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Abstract

The traffic network of a city can be modeled by a
graph in which vertices represent the intersections of
roads and edges represent the segments of roads. The
traffic light problem is concerned with the setting of the
starting time of the green light for each traffic light such
that the total waiting time of the traffic in the traffic
network is minimized. In this paper, we first prove
that the traffic light problem is NP-hard for the traf-
fic light cycle T' > 3, that the traffic light problem on
a planar graph with T = 2 can be solved by the algo-
rithm designed for the weighted mazimum cut problem,
whose time complezity is O(n? logn), and that the two-
phase setting problem (a special case of the traffic light
problem) on a planar graph can also be solved in the
same time complezity. Then, we discuss some proper-
ties of the traffic light problem. Using these properties,
we design an - algorithm to find the minimum penalty
of a polygon with n edges in O(n) time. Finally, we
present a heuristic algorithm to solve the traffic light
problem and show some ezperiment results. Key-
words: traffic light, graph, NP-hardness, maximum
cut.

1 Introduction

The traffic condition in a city is greatly affected by
the timing setting of the traffic lights, i.e., when the red
light and the green light is on. In this paper, we con-
sider the following problem: decide the starting time
of the green light for each traffic light in such a way
that the total waiting time of the traffic in the traffic
network is minimized. ‘

The traffic light problem has been studied exten-
sively under various assumptions. Some researchers
[2,3,5-7] used sensors to get the flow of the traffic and
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used many kinds of methods to decide the timings of
the traffic lights. The study on fuzzy systems has also
been applied to the traffic light problem [6,7]. For the
simpler conditions of roads, J. Favilla et al. [3] put a
fuzzy logic controller (FLC) into the traffic controller.

Because the general traffic light problemn is of prac-
tical interest but difficult to solve, we will make some
assumptions to simplify the problem: (1) Each traffic
light has only two lights, green and red. (2) All traffic
lights have the same cycle (period), T, i.e., T' equals
to the duration of one green light and ome red light.
(3) The green light duration is equal to the red light
duration for all the traffic lights. If a car reaches an in-
tersection and the traffic light in its direction is red, it
must wait until the light turns green, and then starts to
drive toward the next intersection. (4) Each car takes
one unit of time to pass through one unit of distance.

We can use a graph G = (V,E) to represent the
traffic network of a city, where each vertex in V' corre-
sponds to an intersection of some roads, and each edge
(u,v) in E corresponds to the segment of a road con-
necting the two intersections u and v. Each edge (u,v)
is ‘associated with a nonnegative integral length (dis-
tance) d(u,v). For the simplified version of the traffic
light problem, we assume that there is only one traf-
fic light at each intersection (vertex). We can use the
starting time of a green light, denoted as ¢(v), to spec-
ify the timing setting of the traffic light at vertex v,
i.e., the traffic light at v is green in the time intervals
[t(v)+¢q-T,t(v)+(g+1/2)-T), for all integer ¢, and red
in all other time intervals. For the realistic version, we
assume that there is one traffic light for each edge (u,v)
incident to a vertex v. Therefore, we use #(u,v) to de-
note the starting time of a green light of the traffic light
corresponding to edge (u,v) incident to v. The traffic
light problem is then to assign ¢(v) for each v € V such
that this kind of waiting time can be minimized.

The rest of the paper is organized as follows. In Sec-
tion 2, we first give the definition of the penalty of an
edge and then give the formal definition of the traffic
light problem, including the simplified version and the
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realistic version. In Section 3, we prove that the traf-
fic light problem is NP-hard for the traffic light cycle

T > 3. Then, we show how to solve the problem on -

a planar graph with T' = 2 by the algorithm designed
for the weighted maximum cut problem (8], which has
a time complexity O(n% logn). In Section 4, we first
define the two-phase setting problem, and solve it by
using the weighted maximum cut algorithm if the un-
derlying traffic network is a planar graph. Then we
discuss some properties of the traflic light problem. In
Section b5, we first give an algorithm to find the mini-
mum penalty of a polygon with n edges in O(n) time.
We then use the result to design a heuristic algorithm
for solving the traffic light problem. In Section 6, we
give some experiment results. Finally, the paper con-
cludes with Section 7. Note that all proofs of lemmas
and theorems, and some examples are removed due to
the space limitation of the conference.

2 The Definition of the Traffic Light
Problem

A traffic network is represented by a graph G =
(V, E), where each edge (u,v) in E corresponds to a
segment of a road and each vertex v in V corresponds
to the intersection of some roads. Note that we assume
that each road (segment) is bi-directional. Each edge
(u, v) is also associated with a nonnegative integral dis-
tance, d(u,v), and each vertex has some traffic lights
(see Figure 1). In the simplified traffic light problem,
there is only one traffic light on each vertex. In the re-
alistic traffic light problem, the number of traffic lights
on each vertex is equal to its degree, and the drivers
coming to the vertex from different road segments see
different traffic lights. For the simplified version, we
use t(v) to denote the starting time of the green light
at vertex v, while for the realistic version, we use t(u, v)
to denote the starting time of the green light at vertex
v which is seen by drivers ¢oming from wu.

An example of a traffic network for the simplified
traffic light problem is shown in Figure 1. There is a
traffic light on every vertex (intersection). In the figure,
the number on each vertex represents the starting time
of the green light at that vertex.

We define a penalty for each edge (v1,v2) in E to
reflect the goodness of the relative timing settings be-
tween t(v1) and t(v2) (¢(v1,v2) and ¢(vg,v1) for the re-
alistic version). We first use an example, as shown in
Figure 2(a), to illustrate how to calculate the penalty.
In the figure, the road segment (v;,v2) has a length of
6 units, which means that it takes 6 units of time for a
car to pass through this road segment. Assume that the
traffic light cycle is 20 units, the red light duration is
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Figure 1: An example of a traffic network .
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Figure 2: The penalty of an edge with the traffic light
cycle 20. (a) The timing setting of an edge. (b)The
penalty from v; to vz. (¢)The penalty from v; to v;.



10 units, and the green light duration is 10 units. Sup-
pose we set (v1) = 16 and ¢(v3) = 8. Figure 2(b) shows
the scenario of a car coming from v; to v;. The thin
lines represent the time intervals that the green light is
on at vertex vi, and hence, a car can pass through v;
during these intervals. For a car passing v; during the
green light interval [—4, 6), the dotted line represents
the time interval when it arrives at v5. The thick line
represents the time interval that the green light is on
at vz. It is easy to see that if a car passes through v;
during. the time interval [2,6), it will arrive at v, at
the time interval [8,12). And since the green light is
on at vy during this time interval, the car can pass v,
without waiting. In contrast, if the car passes through
v1 during the time interval [—4,2), when it arrives at
vz during the time interval [2, 8), the red light is on at
vz, and hence, it must wait at v, before it can pass vs.
Therefore, we define the penalty from v; to vs to be the
length of the waiting interval [2, 8), which is 8§ — 2 = 6.
Similarly, as shown in Figure 2(c), the penalty is de-
fined to be 2 from v; to v;. The total penalty for the
road segment connecting v; and v, is thus 8. (6 for vy
to vz and 2 for v, to vy).

Let cuy =| t(v) — d(u,v) —t(u) | mod T if (u,v) € E
and cyy = 0 if (u,v) € E. It can be easily checked that

in general, the penalty from u to v (with respect to the

timing settings t) is Py, = min{cyy,T — cyy}. Note
that P,, may not be equal to P,,. Since each edge has
two directions, by definition, the penalty of edge (u, v)
is equal to Pyy + Pyy.

Now, we give a formal definition for the simplified
traffic light problem. Given a traffic light cycle T (T
is even) and a graph G = (V,E) in which each edge
(u,v) is associated with a nonnegative integral distance
d(u,v), we want to assign t(v) for each vertex v € V
such that the total penalty Cuev 2w ¢v Puv) is mini-
mized.

For the realistic traffic light problem, the number of
trafic lights on each vertex is equal to its degree, and
each traffic light on a vertex corresponds to an edge
incident to the vertex. We will also use (u,v) to denote
the traffic light on vertex v to which the edge (u,v)
is incident. We require that the difference between the
starting times of the green lights of any two traffic lights
on a vertex must be either 0 or 7'/2, and these differ-
ences are specified in the problem input. For each traf-
fic light (u,v), we specify a value F(u,v) in the input,
where F'(u,v) = 0 or 1. The input F values require that
| (u,v) — t(w,v) | mod T = | F(u,v) — F(w,v) | -T/2,
for all (u,v), (w,v) € E.

The penalties of the edges in the realistic traf-
fic light problem can be defined as follows. We as-
sume that [t(u,v) — t(w,v)] = 0 or T/2. We assume
there is no restriction between #(u,v) and ¢(v,u). Let
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Cuv = t(u,v) — d(u,v) — t(v,u) | mod T if (u,v) € E,
and Cyy = 0 if (u,v) ¢ E. We define the penalty
from u to v (with respect to the timing settings t) as
Pyy = min{Cly,,T — Cyy}. The goal of the realistic
traffic light problem is then to find assignments (u, v)
and t(v, u) for each edge (u,v) € E such that the total

penalty (3, .y >,cv Puv) is minimized.

3 NP-Hardness of the Traffic Light
Problem =

To prove the NP-hardness of the traffic light prob-
lem, we first discuss some related problems. The con-
ventional vertez coloring problem [1,9] is defined as
follows. Given a graph G = (V, E), a K-(vertez) col-
oring of G is a mapping C from the vertex set V to a
set of K colors. A graph G is K-colorable if there ex-
ists a coloring C with K colors for G such that no two
adjacent vertices have the same color, i.e., if (u,v) € E
then C(u) # C(v). The vertex coloring problem is to
ask, given a graph G and a positive integer K, if G
is K-colorable. The vertex coloring problem has been
proved to be NP-complete for all fixed K > 3 [4].

We generalize the vertex coloring problem to the fol-
lowing problem.

Problem 1 Given a graph G = (V,E) and a weight
function wy : E — R, find a K-coloring C that mini-
mizes the following objective function:

wi(C) = Z 61(u, v) - wi(u, v),

(uv)EE
where

[ 1 ifC(u) =C(v)
51(“:0)—{ 0 otherwise. .

Note that we allow the weight to be negative. If
wi(u,v) = 1 for all (u,v) € E and we ask if there
exists a K-coloring C such that W, (C) = 0, then the
problem is equivalent to the conventional vertex col-
oring problem. This means that the vertex coloring
problem is a special case of the unweighted version of
Problem 1. Therefore, Problem 1 is also NP-hard for
all fixed K > 3.
Now, consider the following problem.

Problem 2 Given a graph G = (V,E), let wy : E —
R+ U{0} be a weight function and I : E — {0,1} a label
function on E. The problem is to find a K-coloring C
which minimizes the following objective function:

W,(C) = Z b2(u, v) - wa(u, v),

(u,v)EE
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where

|1
62(u,v) = { 0

Intuitively, I(u,v) = 1 means that u and v should be
assigned different colors, otherwise (i.e., C(u) = C(v))
we impose a penalty wz(u,v) on edge (u v). Similarly,
I(w,v) = 0 means that u and v should be assigned the
same color, otherwise we impose a penalty wa(u, v) on
the edge.

The following theorem proves that Problem 1 and
Problem 2 are, in fact, equivalent.’

if I(u,v) = 1 and C(u) = C(v),
or if l(u,v) = 0 and C(u) # C(v) o

otherwise.

Theorem 1 Problem 1 and Problem 2 are equivalent.

Another graph theory problem related to the traf-
fic light problem is the mazimum cut problem [1,8,9].
A cut of a graph G = (V, E) is an edge set {(u,v) |
(u,v) € E,u € Vi andv € Va}, where Vi and V; is
apartltlonofV ie, V = ViuVaand i NVz = 0.
~ The maximum cut problem is to find a cut that has
the maximum cardinality. If each edge is also associ-
ated with a weight, and we want to find a cut that
has the maximum total weight, the problem is called
the weighted mazimum cut problem. If we think that
all vertices in V; are colored with one color, and all
vertices in V5 are colored by another color, then mini-
mizing the total weight of assigning the same color to
two adjacent vertices is equivalent to maximizing that
of the cut. Thus, the weighted maximum cut problem
is equivalent to Problem 1 with K = 2.

Now, consider the simplified traffic light problem
with T' = 2. Given a graph G = (V, E) in which each
edge (u, v) is associated with a nonnegative integral dis-
tance d(u,v), if d(u,v) is odd and #(u) = t(v) then the
penalty of (u,v) is Pyy + Pyu = min{cuy, T ~ Cuv} +
min{cyy, T—Cyu} = 2, where cyy =| t(v)—d(u, v)—t(u) |
mod T. If d(u,v) is odd and ¢(v) # t(u) then the
penalty of (u,v) is 0. On the other hand, if d(u,v)
is even and t(v) = t(u) then the penalty of (u,v) is 0,
and if d(u, ) is even and ¢(v) # t(u) then the penalty
of (u,v) is 2. Therefore, if we let {(u,v) = d(u, v) mod
T and wa(u,v) = 2, it is easy to see that coloring the
vertices in V by two colors with nonnegative weight
(penalty) is equivalent to assigning ¢(v) to the vertices.
Thus, the simplified traffic light problem with 7' = 2
is equivalent to the unweighted version of Problem 2
with K = 2 which, in turn, is equivalent to the un-
weighted maximum cut problem. Shih et al. [8] gave
an algonthm of time complexity O(n2 logn) to solve
the maximum cut problem on a planar graph, where n
is the number of vertices in the graph. Therefore, the

(a)

Figuré 3: An example of the transformation from the
realistic traffic light problem to Problem 2.

simplified traffic light problem with 7'= 2 on a planar
graph can also be solved in O((nz logn) time.

Moreover, the unweighted version of Problem 2 is a
special case of the simplified traffic light problem with
T > 3. Therefore, the simplified traffic light problem
with T' > 3 is NP-hard since the unweighted version of
Problem 2 is NP-hard.

The realistic traffic light problem on planar graphs
with T' = 2 can also be transformed to Problem 2.
Since the number of traffic lights on a vertex is equal
to its degree, we will transform each vertex v to a d(v)-
polygon, where d(v) is the degree of v. Given a planar
graph G = (V, E) with its plane realization in which
each edge (u,v) is associated with a nonnegative inte-
gral distance d(u,v), we construct a new planar graph

= (V',E"), where V' = {vj,vj; | (vi,v;) € E},
E' E{ U Ey, B = {(vij,vji) | vij,vji € V'}, and
E} {(v,,,vk,) | vi,vj,vx € V,(vj,v;) and (vi,v;) are
two neighboring edges in the plane realization of G}. If
(vij, vji) € Ey, then set I(v;5,vj;) = d(v;,v;) mod T and
wa(vij,vji) = 1. If (vji,vrs) € Ej and we require that
[¢(vj;) — t(vki)| mod T' = 0, then set (vji,vxi) = 0 and
wa(vji, ki) = 00. If (vji, vki) € B3 and we require that
[t(vji) — t(vki)] mod T' = T/2, then set l(vji,vki) = 1
and w(vji, vki) = 00. It can be shown that a 2-coloring
with nonnegative weight (penalty) for the transformed
graph corresponds to a valid timing settings for the traf-
fic light problem, and a minimum-weight 2-coloring cor-
responds to a timing setting for the traffic light problem
that has the minimum total penalty. An example for
this transformation is shown in Figure 3. Again, using
the maximum cut algorithm described in [8], the real-
istic traffic light problem on planar graphs w1th T=2
can be solved in time O(n? logn).

4 Properties of the Traffic Light Prob-
‘lem '

In this section, we discuss some properties of the
simplified traffic light problem. Given a traffic network
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G = (V, E) and a traffic light cycle T (T is even), we
assume, without loss of generality, that d(u, v) and t(v)
are integers, 0 < d(u,v) <T—-1,and 0 < t(v) <T -1,
for all v € V and all (u,v) € E (note that all traffic
lights have the same cycle T').

Recall that the penalty (with respect to t) from u
to v is defined as P, = min{cyy,T — Cuy}, Where
Cup =| t(v) = d(u,v)—t(u) | mod T. For convenience of
discussion, we define the penalty function fr as follows.

o fr(z+T) = fr(=);
o fr(z)==2,if0< z S T/2;
o fr(e)=T—-2,fT/2<2<T.

Using the penalty function fr, the penalty Py, from u
to v can now be denoted as fp(t(v)—d(u,v)—t(u)). For
example, in Figure 2(a), the penalty from v, to vs is
Py = f20(8 —6— 16) = fzo(—14) = f20(6) = 6 and the
penalty from vy to vy is Py = fo0(16—6—8) = 2. Thus,
the penalty of edge (vy, v2) is equal to Py2 + P2; = 8.

We define the eztra penalty of an edge as the ac-
tual penalty under a certain setting minus the mini-
mum penalty of the edge. For example, in Figure 2(a),
if we set t(v1) = 16 and #(v3) = 11, then the penalty
of (v1,v2) is equal to Piy + Py = fao(1l — 6 — 16) +
f20(16 —6 — 11) = 9+ 1 = 10. However, the minimum
penalty of (vy,vz) is equal to 8 (A setting method will
be given later.). Thus, the extra penalty of this edge
under this setting is 10 — 8 = 2.

We now prove some properties of the penalty func-
tion fr in the following theorem.

Theorem 2 (1) fr(fr(z)) = fr(z).
(2) fr(-=z) = fr(=).

(3) fr(ze+T/2)= fr(z-T/2)=
(4) fr(z +y) < fr(z) + fr(y).

Next, we consider a special kind of timing setting
method which requires that the penalties of both direc-
tions of every edge are the same, that is, P, = P,, for
each (u,v) € E. For (v1,v2) € E, given a traffic light
cycle T, if we set ¢(v1) = t(vz) = k, 0 < k < T, then
Pra = fr(t(v2) - d(v1,v2) — t(v1)) = fr(k —d(v1,v3) —
k) = fr(d(vi,vz)) = Ps. And if we set t(v;) = k
and t(vz) = (k+ T/2) mod T, 0 < k < T, then
Py = fr(k+T/2—d(v1,v2) — k) = fr(d(v1,v2) —T/2)
(by Theorem 2), and Py; = fr(k—d(vi,v2)—k—T/2) =
fr(d(v1,v2) + T/2), thus Pi3 = Pp; (by Theorem 2).
Hence, if we set t(v1) = k, to get the same penalties for
both directions of (v1,v2), it can be easily shown that
we have only two choices to set ¢(v2): k or (k+77/2) mod
T'. We call this simplified traffic light problem with the

T/2 - fr(z).
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Table 1: The smaller penalty on an edge (vy, v3).

condition t(v1) | t(v2) | smaller penalty
0<d(vi,v2) < T k k 2d(v1,v2)
T <d(vi,v)< % k k+Z | T —2d(v,v)
Z<dv,v) <3| k [k+Z | 2d(w1,0)-T
-% < d('v1, ’Uz) S k k 2T — 2(1(1)1, 'vz)

Table 2: The larger penalty on an edge (vq,v2).

condition t(v1) | t(ve) | larger penalty
0<d(vy,v)< 7 k k+2 | T—2d(vy,v0)
% < d(vl, 02) < % k k 2d(vl, 1)2)
% < d(vl, ’Uz) < —4’1—7- k k 2T — 2d(v1, ’I)z)
¥<d(vl,vz) <T k k+% 2d('01,’l)2)—T

above timing setting restriction the two-phase setting
problem, since there are only two possible “phases,”
mod T and ]k +T/2| mod T, for the timing settings of
all vertices in V. Note that the total penalty is inde-
pendent of the actual value of k.

Tables 1 and 2 list the assignments for ¢(v5) that will
give the smaller and the larger values of Py + Py =
2P, respectively.

It is easy to check that the following transformation
from the two-phase setting problem to Problem 2 with
K =2 is valid. Let {(v1,v2) = 1if T/4 < d(v1,v2) <
3T/4 and I(vi,v3) = O otherwise. Let wa(vy,v2) =
2-1fr(t(k) - d(v1, v2) — (k) = fr(t(k) —d(v1, va) —t(k+
T/2))|. Therefore, again, we can solve the two-phase
setting problem on planar graphs in O(n? logn) time
by the algorithm designed for the weighted maximum
cut problem.

Note, however, that we may not always get the mini-
mum total penalty using the two-phase setting method.
The following lemma gives a method to find the mini-
mum penalty of an edge. \

Lemma 1 Given an edge (vi,v2) with distance
d(v1,v3), the minimum penally of (vi,v2) is equal to
fr(2d(v1,v3)) and the mazimum penalty of (v1,vs) is
equal to T — fr(2d(v1,v2)). Besides, the minimum
penalty can be oblained if the penalty of one direction
of the edge is set to zero.

Lemma 2 Given a graph G = (V, E), where V = {v; |
1<i<n+4+1} and E = { (v;,vit1) |1 < i < n} (G
15 a path of n + 1 vertices), the minimum penalty of G
can be obtained by setting either P;j =0 or Pj; =0 for
every edge and the minimum penalty of G is equal 1o
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ZfT(2d(v,-,v,~+1)) and the mazimum penalty of G is

=1

n
equal ton - T — ZfT(Zd(vi, Vit1)).

=2

In fact, the minimum penalty of an edge (u,v) does
not occur only at Py, = 0 or Py, = 0. Lemma 3 shows
the solution is a range dependent on d(u, v).

Lemma 3 Given an edge (vi,vs) with distance
d(v1,v2), if t(v1) has been set, then we will get the
minimum penalty of (vi,v2) when t(vs) is any inte-
~ ger number between fr(t(vi) — d(v1,v2)) and fr(t(v1)
+ d(vi,v2)). In other words, the number of solu-
tions of t(va) for minimizing the penalty of (vi,vs) is
fr(2d(vy,v2)) + 1.

Theorem 3 will give a method to find the minimum
penalty of two adjacent edges when the two endpoints
have been set. 9

Theorem 3 Given two adjacent edges (vi,v3) and
(va,vs), suppose t(vy) and t(v3) have been set, and
fr(2d(v1,v2)) < fr(2d(vs,v3)). The minimum penalty
for these two edges can be found if we try to assign
each integer between fr(t(vi)—d(v1,v2)) and fr(t(vi)+
d(v1,v2)) to t(vy). Besides, the setting of t(vs) for ei-
ther Piz = 0, i.e. t(v2) = fr(t(vi) + d(v1,v2)), or
Py =0, e t(’vz) =fT(t(”v1) - d(vl,vz)), s in the
range. The mazimum penalty for these two edges can be
found if we try to assign each integer between fr(t(v1)—
d(v1,v2)+T/2) and fr(t(vi)+d(vi,v2)+T/2) to t(vz):
Besides, the setting of t(vs) for either Pyy = T/2, i.e.
t(ve) = fT(t(‘U1) + d(vl, vz) +T/2), or Pa1 = T/2 i.e.,
t(ve) =fr(t(v1)—d(v1,v2)+T/2), is in the range. And,
the mazimum penalty plus the minimum penalty is equal
to 2T.

We extend Theorem 3 to a graph consisting of a path
with n edges.

Theorem 4 Given a graph G = (V,E), where V =
{fil1<i<n+1}, E={(vi,vi41) |1 <i < n}
and d; = d(vi,vi41), 1 < i < n, under the condi-
tion that t(v1) and t(vn41) have been set, if fr(2d,) >
maz{fr(2d:), fr(2dz2), - -+, fr(2dn_1)}, then the min-

imum penalty of G can be found by testing the solution

set S, where S consists of all possible settings such that

(v1,v2), (v2,v3), - (Vn—2,n-1) and (vn_1,v,) have
zero exira penally.

In Theorem 4, if we combine the starting vertex and
the ending vertex of a path into a single vertex, we will
get a polygon. Thus, we have a similar property for a
polygon as follows.
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Corollary 1 Given a graph G = (V,E), where V =
{'U;’ | 1 S { S n}? E = {(UI)UZ)y (02)03); Tty
(vn—=1,vn), (vn,v1)}, di = d(vi,vi41), 1 < i <n—1and
d, = d(vu;vl); Zf fT(2dn) > max{fT(2d1); fT(ZdZ);
-+, fr(2dn—1)}, then the minimum penally of G can
be found by testing the solution set S, where S consists
of all possible settings such that (v1,v2), (v2,vs), -+,
(vn—2,Vn—-1) and (vn_1,vs) have zero extra penalty.

For the realistic traffic light problem, the number of
traffic lights on each vertex is equal to its degree. In
this problem, we assume the difference of the starting
times of the green lights of different traffic lights on the
same vertex is either 0 or %

Theorem 5 shows that the realistic traffic light prob-
lem on a polygon can be reduced to the simplified traffic
light problem.

Theorem 5 Given a graph G = (V,E), where V =
{'Ui'l S 1 S n}! E= {(vl.J vZ); (’112,’()3), ) (v'n—l:vn)r
(vn,v1)}, di = d(vi,vi41), 1 < i < n—1andd, =
d(vn,v1), the realistic traffic light problem can be re-
duced to the simplified traffic light problem.

5 A Heuristic Algorithm

First, we will give a theorem to show that the min-
imum penalty of a polygon with n edges can be found
in O(n) time. Before giving the theorem, we have the
following lemma.

Lemma 4 Let the minimum penalty of a traffic net-
work G = (V, E) with traffic light cycle T be P. For a
particular vertez vy € V, if t(v1) = m, for any m and
0 < m < T—1, there exists a timing setting method
whose total penalty is P.

Now, we will propose a heuristic algorithm with
polynomial time to solve the simplified traffic light
problem. ’

Let G = (V, E) be a graph and the distance of each
edge (u,v) € E be d(u,v). Note that the minimum
penalty of each edge (u,v) is fr(2d(u,v)). Our heuris-
tic algorithm will find a near minimum penalty of G as
follows.

Algorithm Algorithm Traffic Lights Setting( TLS)

Input: A traffic light cycle T, where T is an inte-
ger and T > 3, and G = (V,E) where
V = {uw|]l < i < n} and every edge ¢
is associated with an integer distance d(e),
0<d(e)<T - 1.



Output: #(v) for each v € V such that the penalty P
of G for the simplified traffic light problem
is minimized as possible as.

Step 1: Set t(v1) = 0.

Set w(v;,v;) = fr(2d(vi, v;)) as the weight
of each edge (v;,v;) € E. In G, find a min-
imum spanning tree rooted at v;.

Step 2:

Step 3: a; = (t(v;) — d(vi,v;)) mod T and b; =
t(v;) + d(vi, v;)) mod T, where v; is the fa-
ther of v; in the rooted minimum spanning
tree.
Step 4: Set t(v;) = a;, 2 < i < n. Let P denote the
: penalty of G under this setting.
Step 5: For each leaf node v; do
For each integer z in the range between
a; and b;:
Let P’ be the penalty of G when #(v;)
=z. :
If P> P' then :
let P = P’ and set t(v;) = =.
end

Algorithm TLS guarantees that each edge on the
minimum spanning tree has zero extra penalty. Why
does this setting method get a good solution? There are
two reasons. First, by Theorem 4, in a polygon(cycle),
we can find the minimum penalty in the settings that
make all edges, except the one with the largest weight
fr(2d(e)), have zero extra penalty. Second, by Lemma
1, for an edge, the sum of the minimum penalty and
the maximum penalty is equal to 7. In other words,
an edge with smaller minimum penalty may have larger
extra penalty. For a leaf node v; on the rooted mini-
mum spanning tree, each integer z in the range between
a; and b; achieves the goal that each edge on the min-
imum spanning tree has zero extra penalty. Thus, the
job of Step 5 is to do fine tuning to get a better so-
lution. Clearly, the time required for the algorithm is
O(n?), which is spent to find the minimum spanning
tree, plus the time needed for Step 5.

The realistic traffic light problem can be easily trans-
formed into the simplified traffic light problem, as done
in € :ction 3.

6 Experiment Results
As noted earlier, it is hard to find the minimum

penalty for a traffic network. Thus, we will compare
our experiment results of our heuristic algorithm for the
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simplified traffic light problem with the lower bound of
penalty and some other simpler heuristic algorithms.

Consider the traffic network which is a general graph
G = (V,E). For each edge (u,v) in G, fr(2d(u,v)) is
the minimum penalty of (u,v). We define the lower
bound of the penalty of G as the sum of the minimum
penalties of all edges in G.

Table 3 shows the experiment results of seven general
graphs of different sizes. In each experiment, shown in
one row, 50 cases are tested and the average penalty of
them is calculated. The results shown in Table 3 are
obtained by four different methods. The second column
reports the lower bound by our definition, the third
column shows the penalty obtained by algorithm TLS,
the fourth column shows the result obtained by tree
optimal method and the fifth column shows the penalty
when all traffic lights are set randomly. In the tree
optimal method, we first find a depth-first spanning
tree and then set each edge in the spanning tree to
have zero extra penalty. We have to point out that the
real minimum penalty should be larger than the lower
bound and smaller than our heuristic result.

Table 4 shows the experiment results of seven planar
graphs of different sizes.

7 Conclusions

In a traffic network, the importance for different
roads is different. Thus, another factor for setting
traffic lights is the traffic flow on the roads. When
the traffic flow is involved, the problem becomes the
weighted traffic light problem. Now, we give a for-
mal definition for the weighted traffic light problem.
Given a traffic light cycle T, where T is even, and a
graph G = (V, E) in which each edge (u,v) is associ-
ated with a distance d(u, v) and the traffic flow w(u, v),
we want to assign ¢(v) for each vertex v € V. Let Py, =
min{cyy, T — Cuy }, Where cyy =| t(v) — d(u, v) — t(u) |
mod T if (u,v) € E and cyy = 0 if (u,v) ¢ E. Our
goal is to assign #(v) for each v € V such that the total
penalty (3 cv Lyev w(¥,v) - Puy) is minimized. This
weighted traffic light problem can also be solved by our
heuristic algorithm. For the weighted traffic light prob-
lem, if every traffic light can get only the traffic flow of
neighboring vertices, an efficient distributed algorithm
to find the minimum penalty of a traffic network may
be preferred.

In our traffic light problem, we find the total min-
imum penalty of a traffic network. In fact, a driver
cares how to arrive at the destination as soon as pos-
sible. Consider a graph G = (V,E), where V =
{v1,v2,v3,v4,v5} and E = { (v, vi31) 1 < i < 4} (G
is a path of 5 vertices) and d(v1,v2) = 3, d(v2,v3) = 1,
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Table 3: The experiment results on a general graph consisting of n vertices.

tree optimal

random

226.28 ( 166.63%)

268.52 ( 197.73%)

609.40 ( 168.36%)

734.84 ( 203.02%)

1261.44 ( 168.90%)

1496.36 ( 200.36%)

1972.05 ( 166.52%)

2356.30 ( 198.96%)

2461.55 ( 166.04%)

2976.55 ( 200.78%)

4973.80 ( 167.03%)

5942.60 ( 199.57%)

n | lower bound TLS
10 135.80 195.44 ( 143.92%)
25 361.96 527.12 ( 145.63%)
50 746.84 | - 1079.20 ( 144.50%)
80 1184.30 | 1661.00 ( 140.25%)

100 1482.50 | 2083.95 ( 140.57%)
200 2977.75 | 4211.90 ( 141.45%)
500 7505.60 | 10669.20 ( 142.15%)

12470.60 ( 166.15%)

15083.60 ( 200.96%)

Table 4: The experiment results on a planar graph consisting of n vertices.

n | lower bound TLS

tree optimal

random

10 7744 | 91.72 (118.44%) | 110.80 ( 143.08%) | 151.32 ( 195.40%)
%5 212.76 | 250.44 (117.71%) | 306.08 ( 143.86%) | 419.88 ( 197.35%)
50 420.00 | 504.36 ( 120.09%) | 605.68 ( 144.21%) | 857.68 ( 204.21%)
80 688.24 | 820.92 ((119.28%) | 984.56 ( 143.05%) | 1379.56 ( 200.45%)
100 835.30 | 1003.70 ( 120.16%) | 1211.40 ( 145.08%) | 1727.80 ( 206.85%)
200 1751.00 | 2082.40 ( 118.93%) | 2434.60 ( 139.04%) | 3436.60 ( 196.26%)
500 4440.80 | 5243.60 ( 118.08%) | 6258.40 ( 140.93%) | 8716.00 ( 196.27%)

d(vs,v4) = 4, d(va,vs) = 5. If the traffic light cycle is
20, then we can get the minimum penalty of G, which is
26, when t(v;) = 0, t(v2) = 3, t(vs) = 4, t(v4) = 8 and
t(vs) = 13. In fact, if a driver wants to drive from v; to .
vs , then the driver needs to wait only 10 unit of times
at most, no matter what time the driver starts from v;.
And if a driver drives from vs to v; , then the driver
needs to wait 10 unit of times at most, too. Thus, there
may be another way to model the traffic light problem.
And an algorithm is needed to be designed to get the
shortest time from some special source points to some
special destination points in a traffic network.
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