A Parallel Algorithm for Circulant ’I‘ridiagonal Linear Systems

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsjung, Taiwan, R.0.C.

*

Yaw-Wen Chang and Chang-Biau Yang
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, Taiwan 80424
cbyang@math.nsysu.edu.tw

Abstract

In this paper, we propose a parallel algorithm for
solving the tridiagonal systems, the circulant tridiag-
onal systems, the block-tridiagonal systems, the circu-
lant block-tridiagonal systems and the banded systems,
which 1s an improvement of Agui’s and Chung’s al-
gorithms. QOur algorithm is based on the divide-and-
congquer strategy and is suitable for implementation on
the hypercube or the binary tree. The applications of
our algorithm include solving partial differential equa-
tions, the closed B-spline curve fitting problem, the
dominant eigenvalues of a matriz and many other sci-
entific, physical and engineering problems.

Key words. circulant tridiagonal systems, parallel
algorithm, divide-and-conquer.

1 Introduction

Many scientific and engineering problems can be
transformed into the problems of linear systems. Thus,
solving the linear systems is the kernel issue for solving
scientific and engineering problems. Among them, es-
pecially, tridiagonal systems [1, 13], block-tridiagonal
systems [9], banded systems [12], circulant tridiago-
nal systems [6], and block-circulant systems [6] are
most frequently discussed. For instance, finite dif-
ference approximations to certain elliptic partial dif-
ferential equations can be transformed into a block-
tridiagonal system [9,15]. Closed curve fitting is impor-
tant in computer-aided design, graphics, pattern recog-
nition and picture processing [4], and it can be trans-
formed into a circulant tridiagonal system. In the past,
the algorithms solving linear systems include Gaus-
sian elimination [3], the LU factorization [2], the power
method [5], the cyclic reduction method [15], the iter-
ative method (7], the Jacobi method [11], Wang’s par-

*This research work was partially supported by the National
Science Council of the Republic of China under contract NSC
85-2121-M-110-014 C.

19

tition [13], the implicit elimination [8], Given’s trans-
formation [14], the preconditioned conjugate gradient
method [9], the divide-and-conquer method [1, 6], and
0 on.

In this paper, we shall propose a fast and efficient
parallel solver based on the divide-and-conquer strat-
egy. In Section 2, we shall present two conventional
algorithms proposed by Chung [6] and Agui [1]. In
Section 3, we propose a parallel algorithm for solving
the circulant tridiagonal systems , which is an improve-
ment of the divide-and-conquer method proposed by
Chung [6]. And, we shall slightly modify our algo-
rithm to solve the tridiagonal systems to reduce the
total number of the equations in the reduced system.
This will be given in Section 4. In Section 5, we shall
generalize our algorithm to solve the circulant block-
tridiagonal systems. Since the circulant tridiagonal
systems and the banded systems are also special cases
of the circulant block-tridiagonal systems, they can also
be solved by our generalized algorithm. In Section 6 ,
we shall show that our algorithm is superior to Agui’s
and Chung’s. Finally, the conclusion will be given in
Section 7.

2 The Previous Results

In this section, we shall review two previous parallel
solvers based on the divide-and-conquer strategy for
the tridiagonal systems and the circulant tndla.gonal
systems.

Agui [1] proposed a parallel algorithm to solve the
tridiagonal systems. And, Chung [6] proposed a par-
allel algorithm to solve the circulant block-tridiagonal
systems. In fact, Agui’s algorithm can also solve the
circulant tridiagonal systems.

A complete circulant tridiagonal system of order n,
Ax=d, can be expressed as

a1z1 + b1y + 1z, = di,

Cixi— +a;x; + b,':l:,'.*_l =d;, for 2<i<n-— 1,

b1 +cnzn_1 + an Ty = dy.

Proceedings of International Conference
on Algorithms

a: b C:
C: a: b:
Cs as bs

l)nJ
l)n Cu An

Figure 1: The form of matrix A.

The form of matrix A is shown in Figure 1. Clearly,
a tridiagonal system is a special case of the circulant
tridiagonal systems. That is, in a tridiagonal system,
¢1=0 and b,=0. It is assumed that matrix A is non-
singular and all algorithms in the following have no
pivoting problem.

Agui’s algorithm [1] partitions the n equations
into p groups, each forming a subsystem. Then the
N-diagonalization scheme, used previously by Wang
and Mou [16] and [10], is performed. In the N-
diagonalization scheme, Gaussian elimination is per-
formed on the coefficient matrix in each node to trans-
form the coefficient matrix into an n-shaped matrix.
Then, after putting the first and the last equations to-
gether in each processor, the N-diagonalization scheme
is used again fo transform the reduced system to a spe-
cial system (not a circulant tridiagonal system). Thus,
his algorithm can be applied recursively.

Chung’ algorithm [6] uses the same partition and
Gaussian elimination. After putting the first and
the last equations together in each processor, Chung
first reorders the corresponding columns to transform
the matrix into a smaller circulant tridiagonal matrix.
Thus, his algorithm can also be applied recursively.

Now, we present an example for illustrating the two
algorithms proposed by Chung [6] and Agui [1]. Sup-
pose that n=18 and p=6, where p is the number of
~ processors used. And let m = 2=3. Thus, there are
eighteen equations, denoted as g;,1 < ¢ < 18, in the
system. Each g; is assigned to processor [%] , as shown
in Figure 2. Note that the n processors are identified by
1,2,---,n. After the N-diagonalization scheme is exe-
cuted in each processor, the result is shown in Figure
3.

Next, if we put the first and the last equations to-
gether in each processor, we shall get a subsystem,
called the reduced system, as shown in Figure 4. Note
that Agui partitions the reduced system two groups,
but Chung partitions it three groups. Agui [1] repeat-

20

ar b Ci
cz az b2
Ccs as bs
Cs a4 bs
Cs as bs
Cs as bs
* ® []
L] *® L 2
*® * [J
Ci ax b
Cuv av brp
b Ci amn
L - o=

Figure 2: An example of Chung’s algorithm.

a b1 Ci
a: b2 C2
as bs Cs
Cs+ A4 b
Cs as bs
Cs as bs
c1 ar br
Ce as bs
Cs as bs
[
*
.
bis Cx a®
bn cn an
Lbu Cn an

Figure 3: The state after executing Gaussian elimina-
tion in each processor.

b1
as bs
Cs Qa4
Ce

ai Ci
Cs

ba
as bs
C7

Co

b1
as by
Co adw
Cn

bw
an be
Cni an
Cs

bs
as b
b Ci-as
bis Ci
I

as

Figure 4: The reduced system before reordering the
selected columns.

R L

Figure 5: The N-diagonalization process in each pro-
cessor.

edly applies the N-diagonalization scheme, shown in
Figure 5, to the reduced system. And a special system,
shown in Figure 6, is obtained. Thus, his algorithm
can be applied recursively after putting the first and
the last equations together in each processor.

On the other hand, after the reduce system shown
in Figure 4 is obtained, Chung [6] rearranged these
columns of the reduced system to a smaller circu-
lant tridiagonal system, as shown in Figure 7. Thus,
Chung’s algorithm can also be applied recursively.

3 The Algorithms for the Circulant

Tridiagonal Systems and the Tridiag-
onal Systems

Now, we propose our algorithm for the circulant
tridiagonal systems. We partition the n equations
evenly into p groups. And, each processor works on
2 consecutive equations, where m = 2 is assumed to

e an integer. First, each processor performs the row
operations similar to Gaussian elimination. Let r()
be the ith row in the kth processor, 1 < i < m and

21

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

a1 b1 C1
as bs Cs
as b4 Ca
as bs Cs
ar b C1
as b Co
bo Co an
bn Ce an
b Cn as
bis Css as
bs Ci as
b Cs as

Figure 6: The special system after performing the N-
diagonalization scheme.

C1 b
cs bs as
as Ca b
Cs bs as
ar C7 b
Cs by as
an Cno bu
Ce bz an
as Cs bs
Cis bis as
as Cx b

as Cis D18

Figure 7: The reduced system after reordering the se-
lected columns.

1 < k < p. Each processor performs the following row
operations:

FOR i=2 TO (m - 1) DO

(i) = r(-l:-)) (C(k 1)m+z+1/a(k 1)m+z)
FOR i=(m —1) TO 2 DO
(k)l = 7'1()1 —rFx (b(k—l)m+i—1/a(k—1)m+i)

Thus, there are 2m — 4 row operations performed in
each processor. And, all processors work in parallel.
Then, for the first processor, the subsystem will be-
come
atzy + bjzm + ciz, = df,
ctzy+ alz; + bz, =df, for 2<i< (m—1),
iz +alzm + b, emer = df,.
Similarly, for the last processor, the subsystem will be .
h—mt1Zn-m + 05y 1@nomil + 0oy 1Zn
= d:t.-m+11

* * *
Cn—m+ifn-m+1 + Ay m4iTn—m+i + bn—m+i2"ﬂ

=d: for 2<i< (m—1),

n— m+n
bizi + Chnmy1 +ahz, = dj.

For the remaining (p — 2) processors, the kth, 2 <
k< (p 1), subsystem in processor k will be
(k Dm418k=1)m T+ Ok _1ymp1 E(k—1)m+1
(k ~)m+1%km = d(k 1)m+1
k= 1)m+iT(k=1)m+1 T 8k 1)m i (k=1)m+i
+b(k_l)m+’zkm = d(k_l)mﬂ, for 2<z<(m-1),

Proceedings of International Conference
on Algorithms

a b Ci
C:z az: b:
Ca as bs
Cs+ &« ba
Cs as bs
Cs as bs
C1 ar b7
Cs as bs
) as by
®
®
*
Cis a1 b
Cv awv by
b) Cus an

Figure 8: The state after executing our algorithm.

CZmz(k—l)ﬂ’H—l + aZmzk‘m + mezkm'i'l = d;m

As an example, let n = 18, p = 6 and m = % =3.
The result after the above row operations is shown in
Figure 8. Next, we put the first and the last equations
together in each processor, then the subsystem con-
sisting of these equations is still a circulant tridiagonal
system with smaller size, called the reduced system, as
follows:

ajzy +bjzy, + cle, = df,

Cm&1 + ap,Tm + b 2y = Y,

Clk—1)m 1% (k—1)m + Al 1)m41 8 (k= 1)m+1

+b(k Vm41%km = d(k Ym4y for 2< k< (p—1),

ckmm(k 1)m+1 + akmka + bkmmkm+1 = dkm’

for 2<k<(p-1),

Crmm41®n—m + U1 8nemt1 + U1 Zn

dn m+1’
brey + ¢ Tnmy1 + a*z, = dy.

The reduced system, consisting of 2p equations, can
be solved recursively. Once the values of the variables
in the reduced system become available, those of the
others in each processor can be easily found. The re-
duced system of the above example is shown in Figure
9. Note that the reduced system in our algorithm is still
a circulant a tridiagonal system, thus we do not need
to reorder the columns of the reduced system. There-
fore, our algorithm is simpler than Chung’s algorithm,
in which column reordering is needed in the reduced
system.

In fact, when we implement our algorithm to solve a
circulant system on the hypercube, processor 2k sends
its first and last equations to processor 2k - 1, for
1 <k < 4. Thus, we can implement our algorithm
recursively on the hypercube (See Figure 10).

Further, we can also implement our algorithm on the
binary tree structure (See Figure 11). The nodes are
labelled by the preorder sequence. We partition the n
equations evenly into p groups. And, we assign group

a: b: Ci
Cs as bs
Cs a4+ ba
Cs as bs
[J o []
[[[J

Cis A Dis

b Cis A

Figure 9: The reduced system in our algorithm.

7 / 8

wn
AN/
o

1 N2

Figure 10: Performing our algorithm on the 3-cube.

¢ to processor i. Thus, in the Figure 11, at the step 1,
processors 4 and 5 send their first and last equations
to their parent, processor 3. And, at the same time,
processors 7 and 8, processors 11 and 12 processors 14
and 15 also do the the same action. At the step 2,
processors 3 and 6 send their first and last equations
to processor 2 and, at the same time, processors 10 and
13 send their first and last equations to processor 9. At
the step 3, processors 2 and 9 send their first and last
equations to processor 1. Thus, our algorithm can be
implemented on the binary tree.

The time complexity of our algorithm executed on
the hypercube is the complexity for solving the reduced

Figure 11: The numbers in this figure representing the
nodes labels.

system plus that of the two initial do-loops and that of
the back-substitution process. The two initial do-loops
and the back-substitution need 0() time. And, the
time complexity of the reduced system can be obtained
by the following recursive formula:
T(2p) =T(p) +c

where cis a constant. We can obtain the time complex-
ity of the reduced system is T(2p) = O(logp). Thus,
the time complexity of our algorithm is O(3)+T'(2p) =
O(g— + logp). If p < n, then our algorithm requires
O(%) time.

4 Tridiagonal Systems

In this section, we shall slightly modify our algo-
rithm to solve the tridiagonal systems. In fact, a tridi-
agonal system is a special case of the circulant tridiag-
onal systems, that is, ¢; = 0 and b, = 0. Our modified
algorithm will reduce the total number of the equations
in the reduced system and increase slightly the num-
ber of row operations in the first processor and the last
processor. In the first processor, the following row op-
erations are performed:

FOR i=1 TO (m —1) DO

(i) — r(i) z(1) * (cip1/a;)
FOR i=(m - 1) TO 2 DO
T'z@l = 7'51)1 - rgl)(bi-l/“i)
And, in the last processor, it performs the following
row operations are done:
FOR i=2 TO (m—l) DO

_ (m
Tigl =Tig1 — T) % (C(n 1)m+z+1/a(n 1)m+z)

FOR i=m TO 2 DO
,(m) = T,(m) (b(n—l)m+i—1/a(n—1)m+i)

And, for the kth processor, 2 < k < (p—1), it performs

the following
FOR i=2 TO (m — 1) DO

(-l:-)l = 7'(_];:_) 1() * (c(k 1)m+z+1/a(k 1)m+z)
FOR i=(m — 1) TO 2 DO
(k)l = r,(k)l — ¥ % (B(k—1ymti=1/8(k—1)m+i)

Thus, the subsystem in the first processor will become
afe; + bz, =df, for 1<i<m-—1,
ayTm + b my1 = di,.

And, the subsystem in the last processor will become
Cr—mt1Zn—m+1 + Gp_ny1Zn-my1 = dy_p,
Cipmyr+afzi=df, for (n—m+2)<i<n.

Similarly, for the remaining (p—2) processors, the kth,

2 <k <(p—1), subsystem in processor k is
c(k Dm41Z(k~1)m + a(k m+1T(k=1)m+1
+ (k—1)m+1%km = Ak 1y

(k —1)m+iZ(k-1)m+1 + Gk—1ym+iT(k—1)m+i
+b(k 1ym4iThm = d(,c Dmetir for 2<i<(m—1),

ckmz(k)m41+ akmka + bl&:mmkm'*'1 dkm

23

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

a: b1
az b2
as bs
Cs+ Qs bs
Cs as bs
Cs as bs
C7 as b7
Cs as bs
Co as by
Cwo aw
Cu an
L Cn ar

Figure 12: The matrix after performing row operations.

as bs
Cs a4 bs
Cs as bs
C7 a7 b7
Co a9 bo
Cio A

Figure 13: The reduced system which is still a tridiag-
onal system.

Therefore, if we put together the last equation in the
first processor, the first equation in the last processor,
and the first and the last equations in the remaining
(p—2) processors, then the subsystem, consisting of the
(2p — 2) equations, is still a tridiagonal system. The
reduced system is as follows:

Ay & + b, Tmy1 = dyy;,

lk~1)m+1%(k=1)m + azk m+1%(k~1)m+1

+b(k Dm41%km = d(k Dme+1) for 2< k< (p-1),

ckmz(k m+1 + akmmkm + bkmzkm-i-l

_d‘,;m,for 2<k<(p-1),

cn—m+11"ﬂ —m+ an—m-}-lzﬂ ~m+1 = d:;,—m-l-l'
The reduced system still can be solved recursively. For
example, suppose n = 12, p =4 and m = 2 = 3. After
performing Gaussian elimination in each processor, the
matrix becomes the form shown in Figure 12. And, the
final reduced system is shown in Figure 13.

5 Circulant Block-tridiagonal Systems
and Block-tridiagonal Systems

In this section, we present how to generalize
our solver for circulant block-tridiagonal systems
and block-tridiagonal systems. A circulant block-

Proceedings of International Conference
on Algorithms

— _
A1 Bi1 Ci
C2 A2 B2
Cs As Bs
A= .. e coosoe
. - . e0ed 000 000
e0oe o000 o0
Bui S2ifes 5ot o o
Bn Cn An o088 000 ooo0
_J 200 e00 ooe
- eee 000 ooe ()
®ee 000 oo]
Figure 14: The form of the circulant block-tridiagonal cee 250 532 pihdhd
matrix. ©eee® 000 00® o0
s 000 eoefoee
o6 seeese A 0 000 e0e 000
0O o000 000 hdhdhd 000 eos®joee
00 o000 0o e0e® 000 o000
iRt i o o SRR
200 000 o000
®ee o000 seoe Figure 16: The state after performing the first do-loop.
®ee o000 oo ()
®96 0090 oo
e e G000 o0
O o090 e0e 0o
o®e o . ® o000
(A XK B X N N ¥ X}
0 0O eee vec|ene
(A X XX IXX X
00 600 000
000 000 oo
®00 000 o000
Figure 15: The state in each processor.
tridiagonal system Ax=d is of the form shown in Fig- 20 22200
ure 14. And, A,-,Bi,andC',-,lgign,denoteqxq 0o 000 00
submatrices. When our algorithm for circulant tridiag- eee[oos 173 oo s
onal systems performs Gaussian elimination, the index bl 4 b - 0 bl
1 starts at 2 in the ﬁrs't d.o-loop. and starts at. m-—1in eee 000 000 cee
the second do-loop. Similarly, if each block is a gXxgq 203 000 0 0o eee
submatrix, the index i starts at ¢ + 1 in the first do- eoe 000 800 eee
loop and starts at (m — 1)g in the second do-loop. For ®0e 000 000 see
example, suppose ¢ = 3 and m = 4. And, the state @ee 000 000 004
in each processor is shown in Figure 15. Then, after cee 000 600|000
. . . e 0 000 eoe|0ee
performing the first do-loop, the state is shown in Fig- see 000 eee|eee
ure 16. And, after performing the second do-loop, the eee o6 oo
state is shown in Figure 17. If we put together the e o908 33
first ¢ and the last ¢ equations in each processor, the
reduced system is still a circulant block-tridiagonal sys- Figure 17: The state after performing the second do-

tem, with smaller size, and can be solved recursively. loop.
Therefore, our algorithm can also solve circulant block-
tridiagonal systems. Similar to the previous section,

with slight modification, our algorithm for solving the

circulant block-tridiagonal systems decreases the size

of the reduced system when it solves block-tridiagonal

systems.

24

6 Performance of Our Algorithm

In this section, we shall show that Chung’s algo-
rithm [6] is superior to Agui’s [1] and our algorithm
is superior to Chung’s. Agui’s parallel algorithm only
solves the tridiagonal systems. After performing the
N-diagonalization scheme, Agui’s algorithm still uses
the N-diagonalization scheme to maintain the reduced
system a special system so that his algorithm can be
performed recursively. However, the N-diagonalization
scheme is time-consuming. In fact, if the size of the ma-
trix is n, performing the N-diagonalization needs O(n?)
row operations. Thus, the time complexity of Agui’s al-
gorithm is 0("‘ + log p). On the other hand, based on
the same partltlonmg scheme and the same Gaussian
elimination, Chung’s algorithm maintains the reduced
system to be a circulant tridiagonal system by reorder-
ing the corresponding columns and uses Gaussian elim-
ination instead of the N-diagonalization scheme. Note
that doing the two do-loops needs only O(n) row op-
erations. Because Chung’s algorithm needs only two
do-loops, Chung’s algorithm is simpler than Agui’s.
And, the time complexity of Chung’s algorithm is
0(” + log p). Clearly, Chung’s algorithm is superior to
Agu1 s. Next, the row operations invoked in our algo-
rithm is somewhat different from Chung’s and Agui’s.
Our algorithm performs fewer operations than Chung’s
and Agui’s do. And, in this ‘way, we can keep the
reduced system to be a circulant tridiagonal system
(without the N-diagonalization scheme or columns re-
ordering). Besides, in the back-substitution process,
our algorithm performs the same operations as the
Chung’s to find the final answer. The analysis of the
time complexity is as follows:

For our algorithm,

Gaussian elimination: 4 row operations

reduced system: T'(2p) = T'(p) + 6 and T'(4) = 1

back-substitution: % — 2 row operations
Thus, the number of row operations required for our
algorithm executed in parallel is

3 4 6lgp — 11
For Chung’s algorithm,

Gaussian elimination:

reduced system: T'(2p) =

back-substitution: 2 —
Thus, the Chung’s is

4 1llgp — 14
Clearly, our algorithm is superior to Chung’s. In addi-
tion, our algorithm can also solve the circulant block-
tridiagonal systems. It reduces more operations in
Gaussian Elimination. In fact, the time complexxty of
our algorithm is O(—l + ¢%log p), where ¢ is the size of
the block. And the" time complexity of Chung’s algo-
rithm is 0(" + ¢*logp). Thus, our algorithm for the

2n

2n

—2
T(p) + 11 and T(4) = 1

25

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

circulant block-tr1d1a.gonal systems is further superior
to Chung s.

7 Conclusion

. We have presented two algorithms proposed by
Agui [1] and Chung [6]. Agui [1] proposed a paral-
lel algorithm to solve the tridiagonal systems. And,
Chung [6] proposed a parallel algorithm to solve the
circulant block-tridiagonal systems. However, the N-
diagonalization scheme used by Agui’s algorithm needs
O(n?) row operations. And, although Chung’s al-
gorithm only does two do-loops, which needs O(n)
row operations, his algorithm must reorder the re-
duced system in order to apply his algorithm recur-
sively. And, though our algorithm also performs two
do-loops, our algorithm not only has fewer row opera-
tions than Agui’s and Chung’s but also needs not re-
order the columns of the matrix. Thus, our algorithm
is superior to Agui’s and Chung’s. Besides, our al-
gorithm not only can solve the circulant tridiagonal
systems but also can be used to solve the tridiagonal
systems with slight modification to decrease the order
of the reduced system. Further, we generalize them to
solve the circulant block-tridiagonal systems and the
block-tridiagonal systems. And, our algorithm for the
circulant block-tridiagonal systems is further superior
to Chung [6]. Since a banded system is a special case
of the block-tridiagonal systems, it can also be solved
by using our generalized solver for solving the block-
tridiagonal systems. For the above solvers, since they
are based on the divide-and-conquer method, they are
appropriate for executing on the hypercube and on the
binary tree.

References

[1] J. C. Agui and J. Jimenez, “A binary tree im-
plementation of a parallelf distributed tridiagonal
solver,” Parallel Computing, Vol. 21, pp. 233-241,
1995.

[2] M. Angelaccio and M. Colajanni, “Subcube ma-

trix decomposition: A unifying view for LU fac-

- torization on multicomputers,” Parallel Comput-
ing, Vol. 20, pp. 257-270, 1994.

[3] E. Bampis and J. C. Konig, “Impact of communi-
cations on the complexity of the parallel gaussian
elimination,” Parallel Computing, Vol. 17, pp. 55—
61, 1991.

Proceedings of International Conference
on Algorithms

[4]

(7

[8]

[9]

(10]

[11]

(13]

[14]

[15]

R. H. Bartels, J. C. Beatty, and B. A. Barsky,
An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling. San Mateo,
CA: Morgan Kaufmann, 1987.

J. Carl D. Meyer and R. J. Plemmons, “Conver-
gent powers of a matrix with applications to iter-
ative methods for singular linear systems,” SIAM
Journal on Numerical Analysis, Vol. 14, No. 4,
pp. 699-705, Sep. 1977. '

K. L. Chung, Y. H. Tsai, and W. M. Yan, “A
parallel solver for circulant block-tridiagonal sys-
tems,” Computers & Mathematics with Applica-
tions, Vol. 29, No. 1, pp. 109-113, 1995.

D. J. Evans, “Parallel S.O.R. iterative niethods,”
Parallel Computing, Vol. 1, pp. 3-18, 1984.

D. J. Evans and R. Abdullah, “The parallel im-
plicit elimination(pie) method for the solution of
linear systems,” Parallel Algorithms and Applica-
tions, Vol. 4, pp. 1563-162, 1994.

E. Galligani and V. Ruggiero, “A polynomial pre-
conditioner for block tridiagonal metrices,” Paral-
lel Algorithms and Apphcatzons, Vol. 3, pp. 227-
237, 1994.

K. Hwang and F. A. Briggs, Computer Architec-
ture and Parallel Processing. New York, USA:
McGraw-Hill Book Company, 1984.

A. H. Karp and J. Greenstadt, “An improved par-
allel Jacobi method for diagonalizing a symmetric
matrix,” Parallel Computing, Vol. 5, pp. 281-294,
1987. '

U. Meier, “A parallel partition method for solv-
ing banded systems of linear equations,” Parallel
Computing, Vol. 2, pp. 33-43, 1985.

P. H. Michielse and H. A. V. der Vorst, “Data
transport. in Wang’s partition method,” Parallel
Computing, Vol. 7, pp. 87-95, 1988.

K. S. Rajasethupathy, G.-M. Thio, S. K. Dhall,
and S. Lakshmivarahan, “Tridiagonalizing a real
symmetric matrix: A parallel direct approach us-
ing Given’s transformation,” Parallel Algorithms
and Applications, Vol. 2, pp. 305-313, 1994.

R. A. Sweet, “A cyclic reduction algorithm for
solving block tridiagonal systems of arbitrary di-
mension,” SIAM Journal on Numerical Analysis,
Vol. 14, No. 4, pp. 706-719, Sep. 1977.

26

[16] X. Wang and Z. G. Mou, “A divide-and-conquer

method of solving tridiagonal systems on hyper-
cube massively parallel computers,” IEEE Com-
puter-Society, pp. 810-817, 1991.

