Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The Minimum Labeling Spanning Trees

Ruay-Shiung Chang and Shing-Jiuan Leu

Department of Information Management
National Taiwan Institute of Technology
No. 43, Sec. 4, Keelung Road, Taipei, Taiwan, ROC

email: rschang@cs.ntit.edu.tw

November 8, 1996

Abstract

One of the fundamental problems in graph theory is to
compute a minimum weight spanning tree. In this pa-
per, a variant of spanning trees, called the minimum
labeling spanning tree, is studied. The purpose is to
find a spanning tree that tries to use edges that are as
similar as possible. Giving each edge a label, the min-
imum labeling spanning iree is to find a spanning iree
whose edge set consists of the smallest possible number
of labels. This problem is shown to be NP-complete
even for complete graphs. Two heuristic algorithms
and an ezact algorithm, based on A* — algorithm, are
presented. According to the experimental results, one
of the heuristic algorithms is very effective and the ez-
act algorithm is very efficient.

Keywords: Graph Theory, Spanning Trees, NP-
Complete, Analysis of Algorithms
AMS subject -classifications:
68Q20, 68Q25, 68R10

05C05, 05C85,

1 Introduction

Computing a minimum weight spanning tree (MWST)
is one of the fundamental and classic problems in graph
theory. Given an undirected graph G with nonnega-
tive weight on each edge, the MWST of G is the tree
spanning G having the minimum total edge weight a-
mong all possible spanning trees [1]. This problem and
its related problems, k smallest spanning tree [5], edge
update of minimum spanning tree [10], minimum di-
ameter spanning tree [8], min-max spanning tree [2],
most and least uniform spanning trees {3, 7] and so
on, have been intensely studied. Minimum weight s-
panning trees have applications in many areas, includ-
ing network design, VLSI, and geometric optimization

[4, 11].

In this paper, the minimum labeling spanning tree
is defined and studied. The purpose is to construct a
spanning tree using edges which are as similar as pos-
sible. For example, in communication networks, there
are many different types of communication medium,
such as optic fiber, cable, microwave, telephone line
and so on [12]. A communication node rmay commu-
nicate with different nodes by choosing different types
of communication medium. Given a set of communi-
cation networks nodes, the problem we are interested
is to find a spanning tree (a connected communica-
tion network) that uses as few types of communica-
tion lines as possible. This spanning tree will reduce
the construction cost and complexity of the network.
This problem can be formulated as a graph problem.
Given a graph G = (V, E) and a labeling function L(e)
for all edges e € E where vertices represent commu-
nication nodes. Edges and their labelings represent
the communication lines and their types respectively.
The objective is to find a spanning tree which uses the
smallest number of different types of edges labels. De-
fine Ly to be the set of different labels in edges for a
spanning tree T. The minimum labeling spanning tree
(MLST) problem is formally defined as follows.

Problem (MLST problem). Given a graph G =
(V,E) and a labeling function L(e) for all e € £, find
a spanning tree T of G such that |Lr| is minimized.

Reducing from the minimum covering problem [6],
it is shown that the MLST problem is NP-complete
even when restricted to complete graphs. Two heuris-
tic algorithms and an algorithm to obtain an optimal
solution are proposed. The optimal solution algorith-
m is based on the A* — algorithm [9] concept. Ex-
perimental results indicate that the A* — algorithm
is quite efficient and one of the heuristics gives quite

151

Proceedings of International Conference
on Algorithms

good answers.

The rest of this paper are organized as follows. In
Section 2, The MLST problem is shown to be NP-
complete even when restricted to complete graphs. In
Section 3, two heuristic algorithms for the MLST prob-
lem and one algorithm that will produce an optimal
solution are proposed. Experimental results for the
algorithms are given in Section 4. Finally, conclusion-
s and some open problems are discussed in the last
section.

2 NP-Complete Proof

First, a decision version, called bounded labeling span-
ning tree (BLST) problem, for MLST problem is de-
fined and shown to be NP-complete.

Problem (BLST problem). Given a graph G =
(V, E) and a labeling function L(e) for all e€E and a
positive integers K, is there a spnning tree T for G
such that |Ly| < K.

Lemma 1. BLST is NP-complete.

Proof : It is easy to see that BLSTENP since a
nondeterministic algorithm need only guess a subset
of edges and check in polynomial time whether these
edges connect all vertices and |Lp| is the appropriate
size.

It is proved by transforming the minimum cov-

ering problem to the BLST problem. Let S =
{aliazyasy"'aan} and Cl = {ail;aj1>ak1}ac2 =
{awvahaakz} Cs = {aza»a]a’aks}’ » and Cp =

{a,m,ajm,akm} be subsets of S. The NP-complete
minimum covering problem is to find a minimum num-
ber of subsets to cover all the element in 5. From S
and Cis, we will construct a graph G = (V, E) such
that there is a cover for S with K — 1 subsets if and
only if G has MLST with K labels.

The construction of G is as follows (Fig.
1). G contains the following vertices: the el-
ement nodes {ai,as,as,...,a,}, the subset nodes
{C1,C3,Cs, ...,Crn} and a special node s. The edges
set contains the special edges {(s, C;)|i = 1 to m} and
the covering edges {(Cp, a1,)lp = 1 to m, | = 4,3, or
k, where a;, is in the C, subset }. All the special
edges have label s*. The covering edges have label C;
forp=1tom dependlng on which C, this edge con-
nects. It is easy to see that the construction can be
accomplished in polynomial time. All that remain to
be shown are that G has a MLST with K labels if and
only if a minimum covering of size K — 1 exists.

First, suppose there is a spanning tree T of G such
that |L7| = K. First note that s* € Ly. To construct
a covering from Ly, for each label Cf in Ly — s*,
includes C; in the cover. Since T is a spanning tree,

this covering will cover all elements in S as required.
Therefore, if there is a spanning tree 7T for G with
|Lr| = K then there is a covering for S with size of
K -1.

Conversely, suppose a minimum covering with K
subsets exists. Construct a spanning tree T of G ac-
cording to this cover as follows.

(1) For each C;j in this cover, include the edges be-
tween C; and its covering elements into T. If an el-
ement has more than one edge, delete the edges ran-
domly until one is left.

(2) Include all the special edges into T'. It is obvious
T is a spanning tree with K + 1 labels.

Hence, minimum covering is polynomially reducible
to BLST. O

Figure 1 : Construction of G in proof of Lemma l.

Corollary 2. The MLST problem is NP-complete
for complete graphs.

Proof: The proof is similar to that of Lemma 1. Ex-
cept in Fig. 1, all missing edges are added to make it
complete. Each newly added edge is assigned a unique
label. Now if a minimum covering with K subsets ex-
ists, a spanning tree with K + I labels can be obtained
with the same reasoning as in Lemma 1.

Conversely, suppose there is a spanning tree T' with
|L7| labels. If s* is not in |L7|, add (s, C;) to T will
result in a cycle. This cycle will include an edge (s, a;)
for some i, 1 < i < n. Since the label of (s,q;) is
unique, (s, a;) can be replaced with (s, C1) without in-
creasing the number of labels. After s* is included into
T, (s,C;), 2 < i < m, can all be added with another
edge removed. For other edges in T, if it is (a;, a;),
replace it with (Cz,a;) or (Cy,a;) where a; € C, or
a; € Cy as long as a cycle is not created. Similarly,
for edge (Cj, a;) where a; is not in C;, replace it with
(Cz,a;) where a; € C,. Afterwards, by following the
method in the proof of Lemma 1, a covering for S with
size K — 1 can be found. O

152

3 Algorithms for Minimum La-
beling Spanning Tree

Given a graph G = (V, E), with a label on each edge,
the MLST problem is to find a spanning tree which
uses the smallest number of different types of edge la-
bels. As shown in Section 2, the MLST problem is
NP-complete. In this section, two heuristic algorithms
and an exact algorithm for finding an optimal solution
for the MLST problem are proposed.

3.1 Heuristic Algorithms

The first heuristic algorithm is based on the edge re-
placement concept. At first, find an arbitrary spanning
tree. Then, in order to reduce the spanning tree’s to-
tal number of edge labels, for each nontree edge, test
if the tree after this nontree edge is included and a
tree edge deleted will have the possibility of obtaining
smaller number of labelings. The detail of this heuris-
tic algorithm is described as follows.

Algorithm 1 : Edge Replacement Algorithm

Input : A labeling graph G = (V, E), with |V| = n,
|Ef = m and |L| = I, where L is the set of possible
labels for all edges.

Output : A spanning tree.

Step 1. Find an arbitrary spanning tree of G.

Step 2. For every nontree edge 4

Step 3. Let label(?) be the label of edge i. If
label(7) has notappeared in the spanning
tree, go to Step 7.

Step 4. Find the cycle, say C, which is created by
adding the edge 1.

Step 5. Let current_label_count be the number of
times that label(?) appears in C.

Let minimum_label be the label with the
least number ofappearings in C.

Let minimum_count be the number of
appearings ofmintmum _label.

Step 6. If current_label_count > minimum_count
and label(:) = # minimum_label, then
put edge ¢ into spanning tree and remove
a tree edge, whose label is equal to
minimum_label

Step 7. End (for).

Before analyzing the time complexity, we give an
example. In Fig. 2-(a), an arbitrary spanning tree
shown in Fig. 2-(b) is found to have 5 labels, which
are a,b,c,d, and e. Next, we start trying edge re-
placements. First, consider the nontree edge {B, E}.
label(B,E) = a and a appears in labels of the 's-
panning tree. The cycle created by adding {B, E}

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

is {B,A,E}. The edge {B, E} will not be put in-
to the spanning tree, because current_label_count =
1 is not greater than minimum_count = 1 in the
cycle. Second, the nontree edge {C, D} is tested.
label(C, D) = b, which appears in labels of the s-
panning tree. The cycle created by adding {C, D}
is {C,B,D}. The edge {C,D} will be put into the
spanning tree, because current.label_count = 2 is
greater than minimum_count = 1 in the cycle, where
minimum_label = a. And the edge to be removed
is {B,C} with label a. The result is shown in Fig.
3-(a). Next, the nontree edge {C, E} is considered.
label(C,E) = b, which appears in labels of the s-
panning tree. The cycle created by adding {C, E}
is {C,D, B, A, E}. The edge {C, E} will be put into
the spanning tree, because current_label_count = 3 is
greater than minimum_count = 1 in the cycle, where
minimum_label = c¢. And the edge to be removed is
{4, E} with label ¢. The result is shown in Fig. 3-
(b). Then, the nontree edge {D, E} or {F, B} will
not change the spanning tree any more. Finally, in
Fig. 3-(b), we get a spanning tree with labels {5, d, e}.
The optimal spanning tree is in Fig. 3-(c) with label-
s {b,e}, which indicates that the algorithm may not
always obtain an optimal solution.

(a) : Graph @ (b) : A arbitrary spanning
tree of G

Figure 2 : Graph G and its spanning tree.

(@) : Adding {CD} (b): Adding {CE}

{c) : Optimal

Figure 3 : Two spanning tree of G.

Theorem 3. The time complexity of Algorithm 1
is O(mn).

Proof : At Step 2, there are m — (n — 1) nontree
edges. We then spend O(n) to find a cycle at Step 4.
Therefore, this algorithm takes O(mn). O

183

Proceedings of International Conference
on Algorithms

The second heuristic algorithm tries to construct the
spanning tree gradually, each time selecting a label
such that edges with this label cover as many uncov-
ered vertices as possible. We repeat this procedure
until all vertices are covered. The detail of this algo-
rithm is described as follows.

Algorithm 2 : Maximum Vertex Covering Al-
gorithm '

Input : A labeling graph G = (V, E), with |V| = n,
|F| = m and |L| = |, where L is the set of possible
labels for all edges.

Output : A spanning tree.

Step 1. Let H = (V, ¢) be the subgraph of G, which

hasn’t any edge.

Step 2. While H is not connected

Step 3. Find a unused label ! such that edges with

label ! cover as many uncovered vertices
as possible. If there are more than one
candidate, select one randomly.

Step 4. Add edges whose labels are ! into the sub-

graph H.

Step 5. End (for while).

Step 6. Find an arbitrary spanning tree of H.

To give an example, let Fig. 4-(a) be the input
graph. Initially, the subgraph H, shown in Fig. 4-
(b), contains all vertices of G, but no edges. First,
since edges with label b and label ¢ cover the largest
number of vertices, which are 6, we select label b.
{A,B,C,D,E,F} are covered. Adding those edges
with label b, which are {4, B}, {4, F} {B, E} {B, F}
and {C, D}, into H, we get the new subgraph in Fig.
5-(a). Next, since all vertices are covered but H is not
connected, we select one randomly from {a,c}. As-
sume a is selected. Adding the edge with label a, which
is {B, D}, into H, we get the new subgraph in Fig. 5-
(b). From this subgraph, a spanning tree with labels

{a, b} can be obtained, but the optimal solution is a
spanning with one label {c¢} in Fig. 5-(c).

® ®
® &
© o

(b) : The initial
subgraph &

(a) : Graph G

Figure 4 : Graph G and its subgraph H.

(a) :Adding lebel {5} (b) :Adding label {@} (c) :Optimal

Figure 5 : After selecting {b,a} and the Optimal.

Please also note that the solution obtained may not
be optimal.

Theorem 4. The time complexity of Agorithm 2 is
O(Imn), where [is the total number of different labels.

Proof: At most, the while loop will take O(n) times.
We spend O(Im) to find the maximum covering label
at Step 8. Since Step 2 is the dominating step, the
time complexity of this algorithm is O(Imn). O

3.2 An Optimal Solution Algorithm

The algorithm is based on the A* —algorithm [9]. Ba-
sically, an A* — algorithm is a tree-searching algorith-
m. It always selects a least cost node to expand for
minimization problems. We first explain how to evalu-
ate the node-cost-estimation function f. For any node
z, f(z) consists of two parts, g(z) and h(z), where
g(z) = the cost of the current search path from root
node r to z with g(r) = 0 and h(z) = an estimate of
the cost of the best path from z to a goal node, where
h(goal node) = 0.

A* — algorithm states that if h(z) is an underesti-
mate, then the first goal node reached will be an opti-
mal solution. In our problem, g(z) is just the number
of labels that have been used so far. h(z) is calculated
as follows.

(1) Let I1,1s, ..., Iy be the unused labels and e; be the
number of edges with label I; for 1 < 7 < k. Without
loss of generality, assume e; > ey > ... > ej.

(2) Let H = (V,, E,), where E, consists of the edges
whose labels have been selected so far and V; consists
of the vertices covered by edges in E,.

(3) Let H; be the subgraph of H with an arbitrary
edge of each fundamental cycle in H removed. (H; is
a forest.)

(4) Let edge_needed = (n — 1) — (# of edges in
Hy). .

(53) h(z) = the smallest j such that S I_ e >
edge_needed.

It is obvious that h(z) is an underestimate and can
be computed in polynomial time.

154

Having described the cost function, we next present

the A* — algorithm. »

Algorithm 3 : An Exact Algorithm for the

MLST Problem
Input : A graph G = (V, E') where each edge has a
label in L and |V| =n, |E| =m, and |L| = 1.

Output : A spanning tree with minimum number

of tree edge labels.

Step 1. Put the root node » on OPEN. /* OPEN
is the storage place for all generated but
unexpanded nodes. */

Step 2. If OPEN is empty, exit with failure. /*
Since a solution always exists, this will
never be executed. */

Step 3. Remove from OPEN and place on CLOSED
a node n for which f is minimum. If there
are more than one node with the same min-
imum f value, the latest generated node
will be selected. /*CLOSED is the storage
place for the expanded nodes. */

Step 4. If n is a goal node (a spanning subgraph
is formed), goto Step 8.

Step 5. Otherwise expand n. If there are k

- unselected labels, then n has k children,
one for each unselected label.

Step 6. For each child n’ of n:

If n’ is not already on OPEN or CLOSE,
calculate h(n’) and f(n') =g(n') + h(n')
where g(n') = g(n)+1 and g(r) = 0. Put n
into OPEN.

Step 7. Goto Step 2.

Step 8. Find a spanning tree of the subgraph.

Step 9. End. ‘

Applying the algorithm to the graph in Fig. 2-(a),

the whole expanded tree is as shown in Fig. 6.

f({r)=0

flg)=2 fBP=2 f({ch=3 {{dh=2 f(eh=2

M= a3

f({b.d})=3

Figure 6 : The whole tree searched by A* — algorithm
for graph in Fig. 5(a).

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Let’s take node (b) below root as an example. It
means that all edges with label b are included into the
solution set. Since one label b is used, g({4}) = 1. The
subgraph formed by edges with label b is shown in Fig.
7. Therefore, 2 more edges are needed to construct
a spanning tree. Since there are two edges with the

unused label e, we have h({b}) = 1 and f({b}) =2

B ®

b 0

X P

Figure 7 : The subgraph of label b.
Similarly for node (c) below root, g({c}) = 1. The

subgraph formed by edges with label ¢ is shown in Fig

8.
&)

C

)

Figure 8 : The subgraph of label c.

Therefore, 4 more edges are needed. Since there are
3 edges with label b and 2 edges with label e, we have
h({c}) = 2 and f({c}) = g({c}) + h({c}) = 3.

To test the effectiveness of the heuristic algorithms
and the efficiency of the exact algorithm, we have im-
plemented those three algorithms. The test results are
shown in the next section. '

4 Experimental Results

In this section, we study the performance of the pro-
posed heuristic algorithms, Algorithm 1 and Algorith-
m 2, and the MLST algorithm, Algorithm 3. These
algorithms are implemented using the C language
and run in SUN sparc — 20 machine. The graph
G = (V,D, L) used in simulations has three param-
eters. V is the set of vertices with |V| = n, D is the
density of this graph used in generating edges in the
graph, and L is the set of labels with |L]| = [.

The algorithm to generate a graph G = (V, D, L) is
described as follows:

Algorithm 4 : A Graph Generating Algorith-
m

Input : For a graph G = (V, D, L), |V| = n is the
number of vertices, D is the density; and | L] = [is the
number of labels.

155

Proceedings of International Conierence
on Algorithms

Output : A graph’s adjacency matrix

Step 1. Let edge = n(n — 1)/2 be the total number
of edges of the complete graph, and the array str[n][n]
be the graph’s adja- cency matrix.

Step 2. fori =0ton—1.

Step 8. forj=i+1ton—1.

Step 4. Let random_number = rand() mod
edge, and label = (rand() mod 1)+ 1. /* rand() mod
[creates an integer between 0 and [— 1 */

Step 5. if float(random_number/edge) < D,
then str(i][j] = label and str[j][i] = label.

Step 6. else str[i][j] = 0 and str[j][z] = 0.

Figures 9 and 10 show the performance of the ex-
act MSLT algorithm, Algorithm 5. Figure 12 shows
the relation of the CPU time used in seconds for var-
ious number of vertices for small density graphs. The
number of labels is equal to the number of vertices. We
also draw the curve y = 0.1n? for comparison. Figure
10 shows the same simulation for large density graphs.
The graph with density=1 is a complete graph. Those
curves are always under the curve y = 0.1n 4+ 15 and
the CPU time needed is never more than 30 seconds.

CPU time in seconds
as00
3000
2500

2000
Density

—a— 0.3

2000 ——— 0.4
—a—— 0.5
600 —w— 0.6
—— y=0.1n"2

o &0 R0 100 azo 140 160 180 200
Number of verticex (labels) in graph

Figure 9 : The MLST algorithm’s CPU time used in
the graph with density 0.3, 0.4, 0.5 and 0.6., and the
curve y = 0.1n?

a5 . CPU time in seconds

30 |
25 |
20

s b Deonsity
—~—0.7

—=— 0.8

—a— 0.9

s e—1

—o— y=0.1n+15

10

50 60 70 =& 0 100 1X0 120 130 140 158 166 178 180 120 200
Number of vertices (tabels) in graph

Figure 10 : The MLST algorithm’s CPU time needed
in the graph with density 0.7, 0.8, 0.9 and 1 and the
curve of y = 0.1n + 15.

The next eight figures show the performance of Al-

gorithms 1, 2 and 3. In those figures Algorithm 1 is

dubbed as ”Heul”, Algorithm 2 as "Heu2” and the
exact MLST algorithm as ”Opt”. The density in this

simulation 1s from 0.3 to 1 and the number of vertices
are from 50 to 200. Because of the memory constraint,
the exact algorithm doesn’t run over ‘110 vertices (la-
bels) at density 0.3 and not over 180 vertices (labels)
at density 0.4. From those figures, it can be seen that
the solution of Algorithm 2 is getting closer to that of
the exact algorithm when the density gets larger.

Number of Iabels in tree
as
440 r
35
30

25 —e— Heul
20 —e— Heouz
—a— Qpt
1is
10
— -
s
o
50 60 70 80 50 100 110

Number of vertices (labels) in graph

Figure 11 : Performance comparison with graphs of
density 0.3.

Number of labels in treo

70
S0
s0
<0 —e— Heul
—n— Hou2
30 —a— Opt
20
10 o
[+]

e &0 70 =0 r0 100 310 120 130 140 150 16¢ 170 1m0
Number of vertices (labsls) in graph

Figure 12 : Performance comparison with graphs o

density 0.4. . '
Number eflabels in tree
so |
70
60
50
—e— Hoaul
40 - —=— Heu2
30 —— Opt
20
10
- .

$0 &0 70 30 S0 108 1168 120 130 140 150 160 170 10 190 200
INumber of verticas (labels) in graph

Figure 13 : Performance comparison with graphs of
density 0.5.

Number of lJabels in tree

- o— — T

80
70
(2
0
—e— Heoul

40. —=— Heu2
30 —a— Opt
20 1
10

o

8 &0 70 30 S0 100 110 128 130 140 180 160 170 130 190 200
INumber of vertices (labels) in graph

156

Figure 14 : Performance comparison with graphs of
density 0.6.

Number of labels in tree

80

70

[
50

—— Heul
—— Heu2
—a— Opt

a0

30

0 40 70 S0 P0 G0 110 1Z0 130 140 160 160 270 130 iSC zw‘
Number of vertices (labels) in graph

Figure 15 . Performance comparison with graphs of
density 0.7.

Number of labels in tree

80 [
70
60

50

—+— Heul
40 —a— HeuZ
30 —a— Opt
20 F
‘10
o . o —

0 &0 70 80 90 100 110 120 130 148 160 1&0 170 180 190 280
Number of vertices (labels) in graph

Figure 16 : Performance comparison with graphs-of
density 0.8.

Number of labels in tree
80 |-
70
60

50

—— Heul
—m Heu2
—a— Opt

40

30

20

10

i3 i 3
50 €0 70 $0 S0 108 k18 120 130 140 15D X1&0 170 IR0 190 200
Number of vertices (labels) in graph

P)

Figure 17 : Performance comparison with graphs of
density 0.9.

Number of labels in tree
80 |
70
60

50

—e— Houl
—=— ¥eou2
——a— Opt

40

30

20 1

10

=g

o
50 <0 70 #0 S0 100 ‘110 120 13D 140 1Fe 160 170 180 190 200

Numbesr of vertices (labels} in graph

Figure 18 : Performance comparison with graphs of
density 1.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Figures 19 and 20 show the effect of changing the
number of labels to choose in the 80 vertices graph
with density 0.3 and 0.7 respectively.

Nuraber of lahels in tree
40
35
30

25 ¢
- Heual

20 —m— Hou2
s —a— Opt
s 4 s

A
o

S0 60 70 30 S0 100 110

INumber of labels in graph

Figure 19 : Performance comparison with different
number of labels under a graph with 80 vertices,
density 0.3.

Number of labels in tree

so

40

30 e Heoul
—e=— Heu2

20 | —— Opt

10
-

e

£0 &0 70 30 0 100 110 120 130 140 160 150 170 180 IS0 Ze0
Number of Inbels in graph

Figure 20 : Performance comparison with different
number of labels under a graph with 80 vertices,
density 0.7.

Figures 21 and 22 show the effect of changing the
number of vertices in graph with 80 labels to choose
and with density 0.3 and 0.7 respectively.

Nurmber of labels in tee

3as

30

25

20 —e— Heoul
—m— HeuZ

is A Opt

10

s

10 z0 30 - a8 5o &0 70 0 %0 10 110 120
Number of vertices in graph

figure 21 : Performance comparison with different
number of vertices under a graph with 80 labels to
choose, density 0.3.

157

Proceedings of International Conference
on Algorithms .

Number of labels in tree

35

e

25

—— Haul

28 —— B2
i

15
1s

]

0 EL] so 70 so 110 130 IS0 170 430
Number of vertices in graph

Figure 22 : Performance comparison with different
number of vertices under a graph with 80 labels to
choose, density 0.7.

5 Conclusion

The concept of the minimum labeling spanning tree
is to find a spanning tree such that the spanning
tree edges are as similar as possible. It is shown
that the MLST problem is NP-complete, and two
heuristic algorithms and an exact algorithm based on
A*—algorithm are proposed. Possible future research-
es are to apply the minimum labelings definitions to
other weighted optimization problems. For example,
the minimum labeling shortest path problem, the min-
imum labeling maximum matching problem, the mini-
um labeling cut set problem and so on.

References

(1] Brassard, Billes and Paul Bratley, Algorithmics
Theory and Practice, Prentice-Hall, New Jersey,
1988.

[2] Camerini, P.M., The min-max spanning tree
problem and some extensions, Information Pro-
cessing Letters, vol. 7, no. 1, pp. 10-14, 1978.

[3] Camerini, P.M., F. Maffioli, S. Martello, and P.
Toth, Most and least uniform spanning trees, . Dis-
crete Applied Math., 15 (1986), pp. 181-197.

[4] Chen, Wen-Tsuen and Nen-Fu Huang, The
strongly connecting problem on multihop packet
radio networks, IEEE Trans. Commaun., vol. 37,
no. 3, pp. 293-295.

[5] Eppstein, David Finding the k smallest spanning
trees, Bit, 32 (1992), pp. 237-248.

[6] Garey, Michael R. and David S. Johnson, Com-
puter and Intractability A Guide o the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

158

[7] Galil, Z. and B. Schieber, On finding most uni-
form spanning trees, Discrete Applzed Math., 20
(1988), pp. 173-175.

[8] Ho, Jan-Hing, D. T. Lee, Chia-Hsiang Chang,
and C. K. Wong, Minimum diameter spanning
trees and related problems, SIAM J. Comput., 20
(1991), pp. 987-997.

[9] Nillson, Nils J., Principles of Artificial Intel-
ligence, Tioga Publishing company, California,
1981..

[10] Shen, Xiaojun and Weifa Liang, A parallel al-
gorithm for multiple edge undates of minimum
spanning trees, Proceedings of Seventh Interna-
tional Parallel Processing Symposium 1993, pp.
310-317.

(11] Simha, Rahul and Bhagirath Norahari, Single
path routing with delay considerations, Comput-
er Network and ISDN System,, 24 (1992) pp. 405-
419.

[12] Tanenbeum Andrew §S.,
Prentice-Hall, 1989.

Computer Networks,

