hERE/\+/N\FEEEEREE

EE R T

P EME - TRERRFEETIER

Arrays Revisited: Layout Annotation, Subscript Assignment, and
Multidimensional Index

LR S
rHMEFELLAERTANIEH

% #8805 A7 X 5 #3005
Email: pcwu@npit.edu.t

w E

AR EHERETPEEZHEREYN - &
Pl R A A ERRBTHMELEH I RRALES 2
FREHER BAREF,AHRFTEH - %
& A SR MR REY > S HBAFE
BREMK - Fi?'lé']ﬁ?/% \i%ﬁ’li%ii 7%?_;
1 TRELRARE ~ BERMEF - 2R
&'F?'Vﬁ'ﬂﬂl‘??'lé@&ﬂ%‘%#%i D5 & & 857 fif ho
RARIARERMS BT K 2)— Y TIRE
Eeyhra, oA TRIGEARE HEL - %
C++3Ek &7, % % Boperator[] B operator[] - 3)
BTREELRBINSGE -BLETEHTER
YN EREREARN -

Mot Cr+ HERE WEFL HHE 7
BE

Abstract

Arrays are fundamental and primitive data
types in programming languages. Although
primitive, arrays have many variations, which have
been used for decades and are unfortunately
incompatible with each other. There are three kinds
of binding for arrays: compile-time, creation-time,
and manipulation-time. These three are called static,
dynamic, and flexible binding, respectively. There
are also twokinds of layout order for arrays,
row-major and column-major, and various subscript
operators, such as get, assign, and delete. This paper
presents the following language features for arrays: 1)
An array declaration can be annotated with binding
and layout order of the array. 2) An object interface
consists of two subscript operators: get and assign. In
C++ syntax, these are defined as operator ‘[]’ and
operator ‘[]=". 3) We extend subscript operators to be
multidimensional. These language features make
array interfaces safe and powerful.

Keywords: C++, dynamic binding, static binding,
row-major, column-major.
1. INTRODUCTION

Arrays are fundamental and primitive data

types in programming languages. Although
primitive, arrays have many variations, which have
been used for decades and are unfortunately
incompatible with each other. Ghezzi and Jazayeri {5,
p.100] introduce three kinds of binding for arrays:
compile-time, object creation-time, and object
manipulation-time. In the following, these three are
called static, dynamic, and flexible binding,
respectively. Arrays are static by default in languages
such as FORTRAN [1], Pascal [7], C [8], and C++
[3]; arrays are dynamic in Java [4] and Eiffel [10];
Ada [2] provides both static and dynamic arrays;
arrays in Smalltalk [6] and Python [9] are flexible.
Algol 68 [5,p.101] provides bothdynamic and
flexible arrays, using the keyword ‘flex’ to indicate
flexible arrays; otherwise, arrays are dynamic.

Another remarkable difference between arrays
in various programming languages is the layout
order for arrays. There are two conventions:
row-major and column-major. C/C++ adopts
row-major; BASIC and FORTRAN 77 adopt
column-major. FORTRAN 90 does not insist on one
specific order. When programs of different
programming languages are linked together, the
difference in the layout order of multidimensional
arrays must be considered.

Subscripts are a fundamental programming
feature for accessing elements of arrays. The C++
language allows subscript operators to be used in
user-defined data types (i.e., classes). For example:

class a_class_name
{ ...
T operator[] (S index);

b

T is the return type; S is the type of index; ‘a[i}’
denotes the element of the array (or object) a
indicated by an index i. For a[i] to be used in the
both sides of an assignment statement in C4++, T is
usually a reference data type, such as char& in the
following:

A-33

class String

{ ...
char& operator[] (int index);

IR

String a = "a test string";

a[3]=a[5];

The disadvantage is that this technique uses
reference types, which ma be unavailable to some
programming languages.

This paper presents the following language
features for arrays: 1) Storage layout annotation: An
array declaration can be annotated with binding and
layout order of the array. 2) Subscript assignment:
An object interface consists of two subscript
operators: get and assign. In C++ syntax, these are
operators ‘[]’ and ‘[]=". 3) Multidimensional index:
We extend subscript operators tobe
multidimensional. A two-dimensional index of
subscript ‘get’ operator can be defined as operator []
(int x, int y). These language features make array
interfaces safe and powerful.

2. RELATED WORK

Flexible arrays are easy to use; however, their
implementation needs data structures such as hash
tables, which take more time and space than static
and dynamic arrays. Thus, flexible arrays are not
suitable used as the sole data type of arrays provided
in a programming language, when the execution and
space efficiency is considered crucial. Most recent
programming languages such as Java and Eiffel
provide only dynamic arrays. This may indicate that
dynamic arrays are in major stream. However,
C/C++ are also influential languages today, the
chance using static arrays is still very high. Ada's
data type declaration can be either static or dynamic,
they are called constrained and unconstrained,
respectively. The following are array declarations in
Ada:

type GAME_BOARD is array (1.8, 1.8) of
CHESS_PIECE;

type BIT_VECTOR is array (INTEGER range <>)
of BOOLEAN,;

GAME_BOARD is adata type of static arrays;
BIT_VECTOR is adata type of dynamic arrays.
Static and dynamic arrays are different data types,
which cannot be mixed together.

Javadoes not allowan arrayto export the
reference of its element. This is a simplification from
C++, although Java inherits many features from C
and C++. To be kept simple, Java even removes all
C++ overloaded operators. The subscript operato

does not applyto Java’s user -defined classes. Fo
example, when manipulating a StringBuffer [4,
p-323] object, Java uses methods such as charAt,
setCharAt to access characters in the object:

public final class StringBuffer extends Object
{
public char charAt(int index);

public void setCharAt(int index, char ch);

Python provides rich subscript operators. Fo
example, apartial list of the object methods of
mutable sequence [9, p.787] are as follows:

Operation [Description Object Method
s[i] Index __getitem___
s[i:j] Slicing ___getslice__
sfi] =x Index assignment |__setitem__
s[i:j] =x |Slice assignment |__setslice_
Del s[i] Index deletion __delitem___
Del s[i;j] [Slice deletion __delslice__

Python's subscript operators can be classified
into three categories: get, assi , and delete.
Operati ns in Column 1 are mapped into calls of
object methods in Column 3. Thus, one does not
need to call s.__getitem__(i) directly but uses s[i]
instead. Deleting elements by an index (or slice) is to
remove data of the index (or the slice) in the series.
Python's slice s[i:f] denotes accessing the contents of

s{i] to s[j-11.

There is another convention for slices. Slices
s[i;j] in FORTRAN are defined as follows: i is the
starting, j is the ending, and s[i;j] denotes accessing
the contents of s[i] to s[j]. Slices can also contain
disjoint elements. FORTRAN 90 [1] defines a
subscript triplet as follows:

slfirst: last : stride]
denotes one element for every siride from s[firsi] to
sllast].

3. STORAGE LAYOUT

Foll wing the adoption of recent programming
languages such as Java and Eiffel, dynamic binding
for array data types becomes more widely used.
However, this trend makes linking programs in
different languages more difficuli. To solve this
difficulty, the decla ation of arrays can be annotated
with the way of binding (static or dynamic), in
addition with storage layouts of arrays. For example,
the following annotation extends the syntax of C and
Ca+:

double x[100] /dynamic ;
chess_piece board[8][8] /dynamic;
int af} /static = {1, 2, 3, 4, 5} ;

A-34

double m[250][250] /dynamic /col-major ;
double t[4][4] /static /ro -major;
double m[31] /dynamic;

The way of binding is categorized into static
(/static) and dynamic (/dynamic). Storage layout can
be categorizedi nto row-major (/row-major) and
column-major (/col-major). Storage layouts are only
applicable to arrays of more than two dimensions.
The way of binding is usually specified expliciil
when the program is linked with programs of othe
languages. Programming languages can provide a
default binding for arrays. For example, the default
of C and C++ can be treated as "/static /ro -major”.
Here the prefix of annotated keywords is '/', this can
avoid the confusion with existing keywords, such as
the keyword 'stati ¢’ of C and C++. Using the syntax
of Pascal to declare arrays is as follows:

var
x : /dynamic array [1..100] of real;
board : /dynamic array [1..8, 1..8] of chess_piece;

When arrays. are used in the parameters of a
function, they can also be annotated in their
parameter declarations. For example, the following
is a function inverse, which takes a static arra a
wit m rows and n columns:

void inverse(double a[m][n] /static);

When a program is mixed with static and
dynamic arrays, the system canautom aticall
converts dynamic arrays into static arrays of equal
dimension. Dynamic arrays usually have the
following data structure:

struct dynamic_arra
{
int n_dims; // number of dimensions
int length[n_dims] /static ;
// length of each dimension
T data[size] /static;
// size = product of length(i]
b

Constant n_dims is the dimension of the array
length is the size of each dimension; T is the data
type of array elements; data is a static array fo
sioring each element of the array. Let a0 be a
dynamic array with m rows and n columns:

double a0[][] = new double[m]}[n] /dynamic;

Since the dimension of a0 is equal to that of
parameter @ in the inverse function, we can use a0 to
call inverse:

inverse(a0);

The system only needs to pass the address of a0.data
as a static array. This becomes:

inverse(a0.data);

Consider another example:
void inverse2(double afm][n] /static, int m, int n);

Function inverse takes a static arra a and
parameters m and n, which denote the number of
rows and the number of columns, respectively. We
define another function inverse , which takes a
dynamic arra a. Function inverse can be
implemented by a call to inverse :

void inverse3(double af][]}/dynamic)

{
}

inverse2(a, a.length[0], a.length[1]);

alength[0] and a.length[1] denote the number of
rows and the number of columns of array a. Note
that the base of the arra a.length is 0.

4, SUBSCRIPT ASSIGNMENT

Python's subscript operators are classified into
three categories: get, assi , and delete. The
Dictionary data type is a set of pairs of keys and
values, which data types are denoted as Key and
Value, respectively. Let d be an object of Dictionary,
Key be String, and Value be Object. The following
are examples of using Dictionary:

Ex. 1 if (d["machine"] == "Apollo") ... ;
Ex.2 d["cpu load"] =0.18;

Ex.3 delete d["erroneous jobs"];

Ex. 4 d["erroneous jobs"] = null;

Examples 1 and 2 use subscript ger and subscript
assi . Example 3 uses subscript delete. Example 4
is a special case of the subscript assign, where the
assigned value is null. In runtime environments with
automatic garbage collection, Examples 3 and 4 have
the same semantics; however, Python allows they to
be defined as different.

To preserve the original semantics of the delete
operator and to avoid introducing the ambiguities in
Examples 3 and 4, we do not allowthe delete
operator. An array interface consists of only two
kinds of subscript operators: get and assi . The
class Dictionary using the syntax of C++ is as
follows:

A-35

class Dictionary
{
public:
Value operator[] (Key k);
void operator{]= (Key k, Value v);
b '

The operator '[]' represents the subscript operato get,
which is the original C++ subscript operator.
Because operator '[]' can only be used in the
right-hand side of an assignment, Value does not
need to be a reference data type. The operator '[]='
represents subscript operato assi , which is new to
C++. These operators

These subscript operators can also be
overloaded. Consider a mutable list class Sequence:

class Sequence
{
public:
Value operator[] (Key k);
Value[] operator(] (Slice<Key> s);
void operator[]= (Key k, Value v);
void operator{]= (Slice<Key> s, Value v);

B

There are two method names of operator []' and
operator '[]=". "Slice<Key> s" denotes the index data
type is a slice of Key. "Value[]" denotes an array of
Key.

5. MULTIDIMENSIONAL INDEX

Subscript operators can be extended to be
multidimensional. Use Matrix as an example:

class Matrix
{
public:
Matrix (int dims[]);
double operator[] (int index[]);
void operator{]= (int index[], double v);

b

Here the index is an array. The following are
examples of uses:

Matrix m[250, 250]; // dims = [250, 250];
if (m(i, i+1] > 0.0) ... ; // operator[)], index = [i, i+11;
mli, j] =0.0; /I operator{]=, index = [i, j];

A more flexible approach is dividing the index
into an equal number of parameters:

class Array2

{
public:
Array2 (int i, int j);

double operator[] (int i, int j);
void operator[]= (int i, int j, double v);

|5

Array2 is a 2-dimensional array. A 2-dimensional
index is divided into two parameters: i and j.
Consider the following examples of use:

Array? a[250, 250]; // (i,]) = (250, 250);

if (a[1, 2] >0.0) ... ; // operatorf], (i, j) =(1, 2);
af2,3]1=0.0; // operator(]=, (i, j, v) = (2, 3,
0.0);

This approach isuseful for arrays with a fixed
number of dimensions, where the index of each
dimension can be directly given with variables such
asi,j, and k.

Both approaches introduce no syntax extension
but solve the fundamental problem of subscript
operators in C++ and Java. This feature meets one of
the design goals of Java: simplicity and security.
Firstly, for C++ and Java, this feature uses only two
operators [] and []=, which are the least extension
known. Secondly, this feature does not adopt
reference types, so there is no danger for destruction
of object's internal data structures. Thirdly, a list of
indexes separated by commas in subscript operators
is considered to be a multidimensional .index rathe
than a confusing comma expression in C and C++.
In addition, syntactically operator ‘[]=" is similar to
other C and C++ assignment operators, such as ‘+=’,
“*=’, etc. This follows the convention 6f C++'s
naming style. P ogrammers familiar to C++ would
be familiar to this extension as well.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented the following
language features: 1) Layout annotation: An array
declaration can be annotated with binding and la yout
order of the array. 2) Subscript assignment: An
object interface consists of two subscript operators:
get and assi . 3) Multidimensional index: We
extend subscript operators to be multidimensional.
These language features make array interfaces safe
and powerful. The features presented also indicate
that recent languages such as C++ and Java still
have weak points, which can be much improved with
acceptable effort. In the future, research effort should
also emphasize on integrating existing programming
features and best programming practices.

REFERENCE

[1] Adams, Jeanne C. et al, FORTRAN 90
Handbook - Complete ANSI/ISO Reference,
New York, Intertext Publications, 1992.

A-36

(3]

(4]
(5]

(6]

[7]
(8]

9

[10]

Booch, G., Software Engineering with Ada ,
The Benjamin/Cummings Publishing Company,
Inc., California, 1983.

Ellis, M.A., Stroustrup, B., The Annotated
C++ Reference Manual, Addison-Wesley,
Massachuseits, 1990.

Flanagan, D., Java in a Nutshell, O-Reilly &
Associates, Inc., 1996.

Ghezzi, C., Jazayeri, M., Programming
Language Concepts, 2nd Ed., John Wiley &
Sons, Inc., 1987.

Goldberg, A., Robson, D., Smalltalk-80: The
Language, Addison-Wesley, Massachusetts,
1989.

Grogono, P., Programming in Pascal, 2nd Ed.,
1934,

Kernighan, B.W., and Ritchie, D. M., The C
Programming Language, 2nd Ed.,
Prentice-Hall, New Jersey, 1988.

‘Lutz, M., Programming Python, O'Reilly &

Associates, Inc., 1996.
Meyer, B., Object-oriented Software
Construction, Prentice-Hall, New York, 1988.

A-37

