f‘) -

yﬁ,’l’z)), evenly for all pairs of different class patterns

(or same class patterns). All neurons will be devoted
to these class patterns. All neurons are sensitivitive
to these patterns only. Any unknown pattern will be
included in one of these patterns representations. In
other words, these representations exhaust the pattern
space.

Several advanced methods further develop this two-
module network with modified object functions to ac-
complish various tasks [24] [25] [21]. The method in [21]
uses a similar object function as Equation 1 to match
the outputs of the two modules.

The differences between support vector machine
and the SIR method. As for a support vector ma-
chine, there is only one hyperplane to answer the
‘yes/no’question. A multi-class classification task
(polychotomy) must be decomposed into a set of sim-
pler two-class classification tasks (dichotomies). Each
dichotomy is implemented using one such machine in-
dependently. The outputs of these dichotomizers are
reconstructed in classification. Advanced techniques
have been developed in decomposition of polychotomy
into dichotomies and reconstruction of the outputs.
The SIR method attempts to simultaneously divide the
whole representation space for all classes with multiple
hyperplanes (neurons). The SIR method use the inter-
nal space of a perceptron and develop it as a single
monolithic classifier, where each internal dicotomizer
(hyperplane) learns in a way dependent of each other.
This SIR learning will exhaust the hidden layer space
and maximize the utility of all neurons to accomplish
highly separated representations in each layer. Such
representations have large basins and facilitate the op-
erations of error correction [4] [13]. One can follow
the SIR method and develop refined representations
for patterns layer after layer feedforwardly or train a
multilayer network backwardly to obtain such repre-
sentations. We use the network as an adjustable kernel
to transform the patterns to a hypercube space with
much separated representations.

REFERENCES

[1] Becker, S., & Hinton, G.E. (1992). A self-organizing neural
network that discovers surfaces in random-dot stereograms.
Nature, 355, pp. 161-163.

[2) Boser, B., Guyon, 1., & Vapnik, V.N. (1992). A training al-
gorithm for optimal margin classifiers. Fifth Annual Work-
shop on computational Learning Theory, pp. 144-152.

[3] Chen, J.-L. (2000). Development of soft-computing tech-
niques and their applications to pattern recognition. Mas-
ter Thesis, National Taiwan Ocean University, Department
of Electrical Engineering, pp.1860-1863.

[4) Chiu, G.-M., & Raghavendra, C. S. (1990). Resource allo-

- cation in hypercube systems. Proceedings of the Fifth Dis-
tributed Memory Computing Conference, pp. 894-902.

[5] Cortes, C., & Vapnik, V.N. (1995). Supprot vector networks.
Machine Learning, 20, pp. 273-297.

[6}] Diamantaras, K. I., & Strintzis, M. G. (1998). Neural clas-
sifiers using one-time updating. IEEE Trans. on Neural
Networks, 9(3), pp. 436-447.

[7] Hecht-Nielsen, R. (1995). Replicator neural networks for

(8
[l
(10]
(11]
f12]
[13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

(21]

22]

(23]

(24)

(25

[26]

[27)

universal becker, S. Optimal Source Coding. Science 269,
pp-1860-1863.

Kohonen, T. (1990). The self-organizing map. Proceedings
of the IEEE, 78, 1464-1480.

Lee, Y., Oh, S., & Kim, M. (1991). The effect of initial
weights on premature saturation in back-propagation learn-
ing. International Joint Conference on Neural Networks, 1,
pp- 765-770.

Liou, C.-Y., & Yu, W.-J. (1995). Ambiguous binary repre-
sentation in multilayer neural networks. IEEE International
Conference on Neural Networks, 1, pp. 379-384.

Liou, C.-Y., & Yang, H.-C. (1999). Selective feature-to-
feature adhesion for recognition of cursive handprinted char-
acters. IEEE Trans. on PAMI, 21(2), pp. 184-191.

Liou, C.-Y., & Yuan, S.-K. {(1999). Error tolerant associative
memory. Biological Cybernetics, 81, pp. 331-342.
Livingston, M., & Stout, Q. F. (1988). Distributing re-
sources in hypercube computers. Proceedings of 3rd Con-
ference on Hypercube Concurrent Computers and Applica-
tions, ACM, pp. 222-231.

Mao, Jianchang & Jain, Anil K. (1995). Artificial neural
networks for feature extraction and multivariate data pro-
jection. IEEE Trans. on Neural Networks 6(2), pp. 296-
317.

Mézard, M., & Nadal, J.-P. (1989). Learning in feed-forward
layered networks: The tiling algorithm. Journal of Physics
A, 22, pp. 2191-2203.

Pedrycz, W. & Waletzky, J. (1997). Neural-network front
ends in unsupervised learning. JEEE Trans. on Newral Net-
works 8, pp. 390-401.

Ripley, B. D. (1996). Pattern recognition and neural net-
works. Cambridge: Cambridge University Press.

Ruck, D. W., & Rogers, S. K., & Kabrisky, M., & Oxley,
M. E., & Suter, B. W. (1990). The multilayer perceptron as
an approximation to a Bayes optimal discriminant function.
IEEE Trans. on Neural Networks, 1, No.4, pp. 296-298.
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986).
Learning representations by back-propagating errors. Na-
ture (Longon), 323, 533-536.

Rumelhart, D.E., & McClelland, J.L. (1986). Parallel dis-
tributed processing: explorations in the microstructure of
cognition. vol. 1. Cambridge, MA: MIT Press.
Schmidhuber, J. & Prelinger, D. (1993). Discovering pre-
dictable classifications. Neural Computation, 5(4), pp. 625-
635.

Sejnowski, T.J. (1977). Strong covariance with nonlinearly
interacting neurons. Journal of Mathematical Biology, 4,
pp- 303-321.

Sejnowski, T.J. (1997). Statistical constraints on synaptic
plasticity. Journal of Theoretical Biology, 69, pp.385-389.
Ukrainec, A., & Haykin, S. (1992). Enhancement of radar
images using mutual information based unsupervised neu-
ral networks. Canadian Conference on Electrical and Com-
puter Engineering, pp. MA6.9.1-MA6.9 4.

Ukrainec, A. M., & Haykin, S. (1996). A modular neural
network for enhancement of cross-polor radar targets. Neu-
ral Networks, 9, pp. 143-168.

Webb, A. R., & Lowe, D. (1990). The optimal internal rep-
resentation of multilayer classifier networks performs non-
linear discriminant analysis. Neural Networks, 3, pp. 367-37
Werbos, P.J. (1974). Beyond regression: New tools for pre-
diction and analysis in the behavioral sciences. Ph.D. The-
sis, Harvard University.

