Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Multi-threaded Design for a Distributed Shared Memory System

Ce-Kuen Shieh, Jyh-Chang Ueng, Su-Cheong Mac, An-Chow Lai, Tyng-Ycu Liang
Dcpartment of Electrical Engincering,
National Cheng Kung University,
Tainan, Taiwan

Abstract

This paper describes the design and implementation
of a multi-threaded Distributed Shared Memory (DSM)
system, called Cohesion, which provides high
programming flexibility and latency masking, and
supports load redistribution. Cohesion differs from many
other DSM systems by providing a virtually shared
address space, instead of a shared variable model, in
which user and system data can be located. This address
space is partitioned into regions, each maintained by a
distinct memory coherent protocol. User and system data
with similar behaviors can be placed in the same regions
and maintained by a protocols that suits their nature,
thereby improving the system performance. The design
issues such as synchronization and thread management
have been reconsidered to support multi-threading. The
results of Successive-Over-Relaxation and Quick Sort on
Cohesion show that - multi-threading has better
performance than single-threading since communication
can be overlapped with computation.

1. Introduction

With continue advance on Distributed Shared
Memory (DSM) [1] technology and the fast approach of
high speed network, DSM systems become an appealing
alternative for parallel processing. The high availability
and parallel programming model similar to those
provided by multiprocessor systems make DSM very
popular. Nevertheless, the research of past DSM systems
[2113] are focused on the proposal and realization of new
consistency models and consistency protocols. Their user
interfaces are kept as simple as possible in order to ease
implementation. Particularly, most of these systems allow
only one user thread to be executed on a processor, i.c.,
the total number of threads that can be created in an
application is determined by the number of processors.
We categorize this kind of DSM systems as single-
threaded DSM systems. In fact, a multi-threaded DSM

This work was supported by the NATIONAL SCIENCE COUNCIL,
project number 84-2213-E-006-01 1.

248

system that allows users to create more than one threads
on a processor has two advantages over a single-threaded
one: programming flexibility [12] and latency masking
{10]. In this paper, a multi-threcaded DSM system, named
Cohesion, is proposed. To further improve system
performance, dynamic load redistribution by thread
migration is also supported in our system.

‘There are several existing and developing DSM
systems that also support multi-threading [10][11][12].
Our system resembles these DSM systems in latency
masking by overlapping communication and computation.
On the other hand, our system differs from most multi-
threaded DSM systems by providing a sharcd address
space, instcad of a shared variable model; for users. User
data can be statically or dynamically allocated from this
address space. No construct or special primitive is
required to dcclare that a variable is shared. In addition,
we locate the system data, e.g., thread control block (TCB)
and stack, in this virtually shared address space.instead of
the private memory. This leads to another advantage
when thread migration is considered: offsct conversion is
avoided because all nodes share the same address space,
and the system data are implicitly moved by the memory
manager to the destination node during migration time.

Putting user and system data into a shared address
space maintained by a single coherence protocol ‘may
result in performance loss, since different user and system
data possess different behaviors, i.e., different access
patterns. To solve this problem, our multi-threaded DSM
system employs multiple consistency models.
Programmers and system designer can frecly choose a
protocol - that suits their ‘data. Moreover, affinity
scheduling, hierarchical barrier, two-level memory

. allocation, and a modified delayed-update queue handling

are employed to further improve system performance. Our
thread scheduler allows the overlapping of
communication and computation by switching to another
ready thread when the current one is blocked waiting for
the response. Several programs were employed to verify
the effectiveness of our design, and the results show that
system performance is indeed improved by overlapping
communication and computation.

The remaining sections of this paper are organized as

follows. Section 2 describes the system overview of
Cohesion. We discuss the related issues and our decisions
in designing our thread system in section 3. Our
implementation follows in section 4. Section 5 shows the
performance result of our multi-threaded DSM system in
the experiments. We conclude in section 6.

2, System overview

Cohesion is a DSM system supporting two memory
consistency models, namely, eager release consistency 2]
and sequential consistency models [1]. It provides a
virtually shared address space that is accessible by any
"nodes. In addition, Cohesion consists of an object-
oriented runtime thread system, providing a parallel
programming environment in the user space. In the
following subsections, the shared address space and the
user interface will be described.

2.1 Shared address space

Cohesion provides a shared memory address space for
programiners, while some DSM systems [2][12] allows
users to explicitly declare which variables are shared. In
these DSM systems, a special primitive or construct is
provided. for programmers to declare that an object or a
variable is shared by all nodes. This is unnecessary in
Cohesion, in which every object is naturally shared by all
nodes. With this shared address space model, our memory
allocation interface is very close to those in shared
memory multiprocessors. This greatly simplifies
programmers’ work in porting or writing parallcl
programs. User and system objects can be statically and
dynamically allocated in this address space.

To support multi-threading, the shared address space
is divided into three regions, i.e., release, conventional,
and object-based memory, as shown in figure 1. The
release memory is provided to relieve the performance
degradation caused by false sharing of user’s data. A
delayed-update protocol [2] is employed with a page
granularity to maintain consistency in this region. The
conventional memory employs Kai Li‘s write-invalidation
protocol [1] to maintdin sequential consistency. Some

write-update Release release consistent
shared memory
write-invalidate Conventional
. shared memory
migratory object-based sequential consistent
shared memory

Figure 1. Shared address space in Cohesion

249

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

systemn data of our thread system are stored in this regions
to simplify the implementation of thread redistribution.
From the users’ point of view, it is much easier to port an
existing shared memory parallel program to a DSM
system with a conventional memory region, because the
usage of this memory is clese to that of physically shared -
memory. However, memory accesses in this memory
region may possess higher overhead than that in release
memory region, due to the sequential consistency
maintenance. If the performance of a newly ported
program is unsatisfactory, programmers can easily
relocate their data from the conventional memory region
to the release memory region. The object-based memory
is managed with a migratory protocol. This memory
region is not directly accessible by users. It is dedicated to
other system data objects in our thread system, such as
TCBs, which makes thréad redistribution easier because
objects in this region are maintained by a migratory
protocol and there is no false sharing of objects.

2.2 User interface

The user-interface of our thread system is similar to
PRESTO [5], built at the University of Washington. It
consists of the usual thread primitives such as fork, join,
lock, barrier, dynamic memory allocation, etc. These
primitives are nearly the same with those provided by
shared memory multiprocessor systems. In order to
present a clearer illustration, the entire flow of execution
in a Cohesion application is shown in figure 2.

system initialization
at node 0

! [working threads created J

Main::init()

'

Main::main()

'

Main::end()

1 | working threads joint

system ends

working threads

Figure 2. Execution flow of a user program

Typically, users may dynamically allocate shared
objects in the function Main::init(), and locate the main
thread in the function Main::main() where working
threads are forked and joined. Both pre-forking model
and dynamic forking model are supported. In the pre-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

forking model, the working threads are forked by the

main thread. In the dynamic forking model, a working®

thread can dynamically fork other working threads. Lastly,
there is the optional function Main::end(), allowing uscrs
to make a concluding run of their applications after all
working threads have joined. .

Memory annotation

~ Since there are two user-accessible memory space in
Cohesion, there must be a way for users to distinguishably
allocate different object types. This is achieved by data
annotation. Every shared object in Cohesion is considered
as a data item in a class. If a object inherits the Relcase
class provided by the system, the memory consistency
model applied to the object is set to release. A shared
object that has not inheritcd any system class is kept
sequentially consistent by default. In this way, compiler
modification or special preprocessor is not needed. It is
noted that the type of a shared object may not be changed
once it is set. This kind of annotation is convenient since
inheritance is a feature of object-oriented programming,
and it allows a programmer to relocate data from the
conventional memory region to the release memory
region simply by inheriting the Release class in his data
objects. To briefly describe how our data annotation work,
an example is given in figure 3. '

/I declaring the Matrix as a release object
class Matrix : public Release {

private : shared data items;

public : member functions;

/1 declaring the Sor as a sequential object
class Sor {
// this is default without inheriting
private : shared data items;
public : member functions;
I3 ‘
Figure 3. An example of data annotation

3. Design methodology

To design an efficient multi-threaded DSM system,
issues such as thread management, dynamic memory
allocation, and synchronization should be carefully
considered. The following covers these issues in detail.

3.1 Thread management

In Cohesion, thread management can be divided into
three main parts: thread creation model, thread
scheduling, and thread migration. Thread creation model
defines how threads are created in a program. Thread
scheduling handles load distribution and context
switching. Thread migration is the basic mechanism for

250

load redistribution.
3.1.1 Thread creation modecls

In our system, threads can be created statically or
dynamically. In the static (pre-forking) creation model,
programmers fork the required threads before the
computation starts; while in the dynamic creation model,
threads can be dynamically forked during computation.
Static creation model is suitable for applications whose
workload can be statically determined, e.g., Successive
Over Relaxation (SOR). Dynamic creation model is well
syited for problems with either static workload or
dynamic workload, e.g., divide-and-conquer problems.
Programmers can freely choose amongst these models or
even employ both simultaneously in their programs.

3.1.2 Thread scheduling strategies -

We adopted the idea of affinity scheduling (AFS) [6]

‘in Cohesion because this algorithm can be modified to

suit most of the subtle differences in. circumstances
arising in a distributed environment. Each processor in
our system possesses a local scheduler and a local ready
queue. Initially, some working threads are statically
created in Main::main() before the computation starts.
These threads are assigned to the local queue of each
processor. The number of threads assigned to each
processor is equal to the number of the total threads
divided by the number of processors.in the system, so that
the workload is divided among the processors as evenly as
possible, i.e., if there are M user threads and N nodes,
every node will get M/N threads. These threads can be
distributed in batch mode or interleave mode. In batch
mode, the threads are distributed so that the first M/N
threads are located at the first node, the second M/N
threads at the second node, and so on. In interleave mode,
the threads are assigned to the nodes in a round-robin
fashion. On the other hand, a dynamically created thread
is located at the ready queue of the creator node. However,
there will probably be the case that the load distribution in
the system differs from time to time due to the
characteristics of some parallel algorithms or difference
in processor speed. As a-result, some processors may be
idle waiting for the synchronization barrier or a response
of shared memory misses. This problem may probably be
resolved by adding a load balancing function. We have .
proposed and experimentally evaluated a load balancing
method, called Dependence—Dnven Load Balancing
(DDLB), based on thread migration for Cohesion. The
details in DDLB are covered in {14] -

3.1.3 Thread migration supporting

When a thread is migrated, the user data, the TCB,
and the stack associated with the thread should be moved
to the destination node. User data are stored in the
virtually shared address space, so the migration of this
portion can be implicitly done by Cohesion. On the other
hand, the TCB and the stack of a user thread can be
stored in private or shared memory. If they are stored in
private memory, the thread system has to explicitly move
them to the target node via network when thread
migration occurs. Moreover, the offset of these data
structures in memory may be different between the two
nodes participated in the thread migration, and offset
conversion is necessary, which increases system
complexity. In contrast, if these system data are put in the
global address space, thread migration is simple because
every node can directly access system data. In Cohesion,
these two data structures are placed on shared memory:
the TCB of a user thread is placed in object-based
memory, while its stack is located in conventional
memory. The main reason that the TCBs are located in
the object-based memory is to avoid memory offset
conversion, because an object address always points to the
same object in any node. Putting the TCBs in
conventional memory can also avoid offset conversion,
but false sharing may arise because a TCB is much
smaller than a page. On the other hand, we place the
stack of each user thread in conventional memory to
avoid overhead in object management. Every stack is
page-aligned, so that false sharing can be avoided.

3.1.4 Overlapping of communication and computation

The thread scheduler masks synchronization latency.
by overlapping computation and communication.
Synchronization in a DSM system may not be satisfied
immediately if the requested lock is held by another node
or the requested barrier is not yet completed. In addition,
when a lock is released by a thread, the update of the
release memory pages produced by the releasing thread
are flushed to other nodes. As a result, synchronization
always induces network message exchange and long delay.
In our latency masking. technique, when the scheduler
noticés that the current executing thread invokes a
synchronization event that cannot be satisfied
immediately, another thread from the ready queue is
executed and the current one is blocked.

Overlapping communication and computation may
result in performance gain. However, this gain.does not
come with no cost. There is the overhead of thread
creation, context switching, and increased amount of
synchronization [10]. Whether the gain can surpass the
overhead is determined by the program’s behaviors and
the thread’s granularity. In section 5, we will show two

251

Joint Conference of 1996 International Computer Symposium
December 19~21, Kachsiung, Taiwan, R.0.C.

examples in which overlapping of communication and
computation can indeed improve applications’
performance.

3.2 Dynamic memory allocation consideration

As in most applications, data are usually dynamically
allocated and assigned after the programs starts. Since a
DSM system is designed to provide a shared memory
image via message passing, more care should be devoted
to prevent from unnecessary network traffic that leads to
performance loss.

Dynamic memory allocation can be managed in a
single-level or two-level mechanism. Assuming that we
employ a single-level mechanism, all dynamic memory
allocation are handled by a centralized memory manager.
Every memory allocation induces network messages,
resulting in certain overhead. In a multi-threaded DSM
system, this overhead is even heavier since there are
much more threads in the system. To rclieve this problem
in Cohesion, we adopts a two-level memory allocation
mechanism, which applies for the dynamic allocation for
all types of memory. When a memory allocation is first
invoked, the local thread system allocate a large chunk of
shared memory from the central manager. This memory
chunk is then maintained by the local thread system and
the requested amount of memory is returned to the
requesting thread. All subsequent memory allocation
requests are then fulfilled locally from this memory chunk.
When the local memory chunk is used up, another chunk
is fetched by the thread system.

3.3 Synchronization

Synchronization is a critical component in a thread
system that affects performance, because it usually
induces network message exchanges and idle waiting. We
have provided several synchronization mechanism, such
as lock, barrier, monitor, etc. In this paper, we focus on
locks and barriers, which are two frequently used
synchronization primitives in parallel applications.

Lock

In our thread system, locks utilize a queue-based
algorithm [7], in which every lock has an owner. The
owner of a lock is the processor that acquires it. When a
thread acquires a lock, a message is sent to its owner and -
the thread is blocked. Later when another thread at the
same node acquires the same lock, instead of sending
another request to the owner, the thread simply waits for
the lock locally by a proxy. This mechanism will reduce a
large amount of network messages in a multi-threaded
environment, since only one message per node is needed

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

instead of one message per thread. In order to relieve
from bottleneck and to scale well, the ownership of each ¢
lock is maintained in a distributed scheme {7].

Hierarchical barrier

Traditional barriers {7] may have high overhead in a
multi-threaded DSM system. Let us consider the case that
there are more than one threads on each node wishing to
synchronize at a traditional barrier. Each thread send a
message to a central manager notifying its arrival at the
barrier. The amount of network messages generated is
directly proportional to the number of threads. To deal
with this problem, we have developed a hierarchical
mechanism for barrier, named as hierarchical barrier. In
this mechanism, a thread is suspended when it arrives at a
barrier. When all relevant threads in a node arrives at the
barrier, an arrival message is sent to a central manager.
When the central manager has received the arrival
messages from all nodes, a barrier-completed-notification
is broadcasted. In this way, the number of message is
directly proportional to the number of nodes.

4. Implementation

In the following sub-sections, the implementation of
related components of our thread system are shown.

4.1 Cohesion components

Besides the thread system, there are other four main
components [4] in Cohesion, i.e., the reliable
communication subsystem, the upcall supporting
subsystem, the memory coherence manager, and the
object server, as shown in figure 4. The reliable
communication subsystem provides a reliable and
efficient vessel to exchange messages among nodes.
Upcall supporting subsystem provides services similar to
the SIGNAL in UNIX, notifying the user-level event

£ Application

User

Jevel

[MCM] [RCS] rUSS]]li:::d

I iRMK I

Network
MPE : Multi-threaded Programming Eaviromment
Osrv : Object Server
MCM : Memory Cohercace Monager
RCS : Reliadbie Communicstion Subsystem
USS : Upcall Supporling Subsystem
IRMK : inte] Real-time Multitasking Kerasl

Figure 4. System Overview of Cohesion

252

handlers of the kernel events. The memory coherence
manager enforces the consistency of the shared virtual
memory space with two handlers, i.e., the conventional
and the release handlers. The conventional handler deals
with page faults and consistency maintenance of the
conventional memory. The release handler processes page
faults in release memory by just notifying the object
server, which is actually responsible for maintaining
consistency of the release memory, via upcall. In addition,
the object server also manages objects in the object-based
memory in a way similar to Amber {8]. All these
components are based on a commercial real-time kernel,
iRMK]9]. In. Cohesion, there are both kernel-level and
user-level threads. The kernel threads are only for system
use and are managed by iRMK. In practice, user threads
created by a program are run in user space and scheduled
onto a kernel thread that serves as virtual processor.

A delayed-update queue per thread

Similar to other DSM systems supporting a release
consistency model [2]{3], Cohesion employs a delayed-
update protocol [3] to handle the modification of release
memory pages. Every thread in Cohesion has its own
delayed update queue, instead of sharing a single queue
by all threads in the same node. This model is more
efficient and easier to implement than the sharing model.
If all threads.in a node share a single delayed update
queue, the queue is traversed to find out which pages have
been modified by the thread that executes the release
operation. The queue may become very long and the
searching is then time-consuming. When every thread-has
its own queue, the update of every page recorded in the
queue is flushed when. the thread executes a release
operation. Searching is not required.

Page fault handling

To illustrate how page fault is handled, Cohesion‘s
page fault handling and upcalling mechanism is shown in
figure 5. Since the algorithi for the conventional handler
is so familiar [l], the following description is
concentrated on the release handler and the relation
between these two handlers. '

When there is a read fault in release memory, the
release handler fetches the page and set its access right as
read-only. Since a read miss does not affect buffering or
write sharing in the protocol, no upcall is initiated and the
control is returned. When a write fault occurs, the release
memory handler acquires the page if it is not present. The
handler then upcalls to the object server together with the
requested page number. The upcalling handler in the
object server may realize that the page is dirty and the

Delayed-Update Queus
Thread

Object
. Server

user-lovel

faulty .. upcall

kernel-level,
. py Rumber of the
write kz] faulting page
~~__Present read/write
‘ not present
) : page
write Y feiched

write

Eresent - i

read/write read

Figure 5. Page fault handling and upcalling

page number .is appending to the faulting thread’s
delayed-update queue. Subsequently, the control will be
returned to the faultmg thread

4.2 Thread mlgratlon mechamsm

Thread migration is done simply by moving the TCB
and the stack of the thread to the target node. As
mentioned in section 3.1, the TCB and the stack of a
thread are located in object and conventional memory
space, respectively. Each TCB is an object and its
consistency is maintained by the object server. Stacks are
page-aligned and their size are fixed at one memory page,
which is 4Kbytes in intel Xx86 processors, to avoid false
sharing. From our experience, the stack of a user thread
seldom exceeds a memory page, and it can be easily
expanded to multiple pages. When a thread is migrated,
its TCB is explicitly sent to the target node. A pointer to
this TCB is then added to the ready queue of the target
node. The thread will eventually be resumed and when it
accesses its stack, a page fault is generated because the
stack has not moved with the thread. The conventional
memory manager will then fetch the page containing the
stack. By putting the stacks in conventional memory,
stack migration can be easily done and unnecessary stack
movement can be reduced. For example, thread 1 is
migrated from node A to node B, and is then migrated to
node C before resuming execution in node B. If the stack
is placed in conventional memory, it will be moved
directly from node A to node C because the stack is
moved only when it is accessed after resumption. If the
stack is moved with its thread during thread migration, it
will be moved twice. However, putting a stack in shared
memory may induce extra overhead. The content of a
stack may not fully occupy a page. With the above
implementation, the null data in the stack‘s page are also
moved by the memory manager during stack migration.
The effectiveness of our mechanism is determined by the
program’s behavior, e.g., how frequently are the threads

253

Joint Conference of 1996 International Computer -Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

migrated and the usage of the stack. Nonetheless, our
approach is very simple in implementation.

4.3 Dynamic memory allocationvb

To dynamically allocate shared memory in Cohesion,
users employ the overloaded new() which will invoke a
different routine according to the annotated variable type.
However, after doing relevant book-keeping for the
annotated variable, malloc() in the thread system is called.
malloc() will check if there is enough free space which is
preallocated. If not enough free space is available or this
is the first allocation request, a trap to the kernel will be
generated via sbrk() system call with a paraimeter fype to
ask for a chunk of the shared memory from a centralized
manager. Subsequently, free page frames will be mapped
into the shared address space to allow the expansion of
data segment controlled by sbrk(). Typically, the
parameter fype provides a key to the sbrk() call such that
it will set the conventional and release pages as read-only,
and the object-based pages as read/write. The routines
following sbrk() are different for different memory types.
For a conventional memory allocation, the requested
amount of memory is returned to the user application.
While for the release and object-based memory, further
management such as appending a header before the
requested memory are desired.

5. Performance evaluation

To verify the effectiveness of our multi-threaded DSM
system with overlapping of cominunication and
computation, two experiments Thave been carried out with
two scientific computmg algomhms namely Successive
Over Relaxation (SOR) and quick sort (QSort). The
programs are executed on 4 90MHz Pentium-based
microcomputer, ' connected by 10Mbps Ethernet. The
network is isolated from the campus network throughout
the experiments to avoid interference. In our environment,
a context switch takes 9 microseconds and a page fault
takes 15 milliseconds to process.

For each of the two applications, we have written a
single-thread-per-node (1T), a 2-threads-per-node (2T),
and a 4-threads-per-node (4T) version. The effect of
latency masking in our thread system can be shown by
comparing these three versions. In ali testmg, there was a

main thread at processor 0. Working threads were forked
by ‘this thread. The main thread then waited until all
threads finished their jobs. The start time was recorded
when the main thread was started, and the end time was
recorded when all threads had rejoined. The elapsed
computation time is the difference of these two times.

SOR

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

In SOR, there are two matrices in the program, which
are in turn considered as current and scratch arrays before
an iteration is started. Every element calculated for next
iteration is written to the scratch array. In our experiment,
theré are 512x8192 floating point numbers in the pending
area and there are twenty iterations presumed for
convergence in the program. We choose this problem size
to.ensure that the idle time is long enough for the purpose
of this experiment. In this problem size, the shortest idle
time in the case 1T among 4 nodes is 2.4 seconds. In SOR
algorithm, more data sharing at the boundaries implies
more data are required to be exchanged among the nodes
during execution. For example, in case 2048x2048,
1024x4096, and 512x8192 with 4 nodes, the total amount .
of network traffic are 1213500, 2188228, and 4124052
bytes, respectively. Therefore, more data sharing implies
much time is required to flush data.

Figure 6 shows the elapsed computation time of SOR.
Obviously, the performance gain by masking latency is
very limited. This is because the idle time in SOR is
relatively short compared to the computation time.
However, it clearly shows that the most portion of idle
time are masked in the case 4T.

QSort

In our experiment, there are 1048576 (1M) integers.
The elapsed computation time is shown in figure 7. The
improvement gained by masking latency is quite
impressive in this application. This is because there are
much more data that should be flushed by a thread at the
end of a synchronization than that in SOR, which is
illustrated in figure 8. As a result, the idle time is much
“longer in this case. For example, the shortest idle time in
case I'T among 4 nodes is 12.75 seconds.

6. Related work

Munin [3] is a DSM system that provides multiple
consistency protocols. It differs from our DSM system by
using a single-threaded programming environment.
Although Munin can create several system threads in a
node to handle messages, users are limited to create only
one user thread at each node.

Quarks [11] is a user-level multi-threaded DSM
system supporting multiple coherency protocols. The
main difference between Quarks and Cohesion is that

_Quarks does not support thread migration. As a result, the
locations of the system data is not critical since these data
are not moved among nodes. Quarks employs a single-
level memory allocation mechanism, while Cohesion
utilizes a two-level memory allocation mechanism.
Barriers in Quarks are managed in a centralized way,

254

oiT
1% L kg

; 1w () g
170 . =

Jm

1 Node 2 Nedes 4 Nodes

Figure 6. Elapsed computation time of SOR

‘8B
J20069
2

3

H

8

Elspsed computation time (scconds)
8

- 1

1 Node

4 Nodes

Figure 8. Amount of network traffic

'while Cohesion employs hierarchical barrier to reduce

network messages.

Distributed Filaments [10] is another multi-threaded
DSM system. A filament is a very lightweight thread that
has no stack. Basically, there are two main differences
between Distributed Filaments and Cohesion in multi-
threading: (1) Distributed Filaments does not support
release consistency, therefore its memory consistency
management is independent of multi-threading. Cohesion
provides a release memory space and its consistency
maintenance should be accordingly modified to suit for
multi-threading. (2) Distributed Filaments’ programming
model differs from those provided by shared memory
multiprocessor systems. Users have to learn a new one
and to rewrite existing parallel programs. Cohesion‘s
programming model is similar to shared memory
multiprocessors. Programmers can use the traditional
interface in programming and the- existing parallel
applications can be ported easily. .

Millipede [12] is a multi-threaded DSM system that
provides muitiple consistency models and dynamic load

sharing. The two main differences between Millipede and
Cohesion are the user interface and the location of system
data. Millipede supports the ParC language, and a pre-
processor is required to convert ParC to C. Millipede
places system data in the private memory. The stack
“contents and the register values- are transferred at
migrated time. Offset conversion is avoided by ensuring
that a stack will occupy the same address on all hosts. In
Cohesion, the user interface is similar to PRESTO, and
pre-processor is not necessary. System data are located in
shared memory, so that offset conversion or memory
space reservation is not needed. Only the TCB of the
migrating thread is transferred at migrated time. After the
migrating thread resumes execution, its stack is
transferred by memory manager when it is accessed. In
this way, unnecessary movement of stacks can be avoided.-
However, since the stacks in Cohesion are page-aligned
and implicitly transferred by the conventional memory
manager, the page containing the stack is moved when it
is accessed after resumption, resulting in a slightly higher
overhead compared to Millipede.

7. Conclusions

In this paper, we have demonstrated how to build a
multi-threaded DSM system that provides high
programming flexibility, latency masking, and supports
load redistribution. With the multiple consistency models
provided, we can neatly maintain the consistency of the
.system data of thread system such as TCBs and stacks
according to their nature. Our pfogramnnxng model and
user interface are similar to-those in shared memory
multiprocessors. The performance results show the
improvement gained with latency masking technique,
especially for applications with heavy network traffic
such as QSort. Thread migration, which is the basic
mechanism for load redistribution, is also provided. The
combined effects of these features show that a multi-
threaded DSM system has its advantages. A completely
user-level multi-threaded DSM system is being developed
in our laboratory. :

References

[1] Kai Li. Shared Virtual Memory on Loosely Coupled
Multiprocessors. Ph.D. Thesis, Yale Univ.,, TR
YALEU-RR-492, Sept. 1986. ‘

[2] P. Keleher, AL Cox, S. Dwarkadas, et "al.
TreadMarks: Distributed Shared Memory on
Standard Workstations and Operating Systems. In
Proc. of the 1994 Winter USENIX Conference,

: pages 115-131, Jan. 1994. ‘

[3]1 John B. Carter. Efficient Distributed Shared

255

Joint Conference of 1996 International Computer Sympos:um
December 19~21, Kaohsiung, Taiwan, R.0.C.

Memory Based on Multi-Protocol Release
Consistency. Ph.D. thesis, Rice Univ., Sept. 1993.

[4] CK. Shieh, A.C. Lai, J.C. Ueng, et al. Cohesion: An
Efficient Distributed Shared Memory System
Supporting Multiple Memory Consistericy Models.
In Proc. of Aizu Int’l Symp. on Parallel
Algorithms/Architecture Synthesis, pages 146-152,
Feb. 1995,

[5]1 Brian N. Bershad, Edward D. Lazowska, and Henry
M. Levy. PRESTO: A System for Object-Oriented
Parallel Programming. Software - Practice and
Experience 18(8), Aug. 1988.)

[6] Evangelos P. Markatos and Thomas J. Leblanc.

~ Using Processor Affinity in Loop Scheduling on
Shared-memory Multiprocessors. in Proc. of
Supercomputing ‘92, pages 104-113, Nov. 1992.

[7]. John N. Mellor-Crummey and Michael L. Scott.
Synchronization without Contention. In 4th Int‘l
Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 269-278,
Apr. 1991, ‘

[8] Jeffrey S. Chase, Franz G. Amador, Edward D.
Lazowska, et al. The Amber System: Parallel
Programming on a Network of Multiprocessor. In
Proc. of the 12th ACM Symp. on Operating System
Principles, pages 147-158, Dec. 1989.

[9] iRMK 1.3 Real-Time Kernel Reference Manual.
intel Corporation, 1989.

[10] David K. Lowenthal, Vincent W. Freeh, and
Gregory R. Andrews. Using Fine-Grain Threads and
Run-Time Decision Making in Parallel Computing.
Technical report TR 95-14, The Univ. of Arizona,
Dec. 1995.

[11] Dilip Khandekar.” Quarks: Portable Distributed
Shared Memory on Unix. Technical report in
Quarks package, Oct. 1995.

[12] Roy Friedman, Maxim Goldin, Ayal Itzkovitz, et al.
Millipede: Easy Parallel Programming in Available
Distributed Environments. Technical report LPCR
#9506, Technion - Israel Institute of Technology,
Nov. 1995, _

[13] Tyng-Yeu Liang, Ce-Kuen Shieh, and Weiping Zhu.
Task Mapping on Distributed Shared Memory
Systems Using Hopfield Neural Network. To appear
in Western Multi-Conference 97, Jan. 1997.

[14] An-Chow Lai, Ce-Kuen Shieh, Jyh-Chang Ueng, et
al. On the Consideration and Solution for Load
Balance in Software Distributed Shared Memory
Systems. To appear in the 1997 IEEE Int’l
Performance, Computing, and Communications
Conf., Feb. 1997.

