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Abstract

In this paper, we consider fauli-tolerant broadcast-
ing in MIMD hypercubes in which each node can send
message to all its neighbors simultaneously, however,
each node can receive message from only one of its
neighbors at each time step. Let H, denote the n-
dimensional hypercube. . H, ts called d-safe if each
node of H, has at least d fauli-free neighbors. We give
efficient broadcasting algorithms for d-safe (d > 1) H,
with up to 2%(n — d) ~ 1 faulty nodes. For the case
of d =1, our algorithm completes the broadcasting in
optimal time steps. For d > 1, we show an algorithm
which completes the broadcasting in n + O(d?) time
steps. All the algorithms have optimal traffic steps.

1 Introduction ,
Broadcasting is the process of transmitting mes-
sages from one processor, called source, to all other
processors, and is one of the key communication
shemes in interconnected multi-processor systems.
Broadcasting provides basic functions to implement
distributed agreement, clock synchronization, and
broadcast-and-aggregate type of algorithms. Time
steps and traffic steps are the main criteria used to
measure the performance of broadcasting at the sys-
tem level. The maximum number of links the message
traverses to reach one of the destinations is defined
as time steps, and the total number of distinct links
the message traverses to reach all destinations is mea-
sured in traffic steps. In this paper, we consider fault-
tolerant broadcasting in hypercube-connected multi-
computers. There are several communication models
proposed for broadcasting in multicomputers. A re-
stricted one is single-port SIMD model in which only
the communication along the same dimension is al-
lowed at each time step. While in multi-port MIMD
model, a node can send message to every neighbor in
one time step. In this paper, we adopt the multi-port
MIMD model in which every node can receive message
from only one of the neighbor nodes at each time step.
Fault-tolerant broadcasting schemes can be classified
by the fault information used at each node. In local-
information based schemes, each node knows only the
status of its adjacent links and nodes. On the other
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hand, global-information based schemes assume that
each node knows the distribution of faults in the net-
work. In this paper, we develop broadcasting schemes
based on global-information. ‘

Hypercubes are interesting interconnection net-
works and have been adopted in many commercial
machines. Let H, denote the n-dimensional hyper-
cube. H,, is n-connected and can tolerate as many as
n — 1 arbitrary faulty nodes for broadcasting. Many
fault-tolerant broadcasting schemes for H,, have been
developed [6, 9, 7, 1, 8, 11, 9, 10]. An 7n + 12 time
steps local-information, source independent broad-
casting algorithm for SIMD H,, with at most n — 1
faults was given in [’g] A source dependent broad-
casting algorithm for SIMD H,, with better time steps
was given in [1]. Global information of faulty nodes
could improve the time for broadcasting. An optimal
n + 1 time steps broadcasting scheme for an MIMD
H,, with at most n — 1 faults was given in [8]. If the
number of faulty nodes is beyond n — 1, H, could be
disconnected. However, the connectivity is a worst-
case measure in the sense that n node failures can
disconnect H,, only if they are all neighbors of a par-
ticular node. This is unlikely to happen in practice. It
is known that H, is still connected if H,, has at most
24(n — d) — 1 faulty nodes and each node of H, has at
least d fault-free neighbors [3, 5]. We call H,, d-safe
if each node of H,, has at least d fault-free neighbors.

In this paper, we give efficient broadcasting algo-
rithms for d-safe (d > 1) MIMD H,, with at most

2¢(n — d) — 1 faulty nodes. Let F' be the set of faulty
nodes in a d-safe H,,. We first construct a spanning
tree of H,, — F with the source as the root. The broad-
casting is then done on the spanning tree that implies
the traffic steps are optimal. For d = 1, a spannin
tree of H,, — F with height at most n + 2 (optimal%
can be found in O(n?) time. For d > 1, a spanning
tree of H, — F with height n + O(d?) can be found in
O(n? + |F|) time. The broadcasting on the spanning
tree takes h time steps where h is the height of the
spanning tree. Thus, for d = 1, our broadcasting al-
gorithm is time steps optimal as well. Our algorithms
are source independent.

~ The rest of this paper is organized as follows: Sec-
tion 2 gives the preliminaries of the paper. The broad-
casting algorithms for d = 1 and d > 1 are given in



101 111

Figure 1: A 3-dimensional hypercube.

Sections 3 and 4, respectively. Section 5 concludes the
paper.

2 Preliminaries ' :

A path in a graph is a sequence of edges of th
form (81,32)(82,83’) .. .(Sk_l,Sk), s €V, 1<i<k,
and s; # sj, i@ # j. The length of a path is the
number of edges in the path. We sometimes denote
the path from s; to s; by s; — s;. A path P is
called fault-free if all nodes in P are non-faulty. For
any two nodes s,t € G, dg(s,t) denotes the distance
between s and ¢ in G, i.e., the length of the shortest
path connecting s and ¢. The diameter of G is defined
as d(G) = max{dg(s,t)|s,t € G}.

An n-dimensional hypercube H, is an undirected
graph on the node set H, = {0,1}" such that there
1s an edge between u € H,, and v € H,, if and only
if # and v differ exactly in one bit position. Figure 1
gives an Hs. H, is n-connected, has 2" nodes, and
has diameter d(H,) = n. For-n > 1, the O-subcube
of H, on dimension ¢, denoted as HY_,, is defined to
be the subgraph of H, induced by the set of nodes
whose ith bit are 0. Define similarly the 1-subcube
H}_,. H®_, and H}_, are both isomorphic to H,_;
and are connected to each other by edges in dimension
iof H,. For a node s = aja,...a, € H,, s®), 1 <
t < n, denotes the node a; ...a;-1@;a;41 ... a,, where
d@; is the logical negation of a;. Similarly, s(f1,#2,-)
denotes the node b; ... b,, where b;, = d;;, 1 < j <k,
and by =aq;forl e<n > —Fl, .v.,it}, where < n >=
{1,2,..,n} and < n > —{i5,...,5:} = {j|lj €< n >
7]¢{zl7azk}} »

Binomual spanning trees are powerful tools for
broadcasting in hypercubes [4, 2]. A binomial span-
ning tree T of H, withroot s is recursively defined as
follows: Forn =0, T = 0. For n > 0, let H?_, and
H}_, be the subcubes partitioned on some dimension
i. Assume s € HY_, and s’ € H]_; is the neighbor of
s. Then T = {(s,s')}UToUT}, where Tj is a binomial

spanning tree of HJ_; with root s and T; is a bino-
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Figure 2: A binomial spanning tree of Hs.'

Procedure BST(s, H,)
Input: A source node s in H,,.
Output: A binomial spanning tree of H,, with root s.
begin
if (n = 0) then return;
Partition H, into H_; and H!_,;

/*¥Assume s € HY_, and s’ € H}_, is the neighbor of 5.*/

keep the edge (s, s’) at s;
BST(s,H2_,); BST(s',H._,);
end

Figure 3: A binomial spanning tree generator.

mial spanning tree of H!_; with root s’. The above
binomial spanning tree of H,, has height n. Figure 2
gives a binomial spanning tree of the Hj with root
s = 000. The procedure in Figure 3 generates a bi-
nomial spanning tree of H,. Notice that there are n
choices to partition H,, in procedure BST for each n.
Based on this fact, when |F| < n—1, a spanning tree
of H, — F with optimal height n+ 1 can be generated
as shown in Figure 4 [8]. It is easy to see that the
procedure STO constructs a spanning tree of H,, — F
with root s and height at most n + 1 in O(n?) time.

Lemma 1 For |F| < n— 1, let T be the spanning
tree of H, — F with root s and height n +1 generated
by STO. Then there is exactly one node t in T with
dr(s,t)=n+1.
Proof: Assume T is generated in Case 1. Since the
height of T'is n+ 1, T is generated in the case that
|Fi] = 0. In this case, a binomial spanning tree 7"
of H}_; with root s’ and height n — 1 is generated,
and each fault-free node of HY_, is connected to its
neighbor in H!_,. Obviously, there is exactly one
node ¢’ in the binomial spanning tree with dz(s', ') =
n—1. Let t € HY_, be the neighbor of #. Then ¢ is
the only node with dr(s,t) = dr/(s',¥') +2=n+1.
If T is generated in Case 2, then by recursion we
can get a spanning tree Ty of HY_, — F' with root s
and height n and a spanning tree T} of H}_, — F with
root s’ and height n. There is exactly one node ¢’ in
T with dr,(s',t') = n. Thus, this ¢’ is the only node
that dp(s,t’)=n+1. 0O
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Procedure STO(s, F, Hy)
Input: A source node s and a set F' (|F| < n—1) of
fault nodes in H,.
Output: A spanning tree of H, — F with root s and
height at most » + 1.
begin
if (n = 0) then return;
Find a fault-free neighbor s’ of s and partition H,
into H2_, and H._, with s€ HY_, and s' € H}_;
Keep the edge (s,s') at s;
Fo:=FNHY {; Fi:=FnH! y;
Case 1: |Fy| =0 or |F1| = 0.
if (|Fo| = 0) then {BST(s, H3_,);
V(#' € Hi_; — (F U{s'})), keep edge (,t') at ¢;}
else {BST(s', H}_,);
Y(t € HY_, — (F U{s})), keep edge (', t) at t';}
Case 2: |Fy| > 1 and |F1| > 1.
STO(s, Fo, HY_,); STO(s', F1, H._,);
end '

Figure 4: An algorithm which produces a spanning
tree of H, — F for |F| <n—1.

We will use procedures BST and ST0 as subrou-
tines in our algorithms.

3 Broadcasting in 1-safe hypercubes

In this section, we show an algorithm which con-
structs a spanning tree of H, — F', where H, is 1-
safe and |F'| < 2n — 3, with the optimal height. The
idea of the algorithm is as follows: First, we find a
fault-free neighbor s’ of the source s and partition
H, into HY_, and H}_, such that s and s’ are sepa-
rated into different subcubes. Assume s € HY_; and
s’ € H:_,. Since |[F| < 2n — 3, at least one sub-
cube has at most n — 2 faults. Assume H}_, does
(the case of |Fy| < n — 2 is done similarly). Then it
is known that a spanning tree Ty of Hl_, — F with
root s’ can be found. We recursively find a spanning
tree of HY_, — F with root s if HJ_; is l-safe. If
HO_, is not 1-safe, then there is a node u € HJ_,
such that all the neighbors of u in HY_, are faulty. If
u = s, we connect each node t € (H2_; — (F U {s}))
to Ty by a fault-free path. If u # s, we connect u
to Ty by a fault-free path and find a spanning tree of
HY_, — (F U {u}) with root s.

To show the algorithm, we first give two procedures
which handle some special cases of the problem. The
first procedure ST1 (see Figure 5), given F with |F| <
n—2 and sin H, — F, finds a spanning tree of H, — F
with root s and height n. Node that procedure ST1
has some independent interests as well.

Lemma 2 Given F with |[F|<n—2ands € H,—F,
procedure ST1 constructs a spanning tree T of H, — F
with root s and height n.
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Procedure ST1(s, F, Hy,)
Input: A set F of faulty nodes in H,, with [F|<n -2,
and node s € H, — F.
Qutput: A spanning tree of H, — F with root s
and height at most n.
begin .
Find a fault-free neighbor s’ of s and partition H,
into HS_, and H}_; with s€ H_, and s’ € H}_;
Fo:=FnHY_; FinHL_,;
Case 1: |[Fy|=0or |F1| = 0.
if (|Fo| = 0) then {BST(s, H._,);
Vi' € (HL_, — (FU{s'})), keep edge (,t') at 1;}
else {STO(s, F, H_;); BST(s', H}_,);}
Case 2: |Fy| > 1 and |F1] > 1.
ST1(s, Fo, HY_,); ST1(s', Fy, H1_,);
end

Figure 5: An algorithm which produces a spanning
tree of H, — F for |[F| < n—2.

Proof: Assume T'is constructed in Case 1. If |Fy| =0
then a binomial spanning tree of H2_, with root s and
height n — 1 is constructed first and then the nodes of
H}_,~TF are connected to the binomial tree by paths
of length 1. That is, the height of T is n. If |Fy| =0,
then a binomial spanning tree of H}_; with root s’
and height n — 1 and a spanning tree of HJ_; — F
with root s and height n are generated. Obviously
the height of T in this case is n as well. _
" If T is constructed in Case 2, each (n — 1)-
dimensional subcube has at most n — 3 faults, and
by the recursion, a spanning tree of height n —1 can
be obtained. This implies the height of 7" is n. O
Let F be the set of faulty nodes in H,,. We say
a node u of H, is disconnected from H,, by F, if u
is not faulty and all neighbors of u are in F. The
second procedure ST2 (see Figure 6), given F with
|F| < 2n — 3 in H, such that F disconnects u from
H, and anode s € (H” — (F'U{u})), finds a spanning
tree of H™ — (F'U{u}) with root s and height at most
n+ 1.

Lemma 3 Given a set F' of faulty nodes in H" such
that |F| < 2n — 3 and F' disconnects u from H, and
a source node s € (H™ — (F U {u})), procedure ST2
finds a spanning tree T of H™ — (F'U {u}) with root s
and height at most n + 1.

Proof: For any node v € H,, define N (v(g the set of
neighbor nodes of v. Let u be the node disconneted
by F. Then N(u) C F and |F — N(u)| < n—3.
Obviously, |[N(s)NN(u)| < 2. Therefore, s has at least
one fault-free neighbor s'. Partition H,, into HY_,
and H} |, with s € HY_, and s’ € HL_,. Assume
w € HS_,. The case that u € H!_, can be done
similarly. Since |F| < 2n—3, IN(w)NHY_y| =n—
1, and |N(u) N HL_,| = 1, we have [Fp| > n—1
and 1 < |Fy| € n—2. If |F;| = 1, then the only



Procedure ST2(s, F, H,,)
Input: A set F of faulty nodes in H, with
|F| < 2n — 3, F disconnects u from Hp,
and s € H" — (F U {u}).
Output: A spanning tree of H, — (F U {u}) with
root s and height at most n+ 1. :
begin :
Find a fault-free neighbor s’ of s and partition H,

into HO_; and Hl_, with s € H_; and &' € H,_;;

Connect s' to s; Fy .= FNHY_; FiNH._y;
[*Assume u € HY_,. |[Fo| >n—1
and 1 < |Fy| < n—2%/
if (|F1| = 1) then
{ST1(s', F1, Ha_1);
/*Finds a spanning tree Ty of H,_, — F*/
vVt € HY_; — (F U{s}), connect t to T}
by a path of length 1;}
else {STO(s', Fi,H}_,); ST2(s, Fo, Hp_;);}
end

Figure 6: An algorithm which produces a spanning
tree of H, — F where F' disconnects u.

faulty node of H}_, is the neighbor of w in H}_;.
By procedure ST1, we can find a spanning tree 77 of
H}_, — F with root s’ and height n — 1. Obviously,
each node t € (HS_, — (F U {u})) has a fault-free
neighbor in H!_,. The height of T' found in this case
is(n—1)+14+1=n+1.

Assume |Fj| > 2. Then |Fo| < 2n — 5 and we can
recursively find a spanning tree Tp of HY_; —(FU{u})
with root s and height at most (n — 1) + 1. Since
|Fi] < n—2, we can find a Ty of H}_, — F with root
s' and height at most (n — 1) + 1. The height of T
found in this case is at.most n + 1 as well. O

Now, we show our algorithm for the case that |[F| <
2n — 3 in Figure 7.

Theorem 4 Given F with |[F| < 2n—3 and s ¢ F
in I-safe H,, algorithm STreel finds a spanning tree
T of H, — F with root s and height at most n + 2 n
O(n?) time. :

Proof: Assume T is found in Case 1. From Lemma 2,
we can find a spanning tree Ty of Hl_, — F with root
s’ and height n — 1. Since H,, is 1-safe, each node of
H,, — F has at least 1 fault-free neighbor. For each
te (HY_, — (FU{s})), if t has a fault-free neighbor
in H!_,, then ¢ can be connected to T3 by a fault-free
path of length 1. So we assume the neighbor of ¢ in
H}_, is faulty. Let u be the fault-free neighbor of ¢.
Since H)_, has at most one faulty node, the neighbor
of w in H_, must be fault-free. Therefore, ¢ can be
connected to Ty by a fault-free path of length 2. Thus,
the height of T is at most (n — 1) +14+2=n+2.
Assume T is found in Case 2. By procedure STO,
we can find a spanning tree T3 of H._, — F with root
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Algorithm STreel(s, F, Hy,)
Input: A set F of faulty nodes in 1-safe H,
with |F| <2n —3, and node s € H, — F.
Output: A spanning tree of H, — F with height
at most n 4 2.
begin
Find a fault-free neighbor s’ of s;
Partition Hy, s.t. s € H}_, and s’ € H}_;
Fo:=FnHY ,; FF:=FNH._;
[*Assume |Fy| < n—2%/
Case 1: |[F1| <1 =«
ST1(s', Fy, HL_,);
/*Finds a spanning tree T} of H!_, — F.*/
vt € HS_, — (F U{s}), connect t to T}
by a fault-free path of length at most 2;
Case 2: |Fy| > 2.
STO(s', F1,HL_+);
/*Finds a spanning tree Ty of H}_; — F.*/
if (HO_, is l-safe) then STreel(s, Fo, HY_;)
else :
/*3 node u € HY_, which is disconnected by Fp.*/
if (u # s) then {ST2(s, Fo, HJ_;);
connect u to T3 by the path of length 1;}
else Vt € H)_, — (F U{s}), connect ¢ to T}
4 by a fault-free path of length at most 3;
end.

Figure 7: An algorithm which produces a spanning
tree of H, — F for |F| < 2n —3. :

s’ and height at most (n—1)+1 = n. If we'can find a
spanning tree Ty of Hg_l — F with root s recursively,
the height of Ty is at most (n — 1)+ 2 =n+ 1. And
the height of T' is at most n + 1.

So, we assume that HC_, is not 1-safe, i.e., Fo dis-
connects a node u from HS_;. If u # s, then from
the fact that H, is 1-safe and all the n — 1 neighbors
of u in HY_; are faulty, u has a fault-free neighbor
in H! ;. Therefore, u can be connected to T; by the
path by length 1. By procedure ST2, we can find a
spanning tree of H_; — (Fo U {u}) with root s and
height n.

Assume u = s. In this case, we connect each
t € (H2_, — (FU{s})) to Ty by a fault-free path
of length at most 3 as follows. First, we observe that
for partitioning H, on dimension ¢ and ¢t € H_,
the path P; : (£,t()) (of length 1) and paths P; :
(t,8D) (@), 10D (of length 2), 1 < j < nand j # 4,
are the n paths from ¢ to n distinct nodes of H}_;.
For eacht € (H2_,—(FU{s})) with dgr,(s,t) > 3, the
n—1 faulty nodes which are also the neighbors of s can
not block any of the n paths for t. Since |F| < 2n—3,
there are at least two fault-free paths of length at
most 2 which connect ¢ to T;. Note that 77 may have

height n. However, from Lemma 1 if 77 has height n,
there is only one node w with dp,(s’, w) = n. There-
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fore, we can always connect a t with dy_(s,%) > 3 to
anode v €Ty with v Aw.

For each (t € HY_, — (F U {s})) with dg,(s,t) =
2, the neighbors of s blocks two of the n paths for
t, and thus, all the n paths may be blocked by the
faulty nodes. If this happens, all the n — 2 faulty
nodes which are not the neighbors of s appear in the
n — 2 of the n paths for {. From this, we can find a
fault-free path t — v. € HQ_; of length 2 such that
dy,(s,v) = 2 and the neighbor of v in H}_, is fault-
free. Therefore, t can be connected to a node ¢/ € T}
with dp,(s',t') = 2 by a fault-free path of length 3
(which implies dr(s,t) = 6). '

Summarizing the above, we can find a spanning
tree T for H, — F with root s and height at most
n+ 2 for n > 4. Note that it is trivial to prove the
lemma for the case of n < 3.

Since each recursive step takes O(n) time, it is easy
to see that constructing the spanning tree of H, — F
takes O(n?) time. This completes the proof. O

Since the broadcasting in H, — F is done on the
spanning tree constructed in algorithm STreel, we
have the following result. :

Theorem 5 In a 1-safe H,, containing up to 2n — 3
faulty nodes, broadcasting from the source node to all
non-faulty nodes can be done in n+ 2 time steps and
2" — |F| traffic steps.

The traffic steps are optimal because the broad-
casting is done on the spanning tree. We now show
that the diameter of 1-safe H, — F with |F|=2n -3
is at least n + 2 that implies the time steps of our
broadcasting algorithm are optimal as well. Let s =
110...0, sy = 100...0, s = 000...0, and.t = 11...1.
Let N(u) = {v|du, (u,v) = 1}. Choose F = N(s)U
N(s1)—{s,s1,s2}. Then we have dy,_p(s,t) =n+2
which implies d(H, — F) > n+2.

4 Broadcasting in d-safe H, with d > 1

To show the broadcasting algorithm for d-safe H,
with d > 1, we first give some important properties
of H,.

Lemma 6 For a nodes € HY_,, let G be a connected
subgraph of HS_, such that s € G and the degree of
each node u of G with dy,(s,u) < d is at least d.
Then we can find ¢ G' C G with |G’} = 2% and s € G’
such that for any t € @&, dy,(s,t) < d, and there
are at least 2(n — d) node-disjoint paths (ezcept the
common end nodes in G') of length at most 2 from
the nodes of G’ to 24(n — d) distinct nodes of H:_,.

Proof: We prove the lemma by induction on d. For
d =0, let G' = {s}. Assume H,, is partitioned into
HY_, and H}_, on dimension i. Then the path P; :
(s,5®) (of length 1) and paths P; : (s, s0))(s1), ()
(of length 2), 1 < j < n and j # i, are the n paths
from s to n distinct nodes of H}_,.

Assume the lemma is true for d = k& and we prove
it for d = k + 1. Pick up any edge of G and assume
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Figure 8: The paths from G’ to H}_;.

the edge is in dimension j. We further partition HS_;
into HY_, and H}_, on dimension j (see Figure 8).
Let Go = GNHS_, and G; = GN H}_,. Assume
s € Gy. Then s¢¥) € G;. Then, each node u of
Gy with d(s,u) < k has degree at least k. By the
induction hypothesis, we can find a G C Go with
IG4] = 2* and s € G) such that for any t € G,
dg, (s,t) < k, and there are at least 2¥(n — k) disjoint
paths from G to 2¥(n—Fk) distinct nodes of H}_;. We
can also find a G| C Gy with the similar properties.
Let G' = G{UG,. |G'| = 2¥*! and s € G'. Obviously,
for any t € G/, dy, (s,t) < k+ 1. For each node u of
G (G%), there is exactly one path u — u() — () ¢
H}_, which passes through H! , (HS_,). Deleting
the paths which pass through H}_, (H?_,), there are
at least 2¥(n — k) — 2* disjoint paths from G} (G})
to H!_, (see Figure 8). Therefore, the total number
of disjoint paths of length at most 2 from G’ to H}_,
is at least 2 x (2% (n — k) — 2¥) = 2%t (n — (k + 1)).
Thus, the lemma holds. O

Lemma 7 For0 < d<n-—1, give a set F of faulty
nodes in H, such that |F| < 2¢(n—d) — 1 and each
node of H, — F has degree at least d. Then for any
s € HY_—F, there is a fault-free paths — t € H}_,
of length at most d + 2. :

Proof: For s € HY_; — F, we check the nodes u €
HY_, — F such that dg,(s,u) < d and u is connected
to s. Let v/ € H._, be the neighbor of u. If there is a

fault-free u’ then the lemma is proven. So we assume
all such v’ are faulty. From this and the fact that each
of those nodes u has degree at least d in H, — F, u
has degree at least d in HY_, — F. Therefore, there is



Algorithm STree2(s,d, F, H,)

Input: A source node s and F with {F| < 2%(n—d)—1

in d-safe H,,.
Output: A spanning tree of H, — F with root s
and height n + O(d?). "
begin
if (d = 1) then STreel(s, F, H,);
Find a fault-free neighbor s’ of s and partition H,

into H)_; and H}_; with s € H?_; and s' € HL_,;

Keep edge (s,s’) at s;
Fo:=FNHS ,; Fy:=FNH_,;

[*Assume |Fy| < [F|/2 (|F|/2 < 20" D(n - d+1) - 1).

The other case can be done similarly.*/
STree2(s’,d — 1, Fy, H}_,);

/*Finds a spanning tree T} of H}_, — F.*/
Yu € (H)_, ~ (Fy U{s})), find a fault-free path
u — t €1 of length at most d + 2;

end

Figure 9: An algorithm which produces a spanning
tree of H, — F for |F| < 2%(n—d) — 1.

a subgraph G of H?_, such that s € G and for u € G
with dg, (s,u) < d, u has degree at least d. From
this and Lemma 6, we can find at least 2%(n — d)
paths of length at most d + 2 from s to 2¢(n — d)
distinct nodes of H}_,. In addition, one faulty node
can block at most one of the 2¢(n —.d) paths. From
|F| < 2%n — d) — 1, the lemma holds. O

Theorem 8 If H, is d-safe and |F| < 2%(n—d)—1,
where F is the set of faulty nodes, then we can find
a spanning tree of H, — F of height n + O(d?) in
O(n? + |F|) time.

Proof: We show first that the algorithm STree2 gen-
erates a spanning tree T, of H,, — F of height n+0(d?).
From the algorithm, it is easy to see that hA(T},) <
h(T-1) + d + 2, where h(T) is the height of the tree
T. This implies A(T,) < h(Th_q) + Xf (i +2) =
n—d+1+ Z?=1(i +2) = n+0(d?). Since each iter-
ation takes O(|F|/2f + n) time, the time complexity
of the algorithm is then O(n? + Y0 (|F|/2 +n)) =
O(n? + |F)). O

Theorem 9 In a d-sefe H, containing up to 24(n —
d)—1 faulty nodes, broadcasting from the source node
to all non-faulty nodes can be done in n+0(d?) time
steps and 2" — |F| traffic steps.

5 Conclusional Remarks

In this paper, we have shown an optimal broad-
casting algorithm for 1-safe faulty hypercubes with
up to 2n — 3 faulty nodes. However, the broadcasting
algorithm for d-safe faulty hypercubes with d > 1 is
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not optimal. It can be shown that the lower bound of
height of the spanning tree for H, — F is n +d + 1.
Whether or not we can find a broadcasting algorithm
which matches this lower bound remains open. To de-
sign efficient broadcasting algorithms in other inter-
connection networks under the d-safe fault tolerance
model is also worth further research.
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