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Abstract

- Finite identification, sometimes called “ome shot
learning,” is the most basic identification type stud-
ied in Inductive Inference. There are several ways to
generalize this notion. One of the more popular gener-
alizations is to consider identification in the limit, as
opposed to one attempt. We other generalization that
we consider are randomized finite identification and
finite identification with en additional information.
We prove that these lines of generalization are not
merely independent (neither one majorize the other
one) but also incompatible (simultaneous generaliza-
tion into two of these directions provides no general-
tzation at all).

1 Introduction

Inductive Inference is the term used for the synthe-
sis of programs from sample computations. It is the
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part of computational learning theory based on recur-
sion theory. Started by the well-known paper [Go 67]
nowadays inductive inference is the most developed
part of computational learning theory (see the survey
[AS 83] and the monograph [OSW 86]). Although far
from development of machine learning algorithms, in-
ductive inference has actively supplied practitioners
with intuitions on how to learn, what to learn, and
what difficulties to avoid.

The main technique of research in Inductive Infer-
ence is the set theoretic comparison of various identi-
fication types and finding deeper relations among the
types and among the identifiable classes of functions
and languages. The types are chosen so as to high-
light particular aspects of the learning process, such
as compairing probabilistic learning to deterministic
learning.

In this paper, we consider two different general-
izations of the most fundamental of the learning by
example models (one shot learning). One general-
ization uses extra information, like an upper bound
on the size of the solution, and the other uses ran-
domized learning proceedures. Not surprisingly, we
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find that these two avenues of generalization are com-
pletely independent. What is surprising is that while
each of the two techniques does turn out to general-
ize the one shot model independently, when the two
techniques are combined so as to considered random-
ized one shot learning with extra information, then
there is absolutely NO generalization at all. Most of
the paper is concerned with the precise set theoretic
compairisons that arise by considering the collections
of sets that are learnable with respect to each of the
generalizations considered. There are many defini-
tions and proofs needed to make the above notions
precise, but this is the nature of such a mathematical
study. The individual theorems by themselves mean

very little. Most of the proofs are omitted due to-

space considerations. The contribution of this paper
comes from the combination of the results and the
creation of Figure 1.

We proceed to give the basic notation needed to
precisely describe the identification types we consider
in this paper.

Let P, R denote the sets of all partial recursive
and total recursive functions of one argument taken
from the natural numbers. Suppose L and M are sets.
Then L € M denotes the inclusion of L in M, and
L C M denotes the proper inclusion of the same sets.

Let ¢ be a fixed Godel, numbering or acceptable
programming system, of all the partial recursive func-
tions of one argument. For any f € P let min,, f
denote the minimal index of f in . If f(z) is de-
fined for all z < n then f[® denotes a finite string
consisting of integers (f(0), f(1),..., f(n)). We say
that the sequence of integers (z,), .y converges to =
(z = lim, z,,) if there exists ng € N such that z, = z
for all n > no. Finally, let id(z) = & and id*(z) = 22
for any z € N.

The most widely studied inference types are called
FIN (one shot learning), EX (learning in the limit),
BC (semantic, rather than syntactic, convergence).
The definitions given below are equivalent to the stan-
dard ones. Our choice of notation here is to facili-
tate the comparisons we make later on. All undefined
concepts and notation can be found in [OSW 86] and
[Smi 94].

Definition 1.1 Let U be o class of total recursive
Junctions and ¢ be a Gédel numbering of all 1-
argument partial recursive functions. U is called
finitely identifiable (U € FIN) if and only if there is
a recursive functional F' on U such that for arbitrary
felu,

vr(n =1

Inductive inference with extra information has also
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been investigated. One particularly useful piece of
extra information is an upper bound on the index
of a program for the function being learned. Con-
sequently, we make the following definition.

Definition 1.2 Let U be a class of total recursive
functions and @ be a Gédel numbering of all 1-
argument partial recursive functions. U is called
finitely identifiable with ezira information (U €
FIN*) if and only if there is a recursive functional
F on U such that for arbitrary f € U and any
b > min,, f
Prb,s) =T

Studying the inductive inference of minimal pro-
grams, R. Freivalds [Fre 78] found that a certain cri-
terion becomes simple and natural if one considers
counterparts for FIN (where the recursive functional
is replaced by an effective operation), and (Definition
1.5 below) EX (where the strategy working in the
limit is replaced by a limit-effective operation).

Definition 1.3 A functional F' on U (of type U —
N ) is called an effective operation if there is a partial
recursiwe function ¢ such that for arbitrary ¢, € U:

1. F(ps) defined < (z) defined,
2. F(ps) defined = (F(p;) = 9(z)).

Definition 1.4 A class U of total recursive functions
is called finitely standardizable (Y € FSTAND) if and
only if there is an effective operation F on U such that
for arbitrary f € U

vr(p) = .

It is easy to see that & € FIN implies U €
FSTAND. There is a classical theorem suggesting the
converse might also be true.

Theorem 1 Kreisel, Lacombe, Shoenfield [KLS 57]
F' is a total effective operation on R if and only if F
18 a total recursive functional on .

Since standardizability is performed by a total ef-
fective operation, one might suggest that FSTAND =
FIN. However, FSTAND # FIN proved in
[FKW 84]. Since then, the notion of standardizabil-
ity has been studied by many authors (see [OSW 86])
where it was believed that FSTAND is only “slightly”
larger than FIN. We show below that this belief is
not accurate.

Recursive functionals are computed by Turing ma-
chines that receive the graph of a function f on the



input tape, and produce the result F(f) (if it is de-
fined) in a finite number of steps. However, if the
value of the functional F(f) is not defined, then the
machine can go on working indefinitely. Since this
definition has already involved the potentially infinite
processing of the input information, it was natural for
E. M. Gold [Go 67] to develope a genuinely infinite
identification process.

Definition 1.5 Let U be a class of total recursive
functions and ¢ be a Gdidel numbering of all 1-
argument partial recursive functions. U is called iden-
tifiable in the limit ({{ € EX) if and only if there is
an algorithmic device that takes as input the graph of
a function f and produces outputs converging to an
integer ¢ such that

;= f.

Definition 1.6 Suppose (U € EX) as witnessed by
an algorithmic device M. 1If, for any f € U, M
changes its output no more than n times enroute to
convergence (we say that the machine makes no more
than n mindchanges) then U is in EX,,.

Definition 1.7 Let U be a class of total recursive
functions and @ be a Gédel numbering of all 1-
argument partial recursive functions. U is called BC-
identifiable if and only if there is an identification ma-

chine such that given the graph of an arbitrary f €U,

it produces an infinite sequence of outputs ig, 4, + -+
such that

wi, = f
for all but finitely many t.

Randomized Turing machines are deterministic
Turing machines having access to the simplest
Bernoulli random number generators equiprobably
outputting zeros and ones. Informally, one can say
that the machine can toss coins.

Definition 1.8 Let U be a class of total recursive
functions and ¢ be ¢ Gddel numbering of all 1-
argument partial recursive functions. U is said to be
in randFIN(p) if and only if there is a randomized
identification machine such that given the graph of an
arbitrary f € U, it produces an output ¢ such that

;i =f
with probability no less than p.

Please notice that every recursive function has
infinitely many indices in every (G6del numbering.
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Hence it is possible that every particular integer is
output with very small probability but the total of
the probabilities for correct programs of the target
function exceeds p.

It is well known that EX C BC. The properness of
the inclusion was proved by J. Barzdins ([Bar 74], see
[OSW 86]). It can be easily seen from the definitions
that

FIN C FSTAND C FIN*
and
FIN CrandFIN.

These generalizations of FIN really expand the
capabilities of the identification machines. We have
proved that these generalizations are independent in
the sense that the capabilities of one generalization
do not majorize the capabilities of the other general-
ization. The inclusions we find are summarized in the
following diagram.

a ) N

EX BC

MART
IDENT

TN

FIN| FSTAND FIN*

\ J J

Figure 1. Summary of Results

What we find surprising, is that these two lines
of generalization are incompatible. If we simulta-
neously generalize the notion of FIN-identifiability
along these two generalization lines, then the capabil-
ities of the identification machines do not increase at
all (Theorem 13).

2 Randomized finite identification and
martingales
We continue by reviewing the pertinant previous
results concerning the learnable classes defined in the
previous section.

Theorem 2 (R. Freivalds [Fre 79]) If p > 2/3,
then randFIN(p) = FIN.
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Theorem 3 (R.Freivalds [Fre 79])

If, for real numbers py and ps, there is an inte-
ger n such that 2%"% < p < p2 <‘§’-1ni_|_—lf, then
randFIN (p,) = randFIN(p2).

Theorem 4 (R.Freivalds [Fre 79])

If, for real numbers py and pz, there is an inte-
ger n such that py < % ond py > %, then
randFIN(p,) # randFIN (p2).

The following lemma was implicitly present in
[Fre 79], however it was not singled out from the proof
of Theorem 3 in [Fre 79].

Lemma 2.1 If a class U of total recursive functions
is in randFIN(p) with p > %’-‘_%, then U is finitely
identified by a team of 2n + 1 deterministic identifi-
cation machines such that every function in U is cor-

rectly identified by at least n+1 machines of this team.

Theorem 5 If a class U of total recursive functions
is in randFIN(F5tY) then U is identifiable with at
most n mindchanges (U € EX,,).

Proof. Since 7L > 4% it follows from Lemma
2.1 that there exists a team of 2n + 1 deterministic
identification machines such that at least n + 1 ma-
chines of this team correctly finitely identify the class
U. Our limit identification machine simulates the ma-
chines in this team. The machine waits until the first
bunch of at least n + 1 outputs is obtained from the
machines to be simulated. Then our machine out-
puts a result being the amalgamation of the results
of the simulated machines. When some of these out-
puts turn out to have produced a wrong result, our
machine waits until a new bunch of n 4+ 1 outputs not
yet found incorrect is found, and makes amalgama-
tion of these results. Clearly, such change can happen
at most n times. O

Theorem 6 For arbitrary positive integer n there is
a class U of total recursive functions such that:

1. UerandFIN(%l—l),
2 U¢ EXp_y.

Theorem 7 There is a class U of total recursive
functions such thet U is identifiable with ot most 1
mindchange but U iz not in randFIN.

Proof. The class U consists of the “constant zero”
function and all functions differring from it on ex-
actly one argument. Assume by way of contradiction
that there is a randomized finite identification ma-
chine identifying the class I{ with probability > 7+ 1.

332

Consider a sufficiently long initial segment fr of the
constant function such that the machine outputs some
results with total probability > %+ 1 using only input
from fr.

We noneffectively choose a function ¢ € U such
that the machine has output correct programs for g
with a probability at most 5~ on fr. Since U con-
tains infinitely many functions, all the functions can-

1

not have a probability over 5~ on f. The machine

has already used the probability % + % on f. For the
new outputs there remains probability less than % - %
which is not enough for the function g. O

Now we consider a generalization of randomized fi-
nite identification. We wish to point out a specified
property of randFIN-identifiability. For this identi-
fication type it is specific that at some finite moment
(namely, when the total probability of the output re-
sults exceeds a definite level for the first time) the
probabilities of sufficiently many outputs are already
determined. Not much can be changed after this mo-
ment. This is similar to deterministic finite identifica-
tion. However, some minor changes are still possible.

Randomness is closely related to the notion of mea-
sure. Many approaches to defining the notion of
measure have been considered. Most of the mod-
ern definitions are based on the Lebesgue measure.
From the viewpoint of classical mathematics, the class
of all recursive functions has measure 0. However,
based on the ideas of Lebesgue, measure has been in-
troduced for 0-1 valued total recursive functions as
well. There have been several (nearly equivalent) def-
initions. The most popular definition is due to K.
Mehlhorn [Meh 73]. It uses the notion of martingales.

A function m : {0,1}* — is a martingale if for all
z, if m(20) J or m(z1) | then

1. m(z) |, m(z0) | and m(z1) |
2. m(x) _ m(z0)+4m(zl)

2

Let f € {0,1}*. We say m wins on f if
1. For all n, m(f(0)--- f(n)) |, and

2. limsup,,_, .. m(f(0)- - f(n)) = co.

We say m loses on f if m does not win on f. Let C
be a collection of functions. then m wins on C if m
wins on every f € C. We say a class C has measure
zero if there is a martingale m that wins on all f € C.
We define recursive and partial recursive measure zero
by requiring m to be recursive or partial recursive
respectively.

Since we are interested in arbitrary total recursive
functions, not only the 0,1-valued ones, we consider a



modified notion of martingales. We consider Turing
machines that monotonically limit-computing non-
negative real valued functions. This means that the

machine outputs newer and newer hypotheses about .

the result. Each hypothesis is a non-negative rational
number, and the hypotheses never decrease.

Definition 2.1 We say thai e class U of total re-
cursive functions has a martingale (denoted as U €
MART ) if there is a deterministic machine receiv-
ing as the input the graph of the target function such
that: .

1. for every f € U, the machine outputs an initial
segment fl*(f N of the target function in a finite
number of steps.

2. for every f € U, the machine monotonically
limit-computes a real number m(f*().

3. for every f € U, for every x > v(f), and for
every initial segment of a total function g such
that flUN = gle(N) | the machine monotonically
limit-computes m(g®®)) such that:

a) 0 < m(gl+t) < m(gle)),

b) the total of m(hl*+1) over all the functions h
such that hl®) = gl=] never exceeds m(gl*]),

c) for every f € U , there is a y such that
m(f) = m(frH) = m(fl+2) = > 0.

Proposition 2.1 If a class U of total recursive func-
tions is in randFIN, then U is in M ART.

Proof. The probabilities of corresponding output
programs can be used for the m(f[*]). O

Definition 2.2 We say that a class U of total recur-
sive functions has an accumulation point if there is
a function f € U such that for arbitrary initial seg-
ment fI=1 of the function f there is a different function
g € U with the same initial segment gl = flel,

Definition 2.3 We say that e class of total recursive
functions is discrete if the class has no accumulation
points.

Proposition 2.2 If e class U of total recursive func-
tions 1s in M ART, then U is discrete.

Proof. The proof follows from the requirement 3c
in the definition of the martingale. O

U € MART means that the class I is small
in measure. However, this notion is rather distant
from notions of learnability. Hence we consider an
identifiability-related counterpart of this notion.
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Definition 2.4 We say that a class U of total recur-
sive functions is a martingale identifiable (denoted as
U € MARTIDENT) if there is a deterministic ma-
chine receiving as the input the graph of the larget
function such that:

1. for every f € U, the machine outputs an ini-
tial segment fl*) of ihe target function and a
program consistent with this initial segment in a
finite number of steps.

2. for every f € U ,the machine monotonically
limit-computes a real number m(fV(¥)).

3. for every f € U, for every z > v(f), and for
every initial segment of a total function g such
that fl*N) = gl* (N the machine monotonically
limit-computes m(gl®) such that:

a) 0 < m(getl) < m(gleh),

b) the total of m(h*+1) over all the functions h
such that hl=} = gl*] never exceeds m(gi*),

c) for every f € U , there is a y such that
m(f01) = m(flr) = m(fr2)) = . > 0.

4. at every moment when the machine outputs the
first positive approzimation for a wvalue of the
martingele function on an initial segment of
some function, the machines produces a program
consistent with this initial segment of the target
function,

5. for every f € U , there is a y such that the pro-
gram output on this initial segment is the same
as the program output on the preceding initial seg-
ment of the same function.

Proposition 2.3 If a class U of total recursive func-
tions 18 in randFIN, then U is in MARTIDENT.

Proof. The probabilities of corresponding output
programs can be used for the m(f®). O

3 Identification with an additional in-
formation

Theorem 8 There is a class U of total recursive
functions such that:

1. U € FIN®,
2. U ¢ EX.

Theorem 9 If e class U of total recursive functions
is finitely standardizable, then U is in EX.

Theorem 10 There is e class U of total recursive
functions such that:
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1. U is finitely standardizeble,

2. U is not identifiable in the limit with any constant
number of mindchanges.

Proof. A non-empty class U of total recursive func-
tions and effective operation on U will be constructed
such that:

a) for arbitrary f € U, the value of F(f) is a correct
w-index of the function f,

b) for arbitrary initial segment f1# of an arbitrary
function f € U there is a different function g € U
with the same initial segment gl®! = fl=I,

1. The assertion 1) of our Theorem is implied by
a) and b).

2. We construct the class U and the effective oper-
ation F' with the properties a), b). Every function in
the class U is a function differing from some constant
only on a finite number of arguments.

We construct simultaneously the class ¢ and a re-
cursively enumerable set T of pairs (a,b) (to be used
for the definition of the effective operation). In the
process of the construction some functions will be
placed into an auxiliary class U'. If a function gets
into U’, it can be rémoved from U’ or it can stay in I’
forever. If a function is removed, it never returns to
U'. The class U consists of all the functions such that
they stay in U’ forever. By apa; ...a,a™ we denote
the function

ag, ifz=0;
a, ifz=1;
fz) = :
an, ifxz=mn;
o, ifx>n.

By {apa; ...a,} we denote the canonical index of
the string agpa; ...a,. By s(aoa;...a,) we denote a
(-index of the function

ag, ifz=0;

a;, ifzx=1;
9(z) =

a,, ifz=n;

Gn, ifz>n.

obtained from {apa; ...a,} by usage of some fixed
uniform procedure. The construction of I/ and T is
organized in stages:

Stage 0. The functions 0 and 1*° are placed in U’
and the pairs ({0},0), ({1},0) are placed into T'. Go
to Stage 1.

Stage n + 1. Assume by induction that every pair
(a,b) placed into T at Stage n is of form
({@oa1 ...an},n) and it corresponds to a function
a0ay - . . anal’ placed into U'. We also assume by in-
duction that at the end of Stage n U' does not con-
tain any functions different from those corresponding
to pairs placed into T at Stage n.

We compute n steps of each of the following com-
putations:

0(0)
©1(0), 1(1)
#n(0), wa(l), ..., n(n)

After that we consider all the pairs placed into U’ at
Stage n. When considering the pair ({apa; ...a,},n)
we test whether or not there is a k < n such that:

(i) computation of each of ¢x(0), wi(1),..., wkr(k)
terminates in at most n steps,

(i) ©&(0) = ao, r(1) = ay, o pr (k) = ay,
(i) @)((k <1< n) & (ai—1 # a;))

If such a k exists, then the function aga; ...a,a%

is removed from U'. If such a k does not exist, the

function aga; ...a,a3 remains in U’, and we place

the following pairs into T':

({aoai ...anar},n+1)

({aoar ...an(an +1)},n+1)
({aoa1 ...an(a, +2)},n+ 1)
({agai ...an(an +n+3)},n+ 1),

and we additionally place the following n+3 functions
into U':

aoay ... ap(a, +1)%

aoQa; ...an(an +2)%

aoay ...an(a, +n+3)

Go to Stage (n + 2).
End Stage n + 1.

Now we prove that the class U/ is nonempty. In-
deed, the functions 0% and 1°° cannot be removed
from U’ because of (iii). We define the desired effec-
tive operation by defining a partial recursive function
¥(z). To compute this value, in parallel generate the
pairs in T, and compute ¢, (0), ©,(1),.... Let the pair

({aoay ...a,},0) €T
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be the first pair (according to our parallel computa-
tion) such that c,o,[,"] = agay...a, and z < b. Let m
be the largest integer m < n such that a;, = @me1 =
«++ = ap. Then we define ¥(z) = s(apa1 - am).

Now we prove that 1) defines an effective opera-
tion on U. (Please notice that ¢ does not define an
effective operation on R.) Let ¢, € U. If p, is a
constant function ¢.(t) = a then, by our definition,
¥(z) = s(a), i. e. ¥(z) does not depend on the partic-
ular @-index of the function. If ¢, is a non-constant
function, then ¢, = apa; -. .ana;ﬁl. Assume that in
this notation n is chosen such that a,, # ap+1. In this
case ¢ > n + 1 (otherwise the function would have
been removed from U{'). However for all b > n+ 1 the
pair ({@oa; .. .ap},b) compatible with the function ¢,
leads to representation

agay ...ap = agdy ...Aplnt1 ...

with apt1 = @pt2 = -+ = ap. This implies ¥(z)
s(aoay . ..ap).

Now we prove the property b) of the class U{. Let
the function f = agay ... apad, beinl (an # ani1),
and let f*! be the initial segment from the property

b). If z > n+ 1, then at Stage = the functions

o0
apad1 ...0p0n41 - az_l(am + 1)
@pay . .. Aplntl - - Gp—1(ay +2)

o0
@pay ... Gl ---Ap—1(az + 2 + 2)

are placed into U'.

At least one of these z + 2 functions is such that
its minimum ¢-index exceeds z + 1. This function g
is different from f, and it is never removed from {'.
Hence this function is in ¢/, and ¢l = fl=l,

If 2 < n+ 1, then consider the function f =
aoay ... anany; € U and the functions

apaq ... am(am + 1)0Io
aoay . ..agz(az +2)%

aoay . ..az(ag + 2z +3)%

placed into I/’ at Stage z + 1. At least one of these
z + 3 functions is such that its minimum -index is

at least £ + 1. Hence this function g is never removed
from U', and gl*} = fle]. O

Theorem 11 If a class U of total recursive functions
is in FINT, then U is in BC.

4 Incompatibility of the two general-
ization lines
The proof of the subsequent theorem is based

on the mutual recursion theorem of R. Smullyan
[Smu 61], see also [Smi 94].
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Theorem 12 There is a class U of total recursive
functions such that :

1. U € randFIN,
2. U¢FINT.

The identification types randFIN and FIN™ are
independent. On one hand it follows from Theorem
12. On the other hand, we had Theorem 8 saying that
FIN* \ randFIN is not empty.

Now we have come to the result we consider as the
most unexpected. The two gerneralization lines (one
represented by FIN and the other one represented by
FSTAND) turn out to be incomparable.

Theorem 13 If a class U of total recursive functions
is both in FIN™ dnd in randFIN, then U is in FIN.

Proof. To identify I/ by a deterministic identi-
fication machine in FIN-mode, simulate the work
of the randFIN-machine until the total probability
strictly exceeds % Take the maximum of all the ob-
tained results and use the FIN*-machine with this
upper bound of a correct program. The upper bound
is surely correct by the definition of the randFIN-
identification (the total probability of the correct pro-
grams exceeds 1 ). Hence the result by the FIN+-

2
machine is also to be correct. O
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