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ABSTRACT

To develop a fuzzy system, the most important task is
to derive a set of fuzzy rules from a set of training data. In
recent years, many methods have been developed to
automatically derive fuzzy rules from training instances. In
this paper, we present a new method to generate fuzzy rules
from numerical data based on the exclusion of attribute
terms to deal with the Iris data classification problem. The
experimental results show that the proposed method can get
a higher classification accuracy rate than the existing

methods.

1. INTRODUCTION

In the real-world, many things contain uncertainty and
vagueness. Fuzzy set theory [21] has been developed to
deal with uncertainty and vagueness [21]. To develop a
fuzzy system, the most important task is to find a set of
fuzzy rules. This can be done by two approaches. One is by
acquiring the knowledge from domain experts through
knowledge acquisition tools. But the domain experts may
not be available and the process of knowledge acquisition
may be very time consuming. The other approach is by
applying machine learning methods, such that the system
can automatically generate fuzzy IF-THEN rules from a set
of training instances. In recent years, fuzzy systems that can
automatically derive fuzzy rules from training instances
have been developed [2]-[5], [7]-[10], [14], [16], [18], [19].

In this paper, we present a new method for fuzzy rules
generation based on the exclusion of attribute terms, i.c.,
instead of choosing only one attribute term whose fuzzy
subsethood value exceeds the level threshold value a for
each attribute, we exclude the attribute terms whose
complement of fuzzy subsethood values exceed the level
threshold value o, where a € [0, 1]. We also apply the
proposed method to deal with the Iris data classification
problem. The experimental results show that the proposed
method for generating fuzzy rules from numerical data has
a higher classification accuracy rate than the existing

methods.

The rest of this paper is organized as follows. In
Section 2, we briefly review the concepts of fuzzy sets from
[12], [20], and [21]. In Section 3, we present a new
algorithm for fuzzy rules generation from training data. In
section 4, we use a simple example to illustrate the
proposed algorithm. In section 5, we show the experimental
results of the proposed algorithm to deal with the
classification problem. The conclusions are discussed in

Section 6.

2. BASIC CONCEPTS OF FUZZY SETS
In [21], Zadeh proposed the theory of fuzzy sets. Let U
be the universe of discourse, U = {u;, uy, ..., u,}. A fuzzy
set A of the universe of discourse U can be characterized
by a membership function A, pa: U — [0, 1],
represented by
A = ua(u)/uy + pa(up)/uy + pa(us)/us + ... + pa(ug)/uy,
where ta(u;) indicates the grade of membership of u; in the
fuzzy set A and pa(w) € [0, 1]. In [5], we have presented a
method to generate fuzzy IF-THEN rules from numerical
data based on the fuzzy subsethood measure S [12], [20].
The definition of the fuzzy subsethood measure S is as
follows.
Definition 2.1: Let A and B be two fuzzy sets defined in
a finite universe of discourse U with membership functions
Ua and ug, respectively. The fuzzy subsethood S(A, B)
measures the degree in which A is a subset of B shown as
follows:

M(A N B) > min(Ua(u), Us(u))
S(A,B) — - uelU
2 )

M(A)

where S(A, B) € [0, 1].
Definition 2.2: Let A and B be two fuzzy sets of the

universe of discourse U. If A is a subset of B, then p(u) <
Up(u), Vue U.

3. ANEW ALGORITHM FOR FUZZY RULES GENERATION

In this section, we present a new method to generate



fuzzy rules from numerical data. According to the fuzzy
subsethood measure, the method presented in [5] selects
only one attribute term for each attribute. In this paper, we
don’t select only one attribute term for each attribute but
exclude all the attribute terms whose complement of fuzzy
subsethood measure exceed the level threshold value a,
where o € [0,1]. The complement of fuzzy subsethood
measure is defined as follows.
Definition 3.1: Let A and B be two fuzzy sets defined in
a finite universe of discourse U. The fuzzy subsethood in
which A is a subset of B is denoted as S(A, B),
M(A N B)
where S(A,B) = ———— and S(A, B) € [0, 1]. Then,
M(A)

the complement S(A, B) of the fuzzy subsethood S(A, B),

is defined by:

S(A,B) =1-S(A,B), 2)

where S(A,B)e [0, 1].

For simplicity, we use a quadruple (a;, a,, a3, a4) to
represent an attribute term, where the definition of an
attribute term is defined as follows.

Definition 3.2: In a fuzzy classification problem, the
values of an attribute are linguistic terms called attribute
terms, where the attribute terms are represented by fuzzy
sets.

There are four kinds of membership functions which
can be used to represent an attribute term, i.e., the
left-trapezoidal membership function, the full-trapezoidal
membership function, the right-trapezoidal membership
function, and the triangular membership function, where the
four kinds of membership functions are defined as follows:
(1) Left-trapezoidal membership function:
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Fig. 1. Left-trapezoidal membership function.
(2) Full-trapezoidal membership function:
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Fig. 2. Full-trapezoidal membership function.

(3) Right-trapezoidal membership function:
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Fig. 3. Right-trapezoidal membership function.
(4) Triangular membership function:
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Fig. 4. Triangular membership function.
Definition 3.3: Let A and B be two fuzzy sets defined in
a finite universe of discourse U with the membership

functions p, and pg, respectively. If M (Ua(u) A tp(u)) >0,
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then A and B are called adjacent, where “v”” and “A” are the
maximum operator and the minimum operator, respectively.

In the following, we present a procedure to merge
attribute terms of an attribute, where attribute terms are
represented by fuzzy sets. Let T be a set of attribute terms
of an attribute. The procedure to merge the attribute terms
in the set T is presented as follows:

Procedure Merge(T)
WHILE T is not empty DO
Select an attribute term A from T
IF there exists another term B in T such that A
and B are adjacent

THEN Call Procedure Simplify(A, B) to form
a new term C and add C into T, and
then delete A and B from T

ELSE delete A from T

END
END.

In the procedure Merge(T), we can see that the
procedure Simplify(A, B) is to merge two attribute terms
into a new attribute term. Suppose two attribute terms A =
(ay, a5, a3, a4) and B = (b, b,, bs, b,) can be merged to form
a new attribute term C = (c;, ¢y, C3, ¢4). The procedure
Simplify(A, B) is presented as follows:

Procedure Simplify(A, B) /* A = (ay, a,, a3, a5) and B = (by,
b, bs, by) */

IFa, = b

THEN ¢, =a;,c;=ay, c3=bs,cy,=by

ELSE c;,=b;,c,=by,c3=a3,cs=ay

RETURN C /* C=(cy, ¢y, C3, Cq) */
END.



In [11], Kao has presented a method to calculate the
degrees of fuzziness of the attributes. The method is
reviewed as follows. Assume that there are n training
instances in the training data set and assume that A is an
attribute of the training data set. Assume that the maximum
value of the attribute A is denoted by Max(A), the
minimum value of the attribute A is denoted by Min(A),
and the average value of the attribute A is denoted by
Ave(A). Let X; be the ith value of the attribute A, where 1 <
i < n. Then, the degree of fuzziness D(A) of the attribute A
is calculated as follows:

S Di
i) - 2 , 3
n
where
Xi— Ave(A) JIf Xi > Ave(A)
Max(A) — Ave(A)
o 4
Ave(A) — Xi ,If Xi < Ave(A)
| Ave(A) —Min(A)

D; e [0, 1], 1 £i < n, and D(A) € [0, 1]. The larger the
value D(A), the more helpful the attribute A is to be used
for classification. After calculating the degree of fuzziness
of each attribute, if the degree of fuzziness D(A) of an
attribute A is smaller than a threshold value A given by the
user, where A € [0, 1], then the attribute A is regarded as a
useless attribute for classification and it is deleted form the
training data set.

The proposed algorithm for fuzzy rules generation
from numerical data is presented as follows:

Step 1: Remove the useless attributes from the training
data set based on formulas (3) and (4).

Step 2: Fuzzify each training instance.

Step 3: Divide the training instances into several groups
according to the decisions of the training instances,
i.e., training instances with the same decision will
be grouped together.

Step 4: According to formula (1), for each group derived
in Step 3, calculate the fuzzy subsethood values
between the decision to be made and each attribute
term of each attribute.

formula (2),

complement of the fuzzy subsethood values

Step 5: According to calculate the

derived in Step 4.
Step 6: Let T be a set containing attribute terms.
FOR each group derived in Step 2 DO
FOR each attribute in the group DO
Let T be an empty set.
FOR each attribute term of the attribute DO
IF the complement of the fuzzy
subsethood value between the
attribute term and the decision to
be made does not exceed the level
threshold value a given by the user,
where o € [0, 1]
THEN add the attribute term into T,
END
Call Procedure Merge(T) to merge the
attribute terms in the set T
END
END.

Step 7:  Generate fuzzy IF-THEN rules from the generated
membership functions of the generated attribute
terms derived in Step 6. For example, in the Iris
data classification problem, suppose the generated
membership functions of the attributes “Sepal
Length”, “Sepal Width”, “Petal Length”, and
“Petal Width” for the group “Setosa” derived in
Step 6 are “Setosa(SL)”, “Setosa(SW)”,
“Setosa(PL)”, and “Setosa(PW)”, respectively.
Then, the fuzzy IF-THEN rule generated for the
group “Setosa” is:

IF SL is Setosa(SL) and SW is Setosa(SW) and PL
is Setosa(PL) and PW is Setosa(PW)
THEN the flower is Setosa.

4. AN EXAMPLE

In this section, we use a simple example to illustrate
the proposed algorithm. For simplicity, we only chose 15
instances randomly from the Iris data [6] as a simple
example to illustrate the proposed algorithm. There are
three species of flower in the Iris data, i.e., “Setosa”,
“Versicolor”, and “Verginica”, and there are 150 instances
in the Iris data, with 50 instances for each species, and each
species with four attributes, i.e., Sepal Length (SL), Sepal
Width (SW), Petal Length (PL), and Petal Width (PW). In
this paper, the membership functions for each attribute
which we used to fuzzify the training instances are adopted
from [3] as shown in Fig. 5 to Fig. 8.



HN MN SN V4 SP  MP HP

43 475 52 565 6.1 6.55 7 745 179
Fig. 5. Membership function for the attribute Sepal Length.

HN MN SN V4 SP  MP HP

2 23 26 29 32 35 38 41 44
Fig. 6. Membership function for the attribute Sepal Width.

HN MN SN Z SP  MP HP

1 174 247 321 395 468 542 6.16 69
Fig. 7. Membership function for the attribute Petal Length.

HN MN SN Z SP MP HP

0.1 04 07 1 1.3 1.6 19 22 25
Fig. 8. Membership function for the attribute Petal Width.

In order to clearly illustrate the fuzzy rules generation
process of the proposed algorithm, we only chose 15
instances from the Iris data for illustration, where 5
instances for each species (i.e., Setosa, Versicolor, and
Verginica) are chosen. The chosen instances for this

example are shown in Table 1.

Table 1. A Subset of the Iris Data

The step-by-step demonstration of the proposed
algorithm is shown as follows:
[Step 1] /* Remove the useless attributes from the training

data set based on formulas (3) and (4) */

Suppose the user set the level threshold value A = 0.5.
Then, based on formula (3) and (4), the degrees of
fuzziness of the attributes SL, SW, PL and PW shown in
Table 1 can be calculated and the results are D(SL) = 0.47,
D(SW) = 0.44, D(PL) = 0.58, and D(PW) = 0.64. Because
the degrees of fuzziness of the attributes SL and SW are
less than the threshold value A, where A = 0.5, we can see
that SL and SW are useless attributes for classification, thus
the attributes SL and SW are removed from the training
data set. Thus, the resulting training data set is shown in
Table 2.

Table 2. A Subset of the Iris Data After Removing the
Attributes SL and SW

ttributes|

fraining>] SL | SW | PL | PW | Species
1 5 33 1.4 0.2 Setosa
2 5.7 2.8 4.1 1.3 Versicolor
3 5.9 3 5.1 1.8 Verginica
4 5 3.6 1.4 0.2 Setosa
5 6.5 2.8 4.6 1.5 Versicolor
6 6.5 3 5.8 2.2 Verginica
7 4.8 3 1.4 0.1 Setosa
8 6 2.2 4 1 Versicolor
9 6.8 3 5.5 2.1 Verginica
10 5.7 3.8 1.7 0.3 Setosa
11 6.2 2.2 4.5 1.5 Versicolor
12 7.7 2.6 6.9 2.3 Verginica
13 5.1 34 1.5 0.2 Setosa
14 5.5 2.5 4 1.3 Versicolor
15 6.9 3.1 54 2.1 Verginica

raining Attributes PL PW Species
nstances
1 1.4 0.2 Setosa
2 4.1 1.3 Versicolor
3 5.1 1.8 Verginica
4 1.4 0.2 Setosa
5 4.6 1.5 Versicolor
6 5.8 2.2 Verginica
7 1.4 0.1 Setosa
8 4 1 Versicolor
9 5.5 2.1 Verginica
10 1.7 0.3 Setosa
11 4.5 1.5 Versicolor
12 6.9 2.3 Verginica
13 1.5 0.2 Setosa
14 4 1.3 Versicolor
15 5.4 2.1 Verginica

[Step 2] /* Fuzzify each training instance */

According to the membership functions shown in Fig.

5 to Fig. 8, the training instances shown in Table 2 can be

fuzzified as shown in Table 3.

[Step 3] /* Divide the training instances into several groups
according to the decisions of the training
instances, i.e., training instances with the same
decision will be grouped together */

From Table 3, we can see that training instances 1, 4, 7,

10, and 13 have the same decision (i.e., Setosa), so they can

be grouped together denoted as “Group(Setosa)”. Similarly,

training instances 2, 5, 8, 11, and 14 have the same decision

(i.e., Versicolor), so they can be grouped together denoted

as “Group(Versicolor)”, and training instances 3, 6, 9, 12,

and 15 have the same decision (i.e., Verginica), so they can



be grouped together denoted as “Group(Verginica)”. The

results are shown in Table 4.

[Step 4] /* According to formula (1), for each group
derived in Step 3, calculate the fuzzy
subsethood values between the decision to be
made (i.e., species) and each attribute term */

According to formula (1), the fuzzy subsethood values
between different species of flower and the attribute terms
of the attributes “Petal Length” and “Petal Width” can be
calculated, respectively. The results of the calculations are
shown in Table 5.

[Step 5] /* According to formula (2), calculate the
complement of the fuzzy subsethood values
derived in Step 4 */

According to formula (2), the complement of the fuzzy
subsethood values shown in Table 5 are shown in Table 6.
[Step 6] /* Merge membership functions of each attribute */

For example, suppose the user set the level threshold
value o = 0.95, and we consider the attribute PL for the
species “Setosa”. From Table 6, we can see that the
complement of the fuzzy subsethood values between the
decision to be made (i.e., Setosa) and the attribute terms
MN, SN, Z, SP, MP and HP exceed the level threshold
value a, where o = 0.95, so these six attribute terms will be
excluded from the set T of attribute terms, i.e., only the
attribute term HN will be added into the set T. After calling

the procedure Merge(T), the initial membership function
for the attribute PL shown in Fig. 7 can be merged into the
membership function “Setosa(PL)” as shown in Fig. 9.

Similarly, consider the attribute PW for the species
“Setosa”. From Table 6, we can see that the complement of
the fuzzy subsethood values between the decision to be
made (i.e., Setosa) and the attribute terms MN, SN, Z, SP,
MP and HP exceed the level threshold value a, where o =
0.95, so these six attribute terms will be excluded from the
set T of attribute terms, i.e., only the attribute term HN will
be added into the set T. After calling the procedure
Merge(T), the initial membership function for the attribute
PW shown in Fig. 8 can be merged into the membership
function “Setosa(PW)” as shown in Fig. 10.

By the same way, the initial membership functions for
the attributes PL and PW of species Versicolor shown in
Fig. 7 and Fig. 8, respectively can be merged into the
membership functions “Versicolor(PL)” and
“Versicolor(PW)” as shown in Fig. 11 and Fig. 12,
respectively. The initial membership functions for the
attributes PL and PW of species Verginica shown in Fig. 7
and Fig. 8, respectively can be merged into the membership
functions “Verginica(PL)” and “Verginica(PW)”, as shown
in Fig. 13 and Fig 14, respectively.

Table 3. The Fuzzified Training Instances

Attributes PL PW Species
e SN N [ MN | sN |z | sp | mp|HP | HN|MN[SN| Z | sP|MP| HP | Setosa |Versicolor| Verginica
1 1lolololololol1lo]lolo]o|ol]o 1 0 0
2 o] oo lomlo2t]o|olo|olo]|1]o]o]o 0 1 0
3 oo |o] o 043057000 o0] o |033067] o0 0 0 1
4 1lolololololol1lo]lolo]o|o]o 1 0 0
5 o] oo loifogo] o oo ol o]o33]os7]0]o0 0 1 0
6 oo lol]o|olo4osi|o|oflo]o|lo]o]1 0 0 1
7 1lololololoflo|1]lo]o|lo]lo|o]o 1 0 0
8 o] oo loosfoor] o|ololol1]oflo]ol]o 0 1 0
9 oo lo]ololosort]o]|oflo]o]o]lo3los| o 0 1
10 1lolololololo|1]lo]o|lo]|o|ol]o 1 0 0
1 o] oo lo2slo7s] 0| oo ol o]o033]os7]0]0 0 1 0
12 olololololo|1]o|olo]|o|lo]o]|1 0 0 1
13 1loflololoflolo|1lo]lolo]o|ol]o 1 0 0
14 0| oo loosfoor] o|ofo|oflo]|1|o]o]o 0 1 0
15 oo |o] o 003097 0]0]0ofo]o]o]lo3losr] o 0 1




Table 4. Group Together the Training Instances Shown in Table 3

Attributes PL PW Species
ITraining
Instances HN |MN|SN| Z | SP |MP|HP |HN|MN|SN | Z | SP | MP | HP | Setosa |Versicolor| Verginica

1 1 0 0 0 0 0|0 1 0 0 oO|0]O0]O 1 0 0
4 1 0 0 0 0 0|0 1 0 0 [ 1 0 0
7 1 0 0 0 0 (U] 1 0 0 oO|0]O0]O 1 0 0
10 1 0 0 0 0 [ 1 0 0 0O|0] 0] O 1 0 0
13 1 0 0 0 0 (U] 1 0 0 oO|0]O0]O 1 0 0
2 0|0 0 10.79]0.21] 0 0 0 0|0 1 0 0 0 0 1 0
5 [ 0 |0.11{0.89| 0 | 0 | O 0 0 [0.33{0.67| 0 | 0 0 1 0
8 0|0 0 10.93]0.07| 0 0 0 0 1 0 0 0 0 0 1 0
11 [ 0 10.25(0.75| 0 | 0 | O 0 0 [0.33]0.67| 0O 0 0 1 0
14 0|0 0 10.93]0.07| 0 0 0 (] 1 0 0 0 0 1 0
3 [ 0 0 (043|057 0 | O 0 0 0 [0.33]0.67| O 0 0 1
6 [ 0 0 0 [0.49]0.51| O 010 0 0 0 1 0 0 1
9 0|0 0 0 0 [0.89]0.11| 0O 0 0 0 | 0 033|067 0 0 1
12 [ 0 0 0 0 1 0 0 0 00O 1 0 0 1
15 0| o0 0 0 [0.03]097| 0 | O 0 0 0 | 0 |0.33|0.67 0 0 1

Table 5. The Fuzzy Subsethood Values Between Attribute
Terms and Species

Table 6. The Complement of Fuzzy Subsethood Values

between Attribute Terms and Species

Attributes PL PW Attributes PL PW
Species HN(MN|SN| Z [ SP [MP|HP |[HN|[MN|SN | Z | SP | MP | HP Species HN [MN|SN | Z | SP ([MP|HP [HN|MN|SN | Z | SP |MP | HP
Setosa 1{0[0[O0]0]O0]O 1{0[0[0]0]O0]O Setosa 0 1 1 1 1 1 1 0 1 1 1 1 1 1
Versicolor | 0 | 0 | 0 |0.60/0.40( O [ O [ O | O [0.20({0.53{0.27| 0 | O Versicolor | 1 1 1 10.40({0.60| 1 1 1 1 10.80({0.47|0.73| 1 1
Verginica | O | O [ O [ O [0.09[0.58({0.32 0 [ O | O | O {0.07]|0.27]0.67 Verginica | 1 1 1 1 10.91(0.42]0.68| 1 1 1 1 10.93]0.7310.33
Setosa(PL) Versicolor(PW)

o

HN

T 174 247 321

395 4.68

542 6.16 69

Fig. 9. Membership function Setosa(PL) for the attribute
PL of the species Setosa.

Setosa(PW)

3

HN  MN

01 04 07 1

13

1.6

19 22

25

Fig. 10. Membership function Setosa(PW) for the attribute
PW of the species Setosa.

Versicolor(PL)

T O T X T LR N TR0
Fig. 11. Membership function Versicolor(PL) for the
attribute PL of the species Versicolor.

Fig. 12. Membership function Versicolor(PW) for the
attribute PW of the species Versicolor.

Verginca(PL)

HP

T 174 247 321

395 468 542 6.16 69

Fig. 13. Membership function Verginica(PL) for the
attribute PL of the species Verginica.

Verginca(PW)

Fig. 14. Membership function Verginica(PW) for the attribute
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PW of the species Verginica.
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[Step 7] /* Generate fuzzy IF-THEN rules from the
simplified membership functions derived in
Step 6 */

From Fig. 9 to Fig. 14, the fuzzy IF-THEN rules
generated from the 15 training instances by the proposed
algorithm are shown as follows:

Rule 1: IF PL is Setosa(PL) and PW is Setosa(PW)
THEN the flower is Setosa

Rule 2: IF PL is Versicolor(PL) and PW is Versicolor(PW)
THEN the flower is Versicolor

Rule 3: IF PL is Verginica(PL) and PW is Verginica(PW)
THEN the flower is Verginica

5. EXPERIMENTAL RESULTS
We chose 120 instances randomly among the 150
instances of the Iris data as the set of training instances and
the remaining 30 instances of the Iris data as the set of
testing instances. The experimental results are shown in
Table 7, where different numbers of attribute terms for the
attributes are considered (i.e., 5, 7, 9, and 11), each test was

executed 200 runs, and the level threshold value o is 0.95.

Table 7. Experimental Results (with 120 Instances as
Training Instances and the Remaining 30
Instances as Testing Instances) for Different
Numbers of Attribute Terms for the Attributes

the level threshold value a is 0.95.

Table 8. Experimental Results (with 75 Instances as
Training Instances and the Other 75 Instances as
Testing Instances) for Different Numbers of
Attribute Terms for the Attributes

Classification™~\Number of
ITest (E:}fumcy RaleA nTréEﬁf 5 7 9 11
as Executed 200 Runs

1 0.9557 0.9671 0.9621 0.9553
2 0.9558 0.9682 0.9552 0.9477
3 0.9535 0.9663 0.9565 0.9466
4 0.9529 0.9662 0.9527 0.9581
5 0.9537 0.9683 0.9522 0.9511
6 0.9531 0.9672 0.9524 0.9509
7 0.9499 0.9663 0.9551 0.9503
8 0.9523 0.9664 0.9585 0.9497
9 0.9539 0.9649 0.9547 0.9523
10 0.9542 0.9663 0.9544 0.9400

Classification ~\Number of
T |5 7 9 1
‘as Executed 200 Runs

1 09538 | 0.9728 | 0.9543 | 0.9590
2 09518 | 0.9753 | 09553 | 0.9582
3 09568 | 0.9710 | 0.9583 | 0.9583
4 09577 | 0.9688 | 09545 | 0.9618
5 09533 | 0.9712 | 09587 | 0.9542
6 09537 | 0.9733 | 09542 | 0.9620
7 09550 | 0.9702 | 09563 | 0.9592
8 09540 | 0.9727 | 09563 | 0.9570
9 09547 | 0.9695 | 09520 | 0.9627
10 09523 | 0.9743 | 09607 | 0.9578

We also chose 75 instances randomly among the Iris
data as the set of training instances, and the other 75
instances of the Iris data as the set of testing instances. The
experimental results are shown in Table 8, where different
numbers of attribute terms for the attributes are considered

(i.e., 5,7, 9, and 11), each test was executed 200 runs, and

From Table 7 and Table 8, we can see that different
numbers of attribute terms for the attributes can affect the
classification accuracy rate. When the number of attribute
terms for each attribute is equal to seven, we can get the
highest classification accuracy rate. With 75 instances of
the Iris data as the training data set and the remaining 75
instances of the Iris data as the testing data set, and when
the number of attribute terms for each attribute is 7, the
average classification accuracy rate of the proposed method
after 2000 runs is 96.67%. With 120 instances of the Iris
data as the training data set and the remaining 30 instances
of the Iris data as the testing data set, and when the number
of attribute terms for each attribute is 7, the average
classification accuracy rate of the proposed method after
2000 runs is 97.19%.

In [7], Hong and Lee presented a general learning
method to generate membership functions and fuzzy
IF-THEN rules from a set of given training examples. The
average classification accuracy rate of the Hong-and-Lee’s
method presented in [7] after 200 runs is 95.57% and the
average number of fuzzy IF-THEN rules generated by the
method presented in [7] is 6.21. In [18], Wu and Chen
presented a method to construct membership functions and
fuzzy IF-THEN rules from training examples based on the
a-cuts of equivalence relations and the a-cuts of fuzzy sets.
For the Iris data classification problem, the average
accuracy rate of the method presented in [18] after 200 runs
is 96.21% and the number of fuzzy IF-THEN rules
generated by the method presented in [18] is 3, where both
Hong-and-Lee’s method and Wu-and-Chen’s method chose
75 instances randomly as the training data set and the other
75 instances of the Iris data as the testing data set.




6. CONCLUSIONS

In this paper, we have presented a new method for
fuzzy rules generation to deal with the Iris data
classification problem. We aslo compared the proposed
method with Hong-and-Lee’s method presented in [7] and
Wu-and-Chen’s method presented in [18]. From the
experimental results shown in Section 5, we can see that the
proposed method have the following advantages:

(1) The average classification accuracy rate of the
proposed method is higher than Hong-and-Lee’s
method presented in [7], and Wu-and-Chen’s
method presented in [18] when the number of
attribute terms for each attribute is 7.

(2) The proposed method generates fewer fuzzy
rules than Hong-and-Lee’s method presented in

[7].
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