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Abstract

Optimization theory and method are very important in
numerous different domains of engineering design and
applications. Compared to many previously proposed
search methods, the gradient descent method is simple and
widely employed to solve numerous different optimization
problems. However, the gradient descent method is easily
trapped into a local minimum and converges slowly. A
Gradient Forecasting Search Method (GFSM) for
improving the performance of the gradient descent method
for resolving optimization problems is proposed herein.

The GFSM is based on the gradient descent method
and on the wuniversal Discrete Difference Equation
Prediction Model (DDEPM) proposed herein. The concept
of the universal DDEPM is derived from the grey
prediction model. The original grey prediction model
employs mathematical hypothesis and approximation to
transform a continuous differential equation into a discrete
difference equation. This is not a logical approach because
the forecasting sequence data is invariably of discrete type.
To construct a more precise prediction model, this work
adopts a discrete difference equation. The GFSM proposed
herein can accurately predict the precise searching
direction and trend of the gradient descent method via the
universal DDEPM and can adjust prediction steps
dynamically using the golden section search algorithm.

Experimental results indicate that the proposed
method can accelerate the searching speed of gradient
descent method and can help the gradient descent method
escape from local minima. Our results further demonstrate
that applying the golden section search method to achieve
dynamic prediction steps of the DDEPM is an efficient
approach for this search algorithm.

1. Introduction

Pioneered by Cauchy in 1847 [1], [2], the gradient
descent search method has been widely applied to solve
optimization problems in various different domains of
engineering [1], [2]. For example, the gradient descent
method can be applied to determine the near optimal
solution of control parameters or to assist a fuzzy logic
controller design [3], [4]. Furthermore, the gradient
descent method is often used in expert systems design to
tune fuzzy rules for automatically organizing the fuzzy rule
base [5]. Furthermore, the fuzzy c-mean clustering
algorithm also uses the gradient descent method to
minimize the objective function [6]. Also, the Back-

Propagation (BP) algorithm, most widely used in neural
networks, is a gradient-based training algorithm [7].
However, the gradient descent method is easily trapped
into a local minimum and converges slowly [1], [2], [7].
Thus, there is a need for the speed of the method to be
accelerated and the ability of escaping from local minima
to be increased. In this manner, many algorithms based on
the gradient descent method can be improved.

Previous research reveals that the gradient descent
method is the best local searching strategy when the
contours of the function being searched are circular [1], [2].
In this case, the negative gradient direction points directly
toward the minimal solutions. However, for most nonlinear
functions, negative gradient is generally not a global
searching direction [1], [2]. Numerous studies have
proposed modified gradient search methods, such as
Newton’s method [1], [2], the conjugate gradient method
[11, [2], [8], natural gradient adaptation [9], [10], the
gradient descent method with momentum [11], and so on.
If the searching behavior is analyzed according to these
well-known search methods, the searching process can be
found to be partitioned into two steps: first, to determine
the searching direction, and second, to conduct an optimal
line search according to the searching direction. In this
work, we present a new searching direction called
“gradient forecasting direction” to forecast the trend and
direction of the gradient descent method by recording five
gradient descent historically searched points. This new
search method can effectively accelerate the searching
speed of the gradient descent method and help it escape
from local minima.

Generally, the learning rate of the gradient descent
method is the only parameter requiring tuning, i.e. the
largest influence on solution quality is the learning rate [1],
[2], [7]. To avoid the phenomenon of oscillation and
divergence, a comparatively small learning rate is usually
set when searching for solutions in most applications.
However, a smaller learning rate is the main factor in
reducing searching speed and trapping the gradient descent
method into local minima [1], [2], [7]. In applying the
gradient descent method, many researchers have
previously attempted to improve it. In neural networks,
Jacobs proposed a momentum method to improve the well-
known Back-Propagation algorithm in 1988 [11]. The
momentum method records a previous modified value of
weight, and adds it to the present weight value to obtain a
new weight value. This approach can effectively accelerate
the convergence speed of the Back-Propagation algorithm;



however, it can not guarantee to escape from local minima
and thus obtain a better solution. Cesa-Bianchi and Nicolo
[12] proposed the exponentiated gradient method, which is
based on the gradient of the loss function for solving on-
line regression problems. To improve the learning process
and provide a global search capability for the gradient
descent method, Ng, Leung et al. proposed a learning
algorithm which embeds genetic search into the gradient
descent algorithm [13]. These methods can effectively
improve solution quality, but the searching speed is slower
than the original gradient descent method. Thus, this work
attempts to propose a GFSM to improve the original
gradient descent method. The new search method can not
only accelerate the searching speed of the gradient descent
method but can also help the gradient descent method to
escape from local minima.

In the proposed method, accurate prediction is critical
because the proposed search method must precisely
forecast the trend and direction of the gradient descent
method according to some previously searched data. Hence,
a precise prediction model is proposed, named the
universal Discrete Difference Equation Prediction Model,
as a forecasting tool. This method is a kind of time series
prediction model and is derived from the grey prediction
model [14], [15]. The original grey prediction model uses
mathematical hypothesis and approximation to transform a
continuous differential equation into a discrete difference
equation. This is not a logical approach because the
forecasting sequence data is always of discrete type. For
some dynamic time series forecasting problems, later
experiments show that its forecasting precision is
insufficient. Thus, this work proposes a GFSM based on
the discrete difference equation to improve the searching
process of the gradient descent method. The concept of
short-term memory is incorporated into the algorithm to
record searched data during the searching process, and then
the discrete difference equation is used to predict the
direction and trend of the solution space.

The golden section search method [16], [17] is also
applied to determine dynamically the near optimal
prediction step. The golden section search method, an
efficient single-variable search algorithm, has been widely
applied in many engineering applications such as golden
ratio scheduling for flow control in computer networks
[18], and determining optimal shunt capacitor value at
nonsinusoidal busbars [19]. Experimental results indicate
that using the golden section search method to obtain
dynamic prediction steps of the DDEPM is an efficient
approach for this search algorithm. Our results further
demonstrate that the proposed GFSM algorithm can
effectively accelerate the searching speed of the gradient
descent method, and can help the gradient-descent method
escape from local minima.

2. The Universal Discrete Difference
Equation Prediction Model (DDEPM)

In this section, a better prediction model than the grey
prediction model, the universal Discrete Difference

Equation Prediction Model (DDEPM), is proposed for
forecasting discrete sequence. It is derived from the grey
prediction model [14], [15].

2.1 Derivation of DDEPM

The proposed method employs the properties of the
discrete difference equation to develop a new forecasting
model for any discrete sequences. Figure 1 presents the

configuration of the proposed model, where x¥ denotes

original sequence and x¥ signifies the predicted value.
The central aim of Accumulated Generating Operation
(AGO) is to preprocess the original sequence to achieve an
exponential increasing sequence. Generally, applying
Accumulated Generating Operation once (1-AGO) is
sufficient to achieve an exponential increasing sequence
for the original input sequence. Then, a second-order
Discrete Difference Equation of single variable (DDE(2,1))
is constructed to approximate the sequence of 1-AGO. Via
this method, some unknown data can be forecast. Because
the DDE(2,1) is based on the AGO operation, the Inverse
Accumulated Generating Operation (IAGO) must be taken
to restore the AGO operation and obtain the predicted
value.

(0) 3O
AGO =  DDE(2,1) - TAGO -

Fig. 1. The Discrete Difference Equation Prediction Model

The operation of DDEPM can be detailed as follows:
(1) Gather » original sequence data.
xO={xO1), xV2), xXO3),.., xXOn)} oz (1
where x(© represents a set of » original sample data,
and x¥(n) isthe n”
(2) Apply Accumulated Generating Operation once (1-
AGO) by equation (2).
Let the set xV={ x)(1), xV(2), xV3),..., xV(#)} nOZ (2)

where (S +0(), =12,

i=1

sample data.

(3) Build a second-order discrete difference equation
shown as equation (3) to approximate the sequence
of 1-AGO.

Use the second-order discrete difference equation of single
variable, shown as equation (3), to build the DDE(2,1).

O(p+2)+aV(p+ D+ GV (p)=0 , €)

where the @ and b are undecided coefficients of the
second-order discrete difference equation of single variable
and p is an integer.

In order to evaluate the coefficients ¢ and b, the linear
least square estimation [20] is applied to determine the two
undecided coefficients. In this way, the equation (3) can be
rewritten as:
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Finally, we can use the linear least square estimation [20]
to get the estimated parameters © as equation (6).
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(4) Solve the second-order discrete difference

equation.
Use equation (3) and let x® (p) =r?, we can have:
P2 a3 v b7 =0 (8)
rP(r* +ald+b)=0

Thus, we can derive:
_—a+\/a2 -4b —a-+a®>-4b

T I -a— €))

where # and r, are both roots of equation (3).

Case 1: If r #r,, then we can obtain the solution’s

formula of the second-order discrete difference equation
as:

D(py=c, " +C, " (10)

Also, from the initial conditions (i.e. let p=1, p=2),
we can obtain two equations as equation (11) and equation
(12).
XV =xYW)=C & +C, (1)
V) =xOM+x Q) =C, 1’ +C, 3y (12)
Solving the two equations, we can have the constants, C,;

and C,, as follows:
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Case 2: If r, =r,, then we can obtain the solution’s
formula of the second-order difference equation as:

*V(p)=C 0" +C, p " (13)
Similarly, from the initial conditions (i.e. let p=1,
p=2), we can have two equations as equation (14) and
equation (15):

XD =x0=c @ +C, & (14)

V2 =xOm+xV@)=c, @’ +2C, 3> (15
Solving the two equations, we can obtain the constants,
C, and C,, as follows:
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Case 3: If r; and r, are conjugate plural, then we can

obtain the solution’s formula of the second-order
difference equation as:

x(p)=C, [p” Bin(gp) +C, [p” os(gp) (16)
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From the initial conditions (i.e. let p=1, p=2), we can

have two equations as equation (17) and equation (18):
XDy =xO1) =, pBing+C, [pBose (17)
W2 =x D) +x02) = c; ? BinQg) + C; Ip? Ros2g) (18)

Solving the two equations, we can obtain the constants,
C, and C,, as follows:

oz O p? os2¢) - O (1) p os @ - x D (2) Tp Ros @
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o= {01 p Bing+x0(2) p Bing- O (1) (p? Bin(2g)
2 p3(sin(pEtos(2(p) —cos@8in(2¢)) '

(5) Apply Inverse Accumulated Generating Operation
(TAGO).

Because the Discrete Difference Equation Prediction
Model, shown as equation (3), is based on the 1-AGO
numbers, we must take the Inverse Accumulated
Generating Operation to restore the AGO operation and
obtain the predicted value.

7@ =0 (p)_ x(])(p—l) (]9)
where x© denotes the predicted value, p is a prediction
step of DDEPM.

2.2 The Universal DDEPM

Although the forecasting process of DDEPM is very
simple, it suffers from a significant disadvantage, in that it
can only forecast nonnegative sequences. Because the
DDEPM uses the Accumulated Generating Operation



(AGO) to obtain an exponential increasing sequence, it
cannot build a correct prediction model if the sequence
contains both positive and negative data. Therefore,
translating the original sequence into a related positive one
via data mapping concepts is proposed herein. This process
is termed Mapping Generating Operation (MGO).
Furthermore, by applying the Inverse Mapping Generating
Operation (IMGO) to restore the forecasting sequence, the
prediction sequence can easily be obtained. In this manner,
the proposed universal DDEPM is well defined for all
sequences. That is, regardless of whether the sequence is
positive or negative, data can be forecast correctly. Figure
2 illustrates the configuration of the universal DDEPM,

(0)

» stands

where x© denotes original sequence and x

for the predicted value.

"ﬁ% MGO H AGO H DDE(,]) H 1AGO H IMGO %

Fig. 2. The configuration of the universal DDEPM

The function f that

Generating Operation must satisfy two conditions [21]: (1)
f is one-to-one and continuous; (2) f(x)=0 forall x.

serves as the Mapping

Herein, a linear mapping function [21] is applied as an
MGO operation. The detailed operation of this function is
described below:

Let xm(o) represent the set of Mapping Generating
Operation (MGO). The xm(o) can be defined as:
%, =0, 0 0%, @,x, 0 @, ()

m m

A
x, ()= MGOGP () =s +yZT V() i=123...n (20)

where n denotes the number of original sample data, s
represents a shift factor, y stands for a scaling factor and

the x© (i) is the i" data of original sample sequence.

By the above definition, the Inverse Mapping Generating
Operation (IMGO) can be defined as follows:

5" 2IMGOE ()= (=) @

where xp(o)

denotes the final predicted value with
prediction step p, £ (p) represents the predicted value
with prediction step p in IAGO process, s stands for a

shift factor and y is a scaling factor.

Obviously, the linear mapping function satisfies two
conditions required by the Mapping Generating Operation.
That is, these two operations, MGO and IMGO, are useful
for the universal DDEPM and can overcome the
disadvantage of the DDEPM.

3. The Gradient Forecasting Search
Method (GFSM)

\5S

This section provides a Gradient Forecasting Search
Method (GFSM) based on the universal DDEPM. This
GFSM is employed to enhance the searching process of the
original gradient-descent method.

3.1 The Algorithm of GFSM

First, the proposed GFSM records five historical data
items generated from the original gradient descent method
(experiments given later show that using 5 historically
searched points can get satisfied forecasting result). Next,
the modeling procedures of the universal DDEPM are
followed to construct a forecasting model. This model is
then employed to forecast the searching trend of the
gradient descent method. After determining a prediction
step by the golden section search algorithm [16], [17], the
Inverse Accumulated Generating Operation is used, shown
as equation (19), to obtain a new prediction point. The
detailed operation of this algorithm is described below:

Step 1. Define the initial conditions.

x0 : initial searching point;

a : learning rate of the gradient-descent method;

£ : stop criterion (herein, the stop criterion is defined as

) - ) <e);
k =0 iteration number.

Step 2.Execute the searching process by the gradient-
descent method.

) 2 ) gy,

Step 3.Detect the stop criterion.
Is |7 D) s <e?

Yes: Go to Step 7.

Step 4.Have five searched points been gathered?
No: Go to Step 2.

Step 5.0btain a new searching point using the universal
DDEPM under determining a near optimal
prediction step via the golden section search
algorithm.

Step 5.1. Use the five searching points obtained for the
operations of MGO and 1-AGO.

Step 5.2. Use the sequence data obtained in Step 5.1 to
build the universal DDEPM.

Step 5.3. Obtain a near optimal prediction step p via the
golden section search algorithm.

Step 5.4. Compute the prediction value via the prediction

step obtained.

Step 5.5. Obtain a new searching point using the prediction
value obtained in Step 5.4 via operations of
[AGO and IMGO.

Step 6. Let 4 =k+1
go to Step 2.

(k+1)

Step 7.Obtain the Xx solution and terminate this

algorithm.



3.2 Determination of the Prediction Step by
the Golden Section Search Algorithm

An efficient single-variable minimization routine is
necessary for the proposed search algorithm because the
prediction step must be determined appropriately during
the searching process. In this study, the golden section
search algorithm [16], [17] is employed to determine the
prediction step of the GFSM search method. It is sure that
the other famous line search algorithms can also be
employed to determine the near optimal prediction step,
such as uniform search, dichotomous search, golden
section search method, Fibonacci search [22], and so on.
Mokhtar S. Bazaraa et al. [22] have proven that the most
efficient algorithm is Fibonacci search, followed by the
golden section search method, the dichotomous search
method, and finally the uniform search method. Also note
that if the number of iterations is large enough, the
Fibonacci search and the golden section search method are
almost identical. However, the implementation of golden
section search method is easier than Fibonacci search.
Thus, we employ the golden section search method to
determine the near optimal prediction step for GFSM. The
golden section implies that a certain length is divided such
that the ratio of the whole to the longer part is equal to the
ratio of the longer part to the shorter part. As Fig. 3

illustrates, line AC is divided so that the ratio of AB to

BC is the same as the ratio of BC to AC. Let the
length of longer part be 1 and the length of shorter be X,
then the Eqn. (22) can be obtained by the golden section
rule.
1 x
x+1 1 22)
This equation can be solved to obtain the positive root:

x =%(\/§—1) =0.6180339...= 0.618

The ratio of 0.618 is the so-called golden section or divine

proportion. The length of AC becomes 1.618, also known
as the golden mean.

| X | 1 |
[ [ |
A B C
k » _/
i:i:o,ﬁ]g
AC  BC

Fig. 3. The golden section

Figure 4 shows the illustration of the golden section
used to determine the prediction step in searching process.
In this figure, assume the searching space of the prediction
step is limited to the interval [a, bﬁ. L denotes the width

of the searching space, p signifies the prediction step and
f(p) is the function value under the prediction step p.
Meanwhile, p,; is the golden section point from the right-

most boundary and p, represents another golden section

point from the left-most boundary. Figure 4 illustrates that
the searching interval of p, to b can be deleted in the

first searching step because f(p;) < f(p,). That is, the
right-most searching space can be reduced from 5 to 5.

By the same golden section iteration, the near optimal
prediction step can gradually be approached. The searching
process can be terminated when the searching space
gradually shrinks to satisfy the given stop criterion.
Advantages of the golden section search algorithm are
38.2% of searching space can be reduced and one of two
golden section points can be reserved to become the next
test point [16], [17] in each searching process.

S

0.618L

prediction step

a 0382 O P2 5
0.618L Let L=b-a
18
L ) — L,=b-a first searching step
03827, P P2 b
06185
In=b-a second searching step
2 g
. %@ Ly=b-a third searching step
Ps by
a bgpﬂb Ly=by-a fourth searching step
a 2 by

N
b, L =b,-a

fifth searching step

Fig. 4. The illustration of golden section searching process
( * represents the optimal solution)

3.3 Comparison of gradient descent direction
and gradient forecasting direction

This subsection describes how the proposed gradient
forecasting direction differs from the gradient descent
direction. The negative gradient descent direction is known
to always be orthogonal with a contour curve in each
searching process. It is a local steepest descent direction
for searching minimal solutions. Figure 5 displays that the
next searching direction for point x follows the negative
gradient direction when seeking minimal solutions and
positive gradient direction when searching for maximal
solutions. In this figure, the direction d is the so-called
gradient descent direction. It is the best local searching
direction when the contour of the searched function is a
circle, but it is generally not a global searching direction
for most nonlinear functions [1], [2].

The proposed gradient forecasting direction is a trend
of the gradient descent direction because some historically
searched data points of the gradient descent method are
recorded to predict the next searching point. Our method is
to gather some local searching directions for finding the
global searching direction by a forecasting mechanism. To



compare these two searching processes, a simple two-
J(x,xy) = 8xl2 +4x,x, +5)622 is
employed to observe their searching processes, as shown in
Figs. 6 and 7, respectively. These figures reveal that the
gradient forecasting direction is a trend of the gradient
descent direction and can seek the minimal solutions faster
than the gradient descent search method. Furthermore,
Figure 8 shows how the GFSM escaping from a local
optimal can obtain a higher quality solution. In Figure 8,
the five black points stand for historically searched points
using the gradient descent method under some learning
rate. The GFSM constructs the universal DDEPM to
determine the next searching point according to these
searched points. A trend solution space can be obtained by
the universal DDEPM shown as the dotted line of Fig. 8. If
an appropriate prediction step is determined, the local
minimum shown in Figure 8 may be ignored even though a
comparatively small learning rate is used. Under the same
condition, the gradient descent method may trap into the
local minimum in this case if a small learning rate is used.
A larger learning rate might resolve this problem, but it
may result in the phenomenon of oscillation or divergence.
That is, the GFSM has fast searching speed and the
capability of escaping from local minima even using a
comparatively small learning rate. This property can show
the GFSM is more robust with respect to learning rate than
the other gradient-based search methods.

variable function

d =0 (x) \contour curve

Fig. 5. Gradient descent direction

Gradient Descent Search Method

PN w s«

b N s o

Fig. 6. Gradient descent search method

Gradient Forecasting Search Method
= —

N\

Fig. 7. Gradient forecasting search method

five historically
searched points

S(x) &

trend direction of the gradient elements

\ global minimum

> x
Fig. 8. The illustration of GFSM’s escaping from local
minima

local minimum

4. Experimental Results

To illustrate the effectiveness of the proposed DDEPM
and GFSM search method, time series functions are
employed to compare the forecasting capability of the
DDEPM model with the GM(1,1) grey prediction model.
Furthermore, benchmark multi-variable functions are
employed as experimental target functions to test the
searching performance of the GFSM algorithm.

4.1 Time Series Forecasting

Assume that the considered time series sequence are
generated by the following three functions [21]:
J1@®) =3 +cos(t) +2sin(3r),
with sample time 0.05 seconds and 0<¢<10. Here,
S1(®) represents an oscillatory and bounded function. In

functions f(¢), four data items are sampled in each

modeling process, and these four data items are used to
forecast the next four unknown data using the GM(1,1)
grey prediction model and DDEPM proposed herein. After
forecasting the next four unknown data items, new data are
again obtained from the original time series function, and
then the next four unknown data items continue to be
forecast. The process is repeated in each cycle until
termination. Figure 9 summarizes the forecasting results of
the grey prediction model while Figure 10 illustrates the
forecasting results of DDEPM. The experimental results
reveal that the DDEPM has better forecasting capability
than the GM(1,1) grey prediction model. Figure 9 clearly
displays that the grey prediction model has poor
forecasting capability at turning points. Meanwhile, in
Figures 10, both the predicted and desired sequences in



each sample data are very close. Clearly, the DDEPM can
precisely forecast the trend of function using only a few
sample data.

4.2 Rosenbrock’s Function Searching

This subsection uses a benchmark Rosenbrock’s
function [1], [2] to explain the properties of the GFSM
algorithm. The Rosenbrock’s function is
F(x,%,) =100(x, =x,°)> +(1—x,)*. It is a well-known
test function for optimal search algorithms such as gradient
descent search method [1], [2], conjugate gradient method
[1], [2], genetic algorithms [23], and so on. Approaching
the minimal area of this function using some search
algorithms is difficult because the minimal area of function
value is enclosed by a long ravine which is only slightly
decreasing. Restated, the function has a long ravine with
very steep walls and an almost flat bottom, accounting for
why many gradient descent methods fail to minimize this
function.

Several well-known modified gradient search methods
are compared with the GFSM on Rosenbrock’s function
searching, as listed in Table 1. Experimental results
demonstrate the GFSM is a more robust and efficient
search algorithm than other well-known tested search
methods. The proposed method can not only have the
fastest searching speed but also can obtain a better quality
solution.

4.3 Powell’s Function Searching

This subsection uses Powell’s function [1] as target
functions to test the performance of the proposed GFSM
search method. The function is:

fz(xl,xZ,X3,X4) =(x +10x2)2 +5(x3 —X4)2 +(xy —ZX3)4 +10(X1 —X4)4

Experimental results are presented as Table 2. These
experiments also demonstrate that the proposed GFSM
search method is a more robust and faster search algorithm
than other well-known tested search methods. In Table 2,
the GFSM has fastest searching speed and obtains a best
quality solution on Powell’s function.

——  desired sequence
7+ . predicted sequence |

function value

0 20 40 60 80 100 120 140 160 180 200
sample number (0.05sec/sample)

Fig. 9. Forecasting results of f,(r) by the GM(1,1) grey
prediction model (The dotted and solid line respectively
stand for predicted sequence of the GM(1,1) grey
prediction model and desired sequence of f;(¢))

——  desired sequence
7+ . predicted sequence |

function value

0 20 40 60 80 100 120 140 160 180 200
sample number (0.05sec/sample)

Fig. 10. Forecasting results of f;(¢#) by the DDEPM (The

dotted and solid line respectively stand for predicted
sequence of the DDEPM and desired sequence of f,(¢))

Table 1. Comparison results of the different gradient search
algorithms on Rosenbrock’s function (x(? =[-1.2,1.0]")

ltems Learning | Momentum [Prediction| Final Function | Searching [ CPU
Method rate term step solution value epochs | time
i ] = 09965
Gdrad‘e“‘ 0.001 — 0% L o000013 | 11011 | 186
escent x) =0.9929 sec
Cauchy’s =0.9980 52
gradient * — 0.000005 | 4338 | 732
(. 21 x) =0.9960 sec
Gradient with 09967
momentum 0.001 0.9 - = 0.000011 10549 164
(] x) =0.9933 sec
Conjugate 09976 s
. 1 =09976
gradient * . 0.000006 | 4270 | 7%
(. 121 x) =0.9952 sec
i 3] =0.9950
Natural gradient 0.001 . . x] 5 0.000025 11597 19.1
[91.[10] x2 =0.9900 sec
Natural gradient M x| =0.9977 N 12.4
(91,1101 — oo | 0:000005 | 4304 oo
N ] =0.9979 3.02
GFSM 0.001 - , 0.000005 1322
x) =0.9958 sec

* indicates that the golden section search algorithm is used to determined a near optimal parameter

Table 2. Comparison results of the different gradient search
algorithms on Powell’s function (¥ =[3.1.0.1]")

Items Learning | Momentum | Prediction Final solution Function |Searching| CPU
Method rate term step value epochs | time
x] =0.0467
i x2 =-0.0047
Gdrad‘e“‘ 0.002 2 0.00001 | 21456 | 4%!
escent x3=0.0232 sec
x4 =0.0233
. x] =0.0529
Cauc_ys ) ¥ =-0.0053 51.1
gradient - - 0.000016| 22999
1L 2] X3 =0.0263 sec
? x4 200234
Gradient with 5 :,0404;04( .
momentum 0.002 0.1 - Y2 770000 0.000009 | 20117 437
x3=0.0229 sec
[ x4 =0.0230
Conjugate X1=00633
gradient * 2270056 600033 [ 20000 | 438
x3=00315 sec
1121 x4 =0.0317
x] =-0.0167
=0.0017 3
GFSM 0.002 * 2 ~ loo00001| 3451 | 73
x3=-00125 sec
x4 =-00125

* indicates that the golden section search algorithm is used to determined a near optimal parameter



5. Conclusion

This study has demonstrated that the proposed GFSM
and the universal DDEPM have the following properties:

(1) The GFSM can accurately predict the direction and
trend of the solution in the searching process. Also, it can
predict the possible direction of the solution with
appropriate prediction steps. Thus, the GFSM has a faster
convergent speed than the gradient descent method and
other tested well-known modified gradient algorithms, and
thus produces a better quality solution.

(2) When using an appropriate prediction step, this search
algorithm can effectively escape from local minima and
achieve a high quality solution. The golden section search
algorithm is also applied to dynamically determine
prediction step.

(3) Having a higher prediction accuracy than the GM(1,1)
grey prediction model for dynamic time series forecasting,
the universal DDEPM does not require extensive sample
data (merely 4 to 5 sample data items) to model a
prediction model, and its computation is simple.

(4) The universal DDEPM is well defined for any kinds of
sequence, and can accurately forecast sequences that
simultaneously contain both positive and negative data.
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