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Abstract

In TreadMarks and most current Distributed
Shared Memory systems, file accesses are usually
handled sequentially by one node. A large ariount
of network traffic is generated between this node
and the other nodes to distribute the input data and
to collect the resultant data. To reduce network traf-
fic and shorten file access time, we have developed
a parallel file subsystem on TreadMarks. A parallel
file is partitioned and distributed among all nodes
to parallelize file accesses. With our variable data
distribution scheme, the network traffic for f ile ac-
cesses is greatly reduced. The total execuno71 ltime

of a 2000*1000 20-iteration Successive Over Re-
laxation (SOR) program on 8 nodes is reduce ﬁ’om
95 seconds with sequential 1/O to 41 seconds with
parallel /O, while that of 1024*1024 Matrix Multi-
plication on 8 nodes is reduced from 258 seconds
with sequential 1/0 to 236 seconds with parallel 1/0.

1. Introduction

Distributed Shared Memory (DSM) systems [1]
provides a shared memory abstraction on a loosely-
coupled multiprocessor or network of workstation
(NOW). Since data sharing is achieved via network
message transfer, one way to improve system per-
formance is to reduce the amount of network traffic.
Some DSM systems, such as TreadMarks, has been
focused on relaxing memory consistency model to
reduce network traffic [2]{3][4], thereby improving
the performance of DSM applications. However, a
time consuming operation in these scientific appli-

" cations, i.e., file access, has always been neglected
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in the design of a DSM system and is performed se-
quentially. This may arise performance problem. _

A typical-DSM application can be divided. into
an initialization phase, a computation phase, and a
completion phase. The initialization and completion
phase are always executed sequentially. In the ini-
tialization phase, memory is allocated and ‘the input
data is read from disk to memory at the root node,
on which DSM system and its application are
started. As a result, the input data is accumulated at
this node. During computation, the other nodes ob-
tain their required data from the root node via net-
work by page faults. In the completion phase, the

root node collects the resultant data from all nodes ‘

via network by page faults and stores the data in its
disk. The root node may become a bottleneck since
input and resultant data has to move via this node to
the other nodes. In addition, a large amount of net-
work traffic is produced to transfer the data to the
required nodes.

- -An example is provided here to illustrate the
impact of sequential file accesses on DSM system
performance. The execution of computation phase of
2000%1000 20-iteration Successive Over Relaxation
on 4 nodes under TreadMarks takes 60 seconds,
while that of the initialization and completion
phases takes 37 seconds. When the same program is
executed on 8 nodes, computation phase takes 45
seconds, while initialization and completion phases
take 50 seconds. The performance gain in computa-
tion phase by doubling number of nodes has been
counteracted by the sequential file I/O.

One way to deal with this problem is to parallel-
ize file operations as well as computation. In NOW,
every workstation has its own disk. A file can be
partitioned into file blocks which are scattered
among all nodes to parallelize file accesses. There
are already many parallel file systems developed for
distributed memory - multiprocessor  systems
[61[71[8]. In these systems, each computation node
fetches required file data from the VO modes since
there is no shared memory. These parallel file sys-
tems may not be suitable for DSM systems because



features of DSM systems haven't been considered in
their design.

We have designed a parallel file subsystem for
page-based software DSM systems that is independ-
ent of memory consistency models. A variable data
distribution scheme are developed to reduce network
traffic by distributing the file blocks among the
nodes according to the data access pattern of an ap-
plication. We provide a file interface similar to
UNIX file interface, so that existing DSM applica-
tions require little modification to utilize our parallel
file services. A prototype has been built on Tread-
Marks [2] to verify the effectiveness of our design.
TreadMarks is a user-level page-based DSM system
which supports lazy release consistency models and
is developed by Rice University. It is built on UNIX
systems, which handle all file accesses.

The structure of this paper is as follows. The de-
sign of our parallel file subsystem is present in sec-
tion 2. In section 3, we describe the implementation
of our prototype on TreadMarks. The performance
evaluation of our prototype is illustrated in section 4.
We conclude in section 5.

2. Design considerations

The target system of our parallel file subsystem
is NOW, i.e., a cluster of workstations connected by
network. Every workstation has its own disk. In our
design, each computation node also acts as a storage
node. A parallel file is partitioned into file blocks,
" which are grouped into file portions according to the
data access pattern of the application. The file por-
tions are then assigned to the nodes, so that each
node has a disjoint portion of the parallel file, as
shown in figure 1. In the following subsection, we
will discuss design considerations such as granular-
ity, data distribution scheme, and user interface. The
last subsection discusses why file replication or file
block replication is not supported in our prototype.

2.1 Gr’anularity

The size of a file block can be a multiple of a
memory page. If a file block is larger than a memory
page, the reading of the block may require several
memory pages. This granule is too large and in-
creases the chance of imbalance in file block distri-
bution. We choose a block size equal to that of a
memory page. It allows better integration of the
memory management unit and the parallel file sys-
tem to avoid unnecessary network message
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block# [0J1J2]3[4]5]6] paraltel file

node 0 node 1

network l

Figure 1. System architecture of our parallel file
- Ssubsystem

exchange. Moreover, information collection can be
done simply by collecting page table entries when
file block and memory page have the same size.

2.2 Data distribution scheme

Current parallel file systems usually employ
fixed distribution schemes such as interleaving to
assign file blocks to disks [7][8]. With fixed distri-
bution scheme, it is easy to locate the disk in which
a file block is physically stored. However, in DSM
systems with fixed distribution , a node may find
that none of the required data are stored on its own
disk when the application's data access pattern does-
n't match the distribution scheme. A large amount of
network traffic is then generated to move the data
from the storage nodes to the consumer nodes. To
deal with this problem, we have developed a variable
distribution scheme, in which file blocks are distrib-
uted on disks according to the application's access
pattern. The variable distribution scheme is achieved
by a metadata file/header and information collection
technique.

2.2.1 Metadata file

Since file blocks are distributed on disks accord-
ing to the access pattern, which is different from ap-
plication to application, a metadata file for each
parallel file on each node is needed to keep track of
the global block numbers of the file blocks in the lo-
cal file portion. Every file block stored in the disk of
a node has an entry in the associate metadata file,
and this entry records the global block number of
that file block in the parallel file. When the parallel
file is opened, a request is broadcasted and the
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metadata files are opened. When the file read is is-
sued, a read request is broadcasted and each node
reads the file blocks from its local disk into the
specified shared memory locations according to the
metadata file and the starting memory address-given
in the read function call. When a file is written, the
owner node of each memory page of the result data
writes that page into its local disk, and the metadata
is generating by recording its block number.

2.2.2 Information collection

An information collection technique was devel-
oped to record the access pattern of the input files in
a single computation phase application. In the first
execution of an application, the input file (or files) is
placed at the root node. The pages containing the in-
put data will be moved or replicated from the root
node to other nodes during computation. By the end
of the first execution, the page table entries of the
memory pages containing the file blocks are col-
lected by the root node. With this information, the
nodes that have accessed a file block can be known.
In this way, the application's access pattern of the
input file is ascertained and the file blocks are then
redistributed accordingly. The redistribution can be
achieved with the following rules: (1) If a block is
exclusively accessed by a node, it is assigned to that
node. (2) If a set of file blocks have been accessed by
a set of nodes, they are interleaved among those

nodes.. The metadata file on each node is then cre- °

“ated according to this information. This simple algo-
rithm may cause imbalance in file block distribution
and a better algorithm is being constructed. In case
of a file write, the owner node of a target page writes
that page into the local disk, and each node creates
the metadata file accordingly. With this technique,
the minimal cost is ensured except in the first execu-
tion of the application.

2.2.3 Overhead

Our variable distribution scheme may incur cer-
tain overhead. First, the metadata file will surely in-
duce extra disk access cost. However, metadata file
is much smaller than the parallel file and its access
time is comparatively negligible. Moreover,
metadata can be merged with its corresponding par-
allel file portion to further reduce its access cost.
Second, file accesses are serialized in the first execu-
tion and data redistribution induces extra overhead.
Actually, the metadata file can act as a template. It
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can be repeatedly used for the same type of programs
with similar system configuration and program size
but different data. When a data set is used more than
one time, e.g., in some image processing applica-
tions or during debugging, the data redistribution
time can be neglected.

2.3 User interface

A main issue in our design is the usability of
our parallel file subsystem. Either we can preserve
the UNIX file interface in TreadMarks or provide a
new interface for programmers: With a new inter-

_face we can employ techniques such as collective /O

to boost the performance of file access. However,
this interface-is comparatively harder to use than a
UNIX one, and existing TreadMarks .applications
require rewriting or heavy modification. With a
UNIX file interface we can preserve the model de-
scribed in section 1, i.e., only the root node issues all
file accesses. Programmers need not coordinate the
file accesses or provide data access information with
this model. As a result, the existing TreadMarks ap-
plications require little modification with this inter-
face. Many TreadMarks applications issue file
accesses only in the initialization and completion
phases. Accordingly, the whole parallel file must be
written or read in a single access, which shortens
file access time and simplifies our design. Research
in workload characteristic of scientific applications
shows that most files are opened as either read-only
or write-only [9]. Therefore, files are immutable in
our parallel file subsystem. '

- 2.4 Replication

Theoretically, the whole parallel file or some
specific file blocks may be replicated on the disks of
the requesting nodes to reduce network traffic, just
as DSM systems reduce network traffic by replicat-
ing memory pages on the requesting nodes. How-
ever, it is not provided in our prototype because the
reduction of the total amount of network transfer is
too small to make file or file block replication a
worthwhile effort. Let's assume that a file block is
required by two nodes. If the file block is not repli-
cated, a consumer node acquire a copy of the block
via page faults from the owner node which is the
other consumer. If the block has crossed a page
boundary, two page faults are generated. Otherwise,
one page fault is produced. If the file block is repli-
cated on the two nodes, these two block-replicas will



be stored into the same memory page, and two page-
replicas of this page will be created on this two
nodes during file read. The two nodes then report
each other that each has a copy of the same memory
pages. Two messages are generated if the block
doesn't cross page boundary, and four are produced
for boundary crossing block. Compared with the one
or two page faults in the no replication case, there
will be little performance gain.

3. Impiementation

In this section, we begin with an introduction of
TreadMarks and then describe the implementation
of our parallel file subsystem on it.

3.1 TreadMarks

TreadMarks [2] is a user-level page-based DSM
system built on a network of workstations running
UNIX as operating system. Its developers at Rice
University extend the concept of release consistency
to propose lazy release consistency [9], which is im-
plemented in TreadMarks.

File accesses in TreadMarks can be handled in
sequential or parallel way, but it is not easy for pro-
grammers to access file in parallel. According to
TreadMarks' manual, UNIX file operations fread()
and fwriteQ) can be used in TreadMarks' applica-
tions. Therefore, a user can manually partitions an
input file into file portions and manually distributes
these portions to the required nodes. During initiali-
zation, every node reads its own file portion to
shared memory. When computation completes, a
programmer writes the resultant data from each
node to its own disk and then combines these resul-
tant file portions manually. This is-too burdensome
since programmers have to do everything manually.
In contrast, programmers can access files only via
the root node as described in section 1, but their pro-
grams will suffer from performance degradation.

3.2 Our prototype on TreadMarks )

This section déscribes ﬂxe implementation of
our design mentioned in section 2. Important data
structures and parallel file operations are described
here.

3.2.1 Parallel file
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As described in section 3, a parallel file is
partitioned into file portions according to its data ac-
cess pattern, a file portion is then transferred to its
corresponding node and a metadata header records
the global location of each file block in that file por-
tion. Figure 2 shows an example parallel file and the
data structure of a metadata header in our subsys-

- tem.
block# [0[1[2[3]4]5]6] parallelfile
assignednode# O 1 2 2 0 0
total # of blocks 7
# of local blocks 3
global block # 0 o
global block # 4 n
global block # 5 L6 ]

node 1

Figure 2. An example of parallel file and data
structure of metadata

In this example, a 7-block file is partitioned into
3 file portions. Blocks 0, 4 and 5 are assigned to
node 0, blocks 1-and 6 are assigned to node 1 and
the remaining blocks are stored in node 2. The
metadata header in node O is shown in figure 2. The
first field records the total number of file blocks in
the parallel file, which is 7 in this example. The sec-
ond field records the number of file blocks in the lo-
cal file portion, which is 3 in node 1. The following
fields record the global block numbers of the file
blocks in the local file portion. In the example, the
first, second, and third block-in node.0 is block O, 4,
and 5 of the parallel file respectively.

3.2.2 Parallel file operations

We provide the following function calls for pro-
grammers. This interface resembles the one in
UNIX on which TreadMarks is built, so that existing
TreadMarks' applications require little modification
to utilize our parallel file services.

int pfd = PIO_open(char *pathname, int flag)
int PIO close(int pfd) ) '

" int PIO_read(int pfd, char *buff, int nbytes)
int PIO write(int pfd, char *buff; int nbytes)
pfd: parallel file descriptor

PIO_open



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

The root node uses this function call to open a
parallel file. A parallel file descriptor (PFD) is as-
signed to this parallel file and the root node then
broadcasts the filename and the PFD of the parallel
file. Every node open its local file portion and ob-
tains a local file descriptor (LFD). On each nodes,
the PFD and its corresponding LFD are recorded in
a table for future use.

PIO_close

When the root node closes a parallel file, it
broadcasts the PFD of the parallel file. All nodes
then check the tables that map PFD into LFD, find
the corresponding LFDs, and close the local file
portions.

PIO_read

When a parallel file is read, the root node
broadcasts the PFD of the parallel file and the start-
ing memory address of the memory region in which
the file will be read in. Every node then calculates
the memory location for each file block in the local
file portion from the starting memory address and
the global block number, i.e., (the starting memory
address of block A) = (starting memory address of
the file) + (global block number of block A) * (page
size). Each file block in the local file portion of a
node is read to the calculated memory pages. After-
wards, each node sends an acknowledge to the root
node. This acknowledge piggybacks the metadata
headers of all nodes to the root node, so that the root
node knows the exact location of each memory page
containing a file block. This information is then
broadcast by the root node to inform all nodes about
the page locations.

PIO_write

When the root node issues this function call to
write a memory region to disk, the starting memory
address of the memory region and the PFD of the
parallel file is broadcasted. Every node then writes
its valid memory pages within that memory region
to the file portion of the parallel file. This is made
possible with a feature of TreadMarks: when a bar-
rier is completed, all replicas except one of a mem-
ory page are invalidated. In our DSM systems, two
or replicas of a memory page may be present, and
we have to propose a algorithm to decide which
node should write the memory page. In TreadMarks,
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we just make sure that a barrier is placed after the
computation phase or before the file writing of the
resultant data. Actually, this is already done in most
existing TreadMarks applications to ensure that all
nodes have completed computation before exiting.

4. Performance evaluation

We have chosen Successive Over Relaxation
(SOR) and Matrix Multiplication (MM) to test the
effectiveness of our parallel file subsystem compared
to sequential file operations. These two programs are
the ‘usual DSM benchmarks, possessing relatively
high I/O-computation ratio compared to other DSM
benchmarks. For each application, we have recorded
the initialization time, the computation time, the
completion time, and the total execution time of the
two cases, one with parallel /O (PIO) and one with
sequential I/O (NPIO). The initialization time is the
time taken to complete the initialization phase. The
computation time is the elapsed time for the compu-
tation phase. The completion time is the time to
write the resultant data to disk. The total execution
time is the summation of the previous three times.

Our testing environment consists of 8
Pentium-90 PC, each with 32MB RAM and a Sea-
gate ST5850A harddisk (11ms average seek time).
The computers are connected by 10Mbps Ethernet.
The operating system on-each machine is Solaris for -
x86. :

Successive Over Relaxation (SOR)

The input and output data of this application is
a 2-dimensional array. In each iteration, the new
value of an element is the average of the four neigh-
boring elements. In our experiment, the size of the
array is 2000x1000, each element is a.floating point
number, and there are 20 iterations. The perform-
ance result is shown in figure 3.

The initialization phase consists of a file open, a
file read and a barrier. Figure 3(a) shows that the
initialization time can be reduced by parallelizing
file accesses. In NPIO, the initialization time in-
creases with the number of nodes because the barrier
takes longer time to complete. In figure 3(b), the
computation time in PIO is shorter than that in
NPIO. This is because file blocks are assigned to
disks according to the data access pattern in our
variable distribution scheme, resulting in the reduc-
tion of network traffic. From figure 3(c), the reduc-
tion of completion time in PIO is impressive -
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Figure 3. The performance of SOR

compared to NPIO. In NPIO, before the specific
memory region is written, the root node have to col-
lect all update information of the memory pages in
that region from all nodes and updates those mem-
ory pages. This is a time consuming job. In PIO,
" every node writes its own valid pages to disk. No up-
date from other nodes is required. Figure 3(d) shows
the combined effect of the previous three graphs.
The total execution time of SOR is significantly re-
duced in PIO compared to NPIO.

Matrix Multiplication (MM)

The input and output files of MM are three ma-
trices. In our experiment, the size of a matrix is
1024x1024 and each element is a integer. The per-
formance result is shown in fi gure 4.

From figure 4(a), the initialization time in PIO
is only slightly shorter than that in NPIO. This is
due to fact that the number of barriers in MM is
twice of that in SOR, since there are two input files.
Each barrier takes longer time to complete when the
number of nodes increases. As a result, the ratio of
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gain for this part in MM is less than that in SOR. In
figure 4(b);, the computation time in PIO is better

.than that in NPIO, but only to a little extent. This is

because MM is a massive computational program.

‘The network message processing time is compara-

tively much less than the total matrix multiplication
time. Figure 4(c) shows that our parallel write again
significantly shortens the completion time, with rea-
son similar to SOR. Figure 4(d) is the combination
of figure 4(a) to 4(c). There is performance gain in
PIO, but the ratio of gain is less than that in SOR,
due to massive computation in MM.

5. Conclusions

In this paper, we have described the design and
implementation of our parallel file subsystem on
TreadMarks, a user-level page-based DSM system.
Our design employs a variable data distribution
scheme to assign file blocks to disks according the
data access pattern of an application. Our experi-
ment shows that this parallel file subsystem is feasi-
ble since the total execution times of the two
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Figure 4. The performance of MM

applications are greatly reduced. In our experiment,
the disks have a much faster speed than network. By
parallelize the file accesses, surely there will be per-

formance gain and this is shown in the initialization

time. The strength of our subsystem is in network
-traffic reduction in completion phase, thereby sig-
nificantly improving the performance of DSM sys-
tems, as shown in the computation and completion
time,
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