
THE DESIGN OF A MULTI-AGENT FRAMEWORK FOR DISTRIBUTED

HYPER-LINKING-BASED THEOREM PROVING

Chih-Hung Wu

Department of Information Management

Shu-Te University

Kaohsiung County, Taiwan 824

E-mail: johnw@mail.stu.edu.tw

Shie-Jue Lee

Department of Electrical Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan 804

E-mail: leesj@ee.nsysu.edu.tw

Abstract

A multi-agent framework for distributed theorem
proving of the hyper-linking method is proposed in this
paper. Distributed theorem proving at the clause-level
can be achieved by collaborating multi-agents. In this
framework, each computer collaborates on proving
theorems without stopping the jobs currently running.
The hyper-linking proof procedure is wrapped as
software agents, which can be partially performed for
a specific task. Each computer, referred to as proof
house, involved in this framework can work solely
or collaborate with other registered proof houses to
complete the proof of the given problems. Agents for
monitoring the traffic of environment, the performance
and liveness of each proof houses, updating and sharing
proof experiences, and tuning parameters of proof
houses are designed. The architecture and the design
concepts are addressed.

KEYWORDS: theorem proving, hyper-linking,
first-order logic, intelligent agents, distributed problem
solving, collaborated work.

1 Introduction

For past decades, scientists have been interested in au-
tomated deduction systems which have applications in
expert systems, planning, common sense reasoning, de-
ductive databases, hardware/software verification, etc.
However, finding the proof of a hard problem may re-
quire tens of hours of execution on workstations due to
the huge search space. This motivates many researchers
to exploit parallel or distributed computation to pro-
duce high-performance deduction systems.

Many high performance parallel deduction systems
have been proposed and implemented, such as those
discussed in Section 6. Parallelizing an existing sys-
tem can be studied from the machine level, or fine-
grain, by executing machine instructions in parallel, to
the operational level, or coarse-grain, by executing sub-
processes of the system in parallel. The experimental
results show that much computational effort in finer-
grain parallelism is futile and not directive. Also, imple-
mentation of finer-grain parallelism is costly since there
usually need (1) expensive hardwares such as computer
systems with a number of processing units and high-
speed memory modules and (2) a lot of human-hours
for developing and testing parallel algorithms and (3)
efficient and usually complicated communication pro-

tocols for sharing data. Attention has been shifted to
coarser-grain parallelism or distributed processing [3].

Distributed processing is a kind of coarse-grain paral-
lelism, which usually performs on several connected, ho-
mogeneous or heterogeneous, computer systems. In the
Internet or intranet, there are a number of in-expensive
computers, e.g., PC, connected and available for com-
munication and computation. With standard connec-
tion protocols like TCP/IP and ease-to-use interfaces
like browsers, the Internet provides a flexible and inex-
pensive platform for distributed computing and so for
distributed theorem proving. Though distributed the-
orem proving on the Internet is one intuitive solution,
we still have to carefully address the following issues.

1. Deductive systems are usually computational in-
tensive. When they are distributed processed, the
among of communication may degrade the perfor-
mance of the whole system. The grainity to be
distributed processed should be carefully designed.

2. Different deductive systems apply different direc-
tive parameters which may be set by heuristics
or users’ experience. Such parameters need to be
carefully adjusted.

3. All computing machines should fast exchange in-
formation in a standard format, without devoting
too many efforts in processing communication.

4. Deductive problem solving is goal-oriented, no
matter it is done in centralized or in distributed.

An clearly known fact is that the reliability of the Inter-
net is less than well-designed and tested multi-processor
computers. Directly design and implementing a dis-
tributed framework for deduction system on the Inter-
net may face the same problems we mentioned in finer-
grain parallelism, especially there are several heteroge-
neous computing machines. In doing so, a peer-to-peer
communication protocol among the member processors
should be supported.

Software agents are computer programs capable of
flexible, autonomous actions. In their most com-
plex form, agents may persist over time, are capa-
ble of timely internal context-dependent reaction to
sensed events, plan and initiate unique series of ac-
tions to achieve stated goals, and communicate with
other agents (or people) toward those ends. Fortu-
nately, with the advantages of software agents, dis-
tributed theorem proving can be achieved through the
collaboration of multi-agents. Recently, Internet-based

collaboration of multi-agents is an interesting research
topics and has been receiving a lot of attentions. In
this paper, we propose a multi-agent framework for dis-
tributed theorem proving. We demonstrate our idea
using the hyper-linking proof procedure(HLPP) [14]
which is a refutational deduction method in first-order
logic. In this framework, distributed theorem proving
is achieved in clause-level by the collaboration of multi-
agents. Agents solve the given problem and exchange
information for sharing data and adjusting directive pa-
rameters. The design of the framework and the role of
each agent are described. The interaction and the col-
laboration of agents are discussed. A simple, KQML-
based [1], scheme has been designed for exchange of
information among agents in a peer-to-peer style. The
advantages of use of this framework include lower cost
and higher expandability for distributed theorem prov-
ing, usefulness for solving large and complex problems,
being easily to be applied to any other theorem prov-
ing techniques, and the ability of sharing and learning
proving experience.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of HLPP. Section 3 dis-
cusses the work to be collaborated for distributed theo-
rem proving of HLPP. In Section 4, the architecture of
the multi-agent framework is presented. The design of
each agent is described in Section 5. Related researches
are discussed in Section 6 followed by a summary of this
study in Section 7.

2 The Hyper-Linking Theorem

Proving

The hyper-linking proof procedure(HLPP) was pro-
posed to eliminate the duplication of clauses occurring
in many other deduction methods and proved to be ef-
ficient [14] compared with widely known systems such
as OTTER [18], sprfn [19], and PTTP [22]. HLPP is a
refutational clause-form deduction method, consisting
of the following two processes: hyper-instance genera-
tion (HIG) and propositional satisfiability test (PSAT).

Suppose R is a set of clauses in first-order logic.
HIG produces hyper-instances by performing unifica-
tion between literals of clauses in R to instantiate these
clauses. If C = L1 ∨ . . . ∨ Lm is a clause in R, and
M1, . . . , Mm are literals from the clauses in R, with
variables renamed to avoid conflicts, and Θ is a most
general unifier such that LiΘ and MiΘ are complemen-
tary for all i, 1 ≤ i ≤ m, then CΘ is called a hyper-
instance of C. The set {(L1, M1), . . . , (Lm, Mm)} is
called a hyper-link. We call C a nucleus and Mi the
electrons of C. We denote by H(R) the set of hyper-
instances of all the clauses in R and by Gr(R) the
ground set of R where all variables in R are replaced by
the same constant symbol $. Let S0 be the set S of in-
put clauses and Si be Si−1∪H(Si−1), i ≥ 1. HIG takes
clauses in Si as nuclei and generates all hyper-instances,
H(Si). Then PSAT tries to decide the satisfiability
of Gr(Si ∪ H(Si)). If Gr(Si ∪ H(Si)) is unsatisfiable,
then S is unsatisfiable and we are done; if all clauses in
H(Si) are contained in Si, i.e., Si = Si ∪ H(Si), then
S is satisfiable and we are also done. Otherwise, one
more round of HIG and PSAT is performed on Si+1.
HLPP is a saturation-based method, i.e., no clauses

in Si+1 can be considered as a nucleus before all the
hyper-instances of Si have been generated.

The efficiency of the proof procedure can be improved
by filtering hyper-instances through unit-simplification
which is analogous to the operations in the Davis-
Putnam procedure [8]. Suppose {L} is a unit clause
retained in the database and C is a generated hyper-
instance and M is a literal of C. The following two
simplification rules are applied to C:

1. Unit literal deletion. If M is an instance of the
negation of L, then C is simplified to C − {M}.

2. Unit subsumption. If M is an instance of L, then
C can be deleted from the database.

Here we call L a unit-literal. C is said to be simpli-
fiable if M can be removed from C. If all the literals
of C are removed, C becomes an empty clause which
indicates logical unsatisfiability and HLPP may stop
and the proof is done. The HLPP method can be de-
scribed by the algorithms in Figure 1. Note that PSAT
can be any propositional calculus decision procedure.
The one we used was the Davis-Putnam procedure with
dependency-directed backtracking.

Example 1 Let S be a set containing the following
clauses:

• C1 = {p(X),¬q(X),¬s(Y, X)}

• C2 = {p(X),¬q(X), r(X, Y)}

• C3 = {¬p(X), q(X)}

• C4 = {¬r(X, b), s(b, Y)}

• C5 = {p(a)}

From S, we have a list of negative literals LN =
{¬q(X),¬s(Y, X),¬p(X),¬r(X, b)} and a list of pos-
itive literals LP = {p(X), p(a), r(X, Y), q(X), s(b, Y)}
where p(a) is a unit-literal. Ci, C2, . . ., C5 are
considered as nuclei individually. In each nucleus,
every positive literal tries to find unifiable, com-
plementary literals in LN and each negative literal
tries on LP . Finally, we obtain 6 hyper-instances,
after unit simplification, in the first round of hyper-
linking, i.e., H(S) = {{p(X),¬q(X),¬s(b, X)},
{p(X),¬q(X), r(X, b)}, {¬r(X, b), s(b, Y)},
{¬p(X), q(X)}, {q(a)}, {p(a)}}. Now we check
in PSAT if Gr(S∪H(S)) = {{p($),¬q($),¬s($, $)},
{p($),¬q($), r($, $)}, {¬p($), q($)}, {¬r($, b), s(b, $)},
{p(a)}, {p($),¬q($),¬s(b, $)}, {p($),¬q($), r($, b)},
{q(a)}} is unsatisfiable. Since Gr(S∪H(S)) is satisfi-
able and S 6= S∪H(S), another round of hyper-linking
should be performed. 2

Two different data structures have been developed for
HLPP; one is list-based presented in [14] and another is
network-based in [15]. Throughout this paper, the list-
based version of HLPP is considered for its simplicity.

Procedure HLPP(S) /? Hyper-Linking-Proof-Procedure ?/
R← S;
while PSAT(R)=TRUE

if R = HIG(R) /? No more new hyper-instances ?/
then return and print “S is satisfiable”;
else R ← HIG(R);

return and print “S is unsatisfiable”;
end HLPP
Procedure PSAT(R) /? Propositional SAtisfiability Test ?/
if Gr(R) is satisfiable then return TRUE;

else return FALSE;
end PSAT
Procedure HIG(R) /? Hyper-Instance Generation ?/
for each clause C in R

find all hyper-instances of C;
for each hyper-instance I of C;

perform unit-simplification on I;
return {R ∪H(R)};
end HIG

(a) Algorithms of HLPP

build/re-build lists for all
retained clauses and literals

get one nucleus

search unifiable electrons
from literal lists

collect hyper-instances H(S)i

no more
hyper-instances

yes

no

List_HIG

perform
unit-simplification

begin

L1

L2

L3

L4

L5

ground clauses
and hyper-instances

Gr()S H(S)i iU

test for propositional
unsatisfiability

unsatisfiable

done

yes

no

PSAT

PS2

PS1

(b) Processing flow of HLPP

Figure 1: Algorithms of HLPP

3 The Computational Model

Parallelism of HLPP has been studied and presented
in [27]. A three-workstations environment was devel-
oped for simulating a multi-processor computer with
shared-memory. The analytical results show that
the parallelism of HLPP can be achieved in differ-
ent schemes, i.e., process-level, clause-level, literal-level,
and flow-level, each of which associates different hard-
ware architecture and synchronization problems and
benefits different speedups. The purpose of this paper is
to design, not just to simulate, a practical framework on
the Internet for distributed theorem proving of HLPP.
First, according to [27]’s classifications, we consider the
degree of parallelism or distribution as follows.

• Process-level parallelism – simultaneously per-
forming HIG(list-based or network-based version)
and PSAT on two processing elements(PEs).

• Clause-level parallelism – performing PSAT on one
PE and HIG(list-based version) on m-PEs each of
which takes care of a partition of clauses. If the
number of hyper-instances generated by each nu-
cleus is almost the equal, the more PEs, the more
speedups can be gained.

• Literal-level and Flow-level parallelism – perform-
ing PSAT on one PE and HIG(network-based ver-
sion) by simultaneously exploring m-paths of the
network with m-literals on m-PEs.

The maximum speedup can obtain in the process-level
scheme is only 2. Also, when implemented on the In-
ternet, the process-level scheme may result in many
available but idle machines. Since theorem proving is
computational intensive, the literal-level and flow-level
schemes may not be adapted for massive access to the
shared network structure. The contributions of these
two schemes in distributed theorem proving may not
be significant. The clause-level scheme may be a viable
computational model.

However, directly and blindly distributing m clauses
to m PEs on the Internet may not also gain a good re-
sult. Let’s consider the experimental results of clause-
level parallelism obtained in [27]. One of the most
important things in this scheme is the handle of the
synchronization problem. Suppose that n nuclei are
assigned to n-PEs for performing HIG. Table 1 shows
the status of each nucleus in generating hyper-instance.
This table tells us that no all nucleus generate hyper-
instances; the number of hyper-instances generated by
each nucleus is not equal; some of them even gener-
ate no hyper-instances. Such a fact can be recognized
by lower Avg. and higher SD. The computational en-
vironment we selected is the Internet or intranet on
which the hosts are less reliable and of heavier commu-
nication traffic, compared with the well-designed and
tested multi-processor computers. Since theorem prov-
ing is computational intensive, most efforts should be
done on HIG and PSAT and less on communication
or synchronization. These conclude that sophisticated
dispatches of clauses is needed to gain a better per-
formance of distributed HLPP in clause-level. In this
paper, we use the techniques of software agents to take
care of the tasks needed, such as monitoring, super-
vising, negotiation, and dispatching, for collaboratively
completing a proof in HLPP.

Table 1: Values of I/C in each round (data obtained from [27])

Avg. SD. CV. Avg. SD. CV. Avg. SD. CV. Avg. SD. CV. Avg. SD. CV. Avg. SD. CV.
1 0.1 0.3 0.3 0.0 0.0 - 0.3 0.8 0.4 1 1.4 4.7 0.3 0.1 0.5 0.2 0.5 1.9 0.3
2 5.7 12.1 0.5 0.3 1.1 0.3 0.0 0.0 - 2 5.1 15.6 0.3 2.4 4.9 0.5 3.8 11.3 0.3
3 3.5 19.4 0.2 4.8 14.3 0.3 19.2 147.4 0.1 3 5.6 39.1 0.1 63.8 189.0 0.3 99.0 438.2 0.2

Avg. 3.1 10.6 0.3 1.7 5.1 0.3 6.5 49.4 0.3 Avg. 4.0 19.8 0.3 22.1 64.8 0.3 34.4 150.5 0.3
1 0.3 1.1 0.3 0.0 0.0 - 3.5 23.6 0.1 1 0.7 2.4 0.3 0.5 2.4 0.2 0.9 2.5 0.4
2 10.1 68.9 0.1 3.0 21.7 0.1 0.3 2.4 0.1 2 6.5 20.5 0.3 2.6 8.0 0.3 69.4 329.8 0.2
3 0.1 1.8 0.1 2.2 33.7 0.1 0.5 11.7 0.0 3 7.4 45.1 0.2 102.1 720.4 0.1 138.5 1339.8 0.1

Avg. 3.5 23.9 0.2 1.7 18.5 0.1 1.4 12.6 0.1 Avg. 4.9 22.7 0.3 35.1 243.6 0.2 69.6 557.4 0.2
1 0.4 0.5 0.8 0.0 0.0 - 0.0 0.0 - 1 0.9 0.9 1.0 0.6 0.7 0.9 2.0 2.9 0.7
2 0.9 1.1 0.8 0.6 0.7 0.9 0.0 0.0 - 2 1.7 1.9 0.9 6.0 3.9 1.5 7.0 7.8 0.9
3 4.2 5.3 0.8 4.2 3.9 1.1 14.1 17.7 0.8 3 1.3 1.6 0.8 18.2 9.6 1.9 29.8 43.6 0.7
4 2.4 7.3 0.3 33.1 70.6 0.5 28.5 76.0 0.4 4 1.2 2.0 0.6 116.1 149.0 0.8 63.8 81.0 0.8

Avg. 2.0 3.6 0.7 9.5 18.8 0.8 10.7 23.4 0.6 Avg. 1.3 1.6 0.8 35.2 40.8 1.3 25.7 33.8 0.8
1 0.5 0.7 0.7 0.3 0.5 0.6 0.0 0.0 - 1 0.2 0.8 0.3 0.0 0.0 - 0.0 0.0 -
2 2.0 9.7 0.2 0.8 0.9 0.9 0.2 0.7 0.3 2 1.9 7.8 0.2 0.2 0.8 0.3 1.2 6.0 0.2
3 6.0 38.3 0.2 4.4 11.0 0.4 25.6 150.0 0.2 3 0.6 2.2 0.3 11.3 90.2 0.1 2.9 24.4 0.1
4 2.8 17.2 0.2 44.9 186.3 0.2 47.5 281.4 0.2 4 0.3 1.8 0.2 9.4 91.7 0.1 0.1 2.0 0.1

- - - - - - - - - 5 0.1 0.8 0.1 6.5 64.4 0.1 1.4 17.4 0.1
Avg. 2.8 16.5 0.3 12.6 49.7 0.5 18.3 108.0 0.2 Avg. 0.6 2.7 0.2 5.5 49.4 0.1 1.1 10.0 0.1

#rth Prob. #rth Prob.

ls112

zebra

example

schubert

tptp2

wos31

ex4t1

jobs

H

C
I /

C

C
I /

I

C
I /

H

C
I /

C

C
I /

I

C
I /

Abbrec.: I/C : the number of hyper-instances generated from a clause in a round of hyper-linking, IH
/C

: the number

of distinct hyper-instances, IC
/C

: the number of hyper-instances that are duplicates of existing clauses, and II
/C

: the

total number of hyper-instances having been generated. Avg.: average, SD.: standard derivation, and CV.=Avg./SD.:
coefficient variance.

4 The Multi-Agent Framework

4.1 The Architecture

The main design concepts of this framework are as fol-
lows. Suppose P is a problem to be proved in first-order
logic and S is the set of clauses corresponding to P and
S is input to a host A. The system A can perform
HLPP on S and solve P solely. However, let us con-
sider the following cases.

• If there already are many tasks to be served in A
or the performance of A will be degraded badly by
solving P , it may be good to pass the proof of P
to some other hosts whose performance is better
than A.

• If A accepts the assignment of P but, after some
rounds of HLPP, it seems that P is a very hard
problem which may take much longer time to com-
plete or the performance of A is degraded by P , it
may be needed to distribute some tasks of HLPP
such as HIG or PSAT or unit-simplification from
A to other hosts.

• Similarly, in the ith round of HLPP, if there are a
lot of clauses, C1, C2, . . ., retained in the database
and many of them produce a considerable among
of hyper-instances, it may be helpful to share the
load of HIG(Cj), j ≥ 1, with some other hosts.

However, hosts on the Internet may be in different op-
erational platforms and may be turn on or shutdown ar-
bitrarily. The performance of these hosts is not always
predictable all the time. Tracing the progress of each
host and monitoring the performance of the system are
two issues to be seriously considered. The framework
should designate the following improvements.

• Recognizing how many available hosts are there on
the network.

• Deciding the types of collaboration to perform.

• Adjusting the clauses/literals to be forwarded to
other hosts.

Proof house A

Proof

agent A
Proof house B

Proof

agent B

S

Request for HLPP()S

Return HLPP()S

HLPP()S

(a) A bypasses HLPP(S) to B

Proof house A

Proof

agent A
Proof house B

Proof

agent B

S

Request for PSAT()S

(or HIG())S

Return PSAT()S

(or H())S

HIG()S (or PSAT())S PSAT()S (or HIG())S

(b) HIG(S) on A and

PSAT(S) on B

Proof house A

Proof

agent A
Proof house A2

Proof

agent A 2

S={Ci,Cii,...} Request for HIG()Cii

Return H(Cii)

in the th roundr

HIG()Cii

Proof house A1

Proof

agent A 1

HIG(Ci)

Proof house An

Proof

agent A n

HIG()Cn

Req
ues

t fo
r H

IG
(C

i)

Ret
urn

H
(C

i)

Request for HIG(Cn)
Return H(Cn)

(c) HIG(Ci) on Ai, Aii, An

Figure 2: The types of collaboration among agents

• Monitoring the traffic and predicting the turn-
around time of each host.

• Communicating for exchanging or sharing data,
knowledge, or even proof experiences among hosts
in a peer-to-peer style.

With the techniques of software agents, HLPP can be
wrapped as agent applications and the improvements
mentioned above can be implemented as agents. Col-
laboration of multi-agents may be a solution to dis-
tributed theorem proving in clause-level, serving as a
flexible and convenient framework. We call each host
as a proof house and the agent resided in a proof house a
proof agent. The types of collaboration among the proof
agents are illustrated in Figure 2. Figure 3 presents the
high-level architecture of our idea. The main compo-
nents are as follows.

• Proof Houses. The proof house are computer sys-
tems which like to perform distributed HLPP. The
core program of a proof house is HLPP whose

Data-File-

Knowledge

base

@#$%^&*&

@!%^!$%^##

Agent dock

List of volunteering agents

Proof house A

Proof house B

Proof house C

Proof house D

Proof house E

Proof

agent A

Proof

agent D

Proof

agent C

Proof

agent B

Proof

agent E

Agent

manager

Blackboard

File/knowledge

manager

volunteering

registering

upload proof experience

update source files

post request
read message

registering

volunteering

forward

clauses+literals

forward

clauses+literals
how many

volunteers?

registering

board cleaner

Figure 3: The high-level architecture of the system

tasks, such as HIG, PSAT, unit-simplification, etc.,
can be invoked individually by the users or agents.

• Proof Agents. In each proof house there re-
sides a proof agent which invokes HLPP and dis-
patches clauses/literals and communicates with
other agents and monitors the performance of the
proof house.

• An Agent Dock. The agent dock is the pool gath-
ering available proof agents. Before starting col-
laboration, a proof house has to register in to
the agent dock. An agent manager resides in the
agent dock, which names the agents, associates the
agent’s name and IP, monitors the liveness of the
registered agents, and lists the volunteering agents
for a specific request proof houses, etc.

• A Blackboard. The blackboard is an open place
where agents post requests for help and answers
corresponding to the requests. Such requests in-
clude to perform HIG or PSAT on a specific set of
clauses, to simplify a set of clauses, to find a unit
clause, etc. Proof agents read the posts on the
blackboard; and if they estimate that the request
can be served, they volunteer to the agent dock.
A request on the blackboard has three status, i.e.,
new, served, and out-of-date, indicating requests
that are newly post by a proof agent, under serv-
ing or processing, and not satisfied by any agents
after a long time, respectively. A board cleaner
takes care of listing volunteers and the clean work.

• A File/Knowledge Server. This server performs
two tasks, updating/installing the latest version
of HLPP and sharing proof knowledge/experience
to proof houses. Since proof houses are of dif-
ferent platforms, e.g., Unix, Windows 95, Mac-
OS, or Linux, the needs for the source codes of
HLPP are platform-dependent. Also, knowledge
or information like the check-in period, set-of-
support strategies, the order of tries of unifica-
tion in HIG, etc., are set as default parameters
and can be reset according to the suggestion of
agents. Proof agents can forwards their experi-
ences and the agent, file/knowledge manager, sum-
marizes and “pushes” the results togethered with
the latest version of HLPP periodically.

4.2 The Interactions

Each computer can work solely or can collaborate with
other registered provers to prove the given problems.
When working together, provers have to decide how
many and which clauses to be sent outward and to ex-
pect the returning messages from the other provers.
Suppose a proof house A accepts a problem P to be
proved. The interactions among agents are described
as follows.

• Initiating. A converses P into a set of clauses S as
the sequential version of HLPP does.

If the proof agent A recognizes that the per-
formance of A is good for solving S, it sets up a
timer and invokes the HLPP procedure.

If not, the proof agent can either refuse to ac-
cept the proof of P or call for help on the black-
board for performing HLPP on S.

• Performance Tuning. Suppose A accepts the proof
of P and performs HLPP on S. The proof agent
monitors the progress of HLPP. If the operation of
HLPP exceeds a predefined among of time but still
not obtain a proof result, the proof agent on the
blackboard a request for help.

If the time spent in HIG and PSAT are signif-
icantly different, the request is to submit a time-
consuming task to a proof house with better per-
formance.

If HIG takes a very long time in each round,
the request is to distribute the clauses/literals for
HIG on n proof houses.

• Volunteering. Periodically, the proof agent living
in a well-performed proof house visit the black-
board and picks up the posted requests. If a re-
quest is acceptable, it checks in to the agent dock
and claims that the proof house it resided is avail-
able for collaboration. The agent dock queues the
names of such volunteering agents.

• Collaboration. After the round of HLPP, in which
the agent posted a request is finished, the proof
agent communicates with the agent dock and re-
quests for m available proof houses. The set of
clauses is then divided into m + 1 disjointed sub-
sets m of which are sent to the m proof houses
together with the set of literals.

• Feeding Back. When a proof house finishes the
assignment, the proof agent sends the result, e.g.,
new hyper-instances, back to the requester. The
proof agent initiates the request then waits for as-
sembling the feedback information and completes
the proof.

• Experience Sharing. In solving the given problems
solely or performing HIG collaboratively on the
given clauses, information such as

patterns of clauses usually generating a lot of
duplicated or redundant hyper-instances,

patterns of clauses for the PSAT module to
complete the proof, or

patterns of problems which usually can be
solved efficiently with backward-/forward-support
strategies and a specific sliding-priority, etc., may
be helpful to future collaboration. Such informa-
tion can guide or adjust the directive parameters

Proof house A

Proof house B

Proof

agent A

Proof

agent B
Agent dockAgent

manager

@#$%^&*&

@!%^!$%^##

Blackboard

board cleaner

List of volunteering agents

n

m o

l

r

j

k

p q

Figure 4: Collaboration of agents for distributed theo-
rem proving

of the prover and improve the performance. These
information are forwarded to the knowledge server
wherein they are summarized and analyzed.

Figure 4 presents the above interactions. Note that,
the above interactions may occur multiple times when
proving P . Also, a volunteering agent can continue its
assigned jobs, e.g., text processing, ftpping, web brows-
ing, etc., and takes the collaboration of theorem proving
as one of regular jobs. In other words, we are stealing
available computation time from each member comput-
ers.

5 The Design of Agents

Like many other mobile software agents, the agents
in our work have different capabilities of computing
or proving, knowledge for reaction, and methods for
communication. The agents introduced in this paper
include proof agents, agent manager, board cleaner,
file/knowledge manager. The follows discuss the issues
of design of the agents.

5.1 The Life of Agents

Basically, each agent is hosted in a computer system
connected to the Internet or intranet via TCP/IP.
Each agent is associated with a name, an IP ad-
dress, and a knowledge base. System agents, i.e.,
the agent manager, the board cleaner, and the
file/knowledge manager, are named by default using
name IP pair such as, AgentManager 210.71.14.33,
BoardCleaner 210.71.14.36, and
FileKnowManager 210.71.14.66, respectively. Proof
agents residing in the proof houses are named by the
agent manager when they register in to the agent dock.
The naming scheme of proof agents uses the tuple of
name time such as john22 24316367, where time is
given according to the clock of the agent dock. Since
the time proof agents registered in are different, the
agent manager can give to each proof agent a unique
name.

The agent dock associates the name and the IP num-
ber where the agent is from. The agent manager peri-
odically visits the registered proof agents to make sure
they are alive. When a proof house is turned off or the
network is disconnected, the agent manager unregisters
the agent and releases the name after waiting for a fixed
period of time. Also, if the consigned task is not fin-
ished, the agent manager sends message to the caller to

re-consign another agent. Some waiting lists are des-
ignated to the agent dock, which are lists of available
agents volunteering to different requests posted on the
blackboard. The caller can then access to the wait-
ing lists and get the name and IP and forward asso-
ciated data(clauses and literals) to the volunteers via
direct ftp. The board cleaner watches the messages
posted on the blackboard and traces their status of be-
ing served. The file/knowledge manager knows from
the agent manager the platforms of proof agents and
updates the source code of HLPP. Proof agents can
upload their proof experiences and data to the server.
The file/knowldge manager periodically analyzes the
uploaded data using statistics or simple data-mining
techniques and forwards the summarized data to the
agents registered in to the agent dock.

System agents keep alive and are running perma-
nently after installation and the IP number can be
changed only by re-installing the whole framework.
However, in doing this, all te working-on proof agents
may lost the the links for communication to other proof
agents. The user can turn down a proof house through
the user interface with or without notifying the agent
manager. Proof houses re-connecting to the agent dock
using the same IP may receive a different name.

5.2 Working Knowledge

Agents work in an events-conditions-actions cycle.
Each agent is working with a knowledge base containing
pre-defined, essential responses and actions for collab-
oration or communication. Different agents work with
different knowledge bases. Currently, the knowledge
bases are mainly constructed by IF-THEN rules. Be-
low we list part of the rule-based working knowledge
associated with agents.

• IF the running time of HLPP exceeds the default value,
THEN post a request for help on the blackboard.

• IF the performance of the host machine is fine AND
there is a request on the blackboard, THEN volunteer
for the service.

• IF the request is to generate hyper-instances for a set S

of clauses AND there are n volunteers ready for service,
THEN partition S into n disjointed sets, S1, S2, . . ., Sn,
AND pass Si to the ith volunteer together with the set
of literals retained in the database.

• IF the request is to perform HIG on a set S of clauses
and a list L of literals, THEN call the HIG procedure on
S and L AND wait for the host to return H(S) to the
caller.

• IF the request is to perform PSAT on a set S of clauses,
THEN call the PSAT procedure on S AND wait for the
host to return PSAT(S) to the caller.

• IF the problem has been solved, THEN inform all of
the volunteers to terminate the consigned task and to
discard all the registered data.

5.3 Communication

System agents and proof agents communicate with each
other using KQML(Knowledge Query and Manipula-
tion Language) which was defined under the DARPA-
sponsored Knowledge Sharing Effort [1]. Basically,

KQML provides a way to structure the messages in
a layered architecture with the functionality of mes-
sage communication. Between the layers are the primi-
tives, or performatives, with which agents can exchange
meaningful message. The KQML performatives are
assertive and directive and used to perform actions
like “tell”, “evaluate”, ”subscribe”, or change agents’
states, etc.

6 Related Work

PARTHENON [5] is a parallel resolution theorem
prover implemented on multiprocessors with shared
memories. PARTHENON uses the model elimina-
tion procedure and explores alternative branches of the
proof tree. Fine-grain parallelism is supported by par-
allel OR-search. The ROO theorem prover [17] is a
parallel version of OTTER, which is implemented on
a shared-memory architecture on which several clauses
are activated in parallel. SPTHEO [24] is a parallel ver-
sion of a sequential theorem prover, SETHEO, by com-
bining parallel OR-search and AND-search. SETHEO
is a top-down prover based on the calculus of connec-
tion tableaux which generalizes weak model elimina-
tion. Proofs are found by a consecutively bounded
depth-first iterative deepening search with backtrack-
ing. DADO [23] is a tree-structured parallel architec-
ture in which the processing elements form a complete
binary tree. Programs running on DADO are first par-
titioned into 16-32 groups each of which is executed in
a processing element. DARES [7] is a parallel version
of a resolution-based method working on a distributed
network. A number of processes, called agents, each
of which sequentially executes resolution on part of the
clause set, work concurrently. The search space is par-
titioned into parts according to some heuristics. Each
agent works on a partition of the search space and com-
municates with other agents by message passing. Dif-
ferent theorem proving methods may utilize different
parallel strategies to make use of their distinct char-
acteristics [3]. Therefore, it is hard to compare the
performance among different parallel theorem proving
systems. Readers may refer to [4, 11, 12] for a broader
discussion. Agent-based collaboration on the Internet
has been receiving great attentions [6, 13, 10, 28, 26, 25].
Many agent-based applications have been developed
and presented. Successful applications include BIG [16]
for resource-bounded search, DNX [9] for intelligent
registration for domain names, NetChaser [21] for per-
sonal mobility of using computer terminals, Nomad [20]
for auction on electronic commerce, XPECT [2] for elec-
tronic commerce framework, etc., and many others ap-
plied to CAD, information retrieval, personal assistant.
However, rare of them are for deductive systems.

7 Concluding Remarks

We have presented a multi-agent framework for dis-
tributed theorem proving of the hyper-linking proof
procedure. The advantages of this framework include
the following.

• Any trusted computer system can contribute to
distributed theorem proving by volunteering to be

a proof house. This means that the number of
proof houses can be extended considerably. Com-
pared to the multi-processor systems, the cost of
adding a processing element in our work is much
smaller. Also, the time spent on developing paral-
lel theorem provers is significantly deduced.

• This framework is very useful for solving large and
complex problems which usually need considerably
long running time.

• The concepts and techniques proposed in this pa-
per can be applied to any other theorem provers.

• The use of agents simplifies the complexity of com-
munication among the contributed components
since the proof agents talk in a peer-to-peer style,
ignoring the details of the physical communication
protocols.

We conclude with the following remarks. In this re-
search, each proof house can prove problems solely and
request for collaboration when it “feels” it is needed. As
stated in [7], theorem proving is computationally inten-
sive and the processing elements should be loosely cou-
pled, for contributing more time to computation than
to communication. However, the reliability of the In-
ternet is not as high as multi-processor systems. The
unexpected delays and turn-around time are the risks of
using this environment. To overcome these, each proof
agent can set up it knowledge base or learn the change
of environment and dynamically determine the related
parameters. Also, the agent dock monitors the liveness
and performance of agents and always provides reliable
proof houses for any request. Moreover, the knowledge
manager can inform the user or the proof agent to tune
the related parameters.

Furthermore, the performance and quality of dis-
tributed inference could be improved by mining the
knowledge base for obtaining a better combination of
parameters. Load-balance is an important issue for par-
allel or distributed processing. Using more accurate
evaluating measures to estimate the potential behav-
ior of the underlying problem might help, in the sense
that agents can collaborate on complex tasks. More-
over, exploring better heuristics for tuning parameters
is worth advanced studies. Currently, in the proposed
environment, HLPP is performed round by round. Con-
tinuously performing HIG and PSAT on the generated
hyper-instances is another computational model, which
will be our next direction. The concept of TEAM-
WORK can also be applied to agent-based collabora-
tion. In this case, each proof house can run theorem
provers with different directive parameters, or even run
with different theorem proving techniques. A research
project has been working on this topic.

References

[1] The KQML specifications in 1993, 1993.
http://java.stanford.edu/KQMLSyntaxBNF.html.

[2] J. Andreoli, F. Pacull, and R. Pareschi. Xpect: a
framework for electronic commerce. IEEE Internet
Computing, 1(4):40 –48, July-Aug. 1997.

[3] M.P. Bonacina and J. Hsiang. Parallelization of
deduction strategies: An analytical study. Journal
of Automated Reasoning, 13:1–33, 1994.

[4] M.P. Bonacina and W. McCune. Distributed the-
orem proving by peers. In Proceedings of the
12th International Conference on Automated De-
duction, pages 841–845, 1994.

[5] S. Bose, E.M. Clarke, D.E. Long, and S. Michay-
lon. PARTHENON: A parallel theorem prover for
non-Horn clauses. Journal of Automated Reason-
ing, 8(2):153–182, April 1992.

[6] F.W. Bruns and H. Gathmann. Auto-erecting
agents for a collaborative learning environment. In
Proceedings of the 8th International Workshops on
Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, pages 287 –288, 1999.

[7] S.E. Conry, D.J. MacIntosh, and R.A. Meyer.
DARES: A distributed automated resolution sys-
tem. In Proceedings the 11th National Conference
on Aritificial Intelligence, pages 78–85, 1990.

[8] M. Davis and H. Putnam. A computing procedure
for quantification theory. Journal of the ACM,
7(3):201–215, 1960.

[9] Lassaâd Gannoun, Julien Francioli, Stanislav
Chachkov, Fréderic Schutz, Jarle Huaas, and
Jürgen Harms. Domain name exchange: A mobile-
agent based shared registery system. IEEE Inter-
net Computing, 4(2):59–64, March/April 2000.

[10] J.N. Hansoty, M. Vouk, and S.F. Wu. Lava: secure
delegation of mobile applets: design, implementa-
tion and applications. In Proceedings of the Sixth
IEEE Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, 1997.,
pages 242 –247, 1997.

[11] H. Hong. Special issue on parallel symbolic com-
putation: Foreword of the guest editor. Journal
Symbolic Computation, 21(4):377–376, 1996.

[12] K. Konrad. HOT: A concurrent automated the-
orem prover based on higher-order tableaux. In
Lecture Notes in Computer Science, volume 1479,
pages 245–262. Springer, 1998.

[13] Andrew P. Kosoresow and Gail E. Kaiser. Using
agents to enable collaborative work. IEEE Internet
Computing, pages 85–87, July/Aug. 1998.

[14] S.-J. Lee and D. Plaisted. Eliminating duplication
with hyper-linking strategy. Journal of Automated
Reasoning, 9(1):25–42, 1992.

[15] S.-J. Lee and C.-H. Wu. Improving the efficiency of
a hyper-linking based theorem prover by incremen-
tal evaluation with network structures. Journal of
Automated Reasoning, 12:359–388, 1994.

[16] Victor Lesser, Bryan Horling, Anita Raja, Xiao-
qin Zhang, and thomas Wager. Resource-bounded
searches in an information marketplace. IEEE In-
ternet Computing, 4(2):49–58, March/April 2000.

[17] E.L. Lusk and W.W. McCune. Experiments with
ROO: A parallel automated deduction system.
Parallelization in Inference Systems, 590:139–162,
1992.

[18] W. W. McCune. OTTER 3.0 Users’ Guide. Math-
ematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois, January
1994.

[19] D. Plaisted. Non-Horn clause logic programming
without contrapositives. Journal of Automated
Reasoning, 4:287–325, 1988.

[20] T. Sandholm and Q. Huai. Nomad: mobile
agent system for an internet-based auction house.
IEEE Internet Computing, 4(2):80 –86, March-
April 2000.

[21] Antonella Di Stefano and Corrado Santoro.
NetChaser: Agent support for personal mo-
bility. IEEE Internet Computing, 4(2):74–79,
March/April 2000.

[22] M.E. Stickel. A Prolog technology theorem prover:
Implementation by an extended Prolog compiler.
Journal of Automated Reasoning, 4:353–380, 1988.

[23] S.J. Stolfo and D.E. Shaw. Architecture and appli-
cation of DADO: A large-scale parallel computer
for artificial intelligence. In Proceedings of the In-
ternational Joint Conference on Artificial Intelli-
gence, 1983.

[24] C.B. Suttner. SPTHEO: A parallel theorem
prover. Journal of Automated Reasoning, 18:253–
258, 1997.

[25] P. Tarau, V. Dahl, and K. De Bosschere. A logic
programming infrastructure for remote execution,
mobile code and agents. In Proceedings of the
Sixth IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages
106 –111, 1997.

[26] A. Wallis, Z. Haag, and R. Foley. A multi-
agent framework for distributed collaborative de-
sign. In Proceedings of the Seventh IEEE Interna-
tional Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, 1998.
(WET ICE ’98)., pages 282 –287, 1998.

[27] C.-H. Wu and S.-J. Lee. Parallelization of a hyper-
linking based theorem prover, accepted by and to
appear. Journal of Automated Reasoning, 2000.

[28] Jerome Yen, Alan Chung, Heron Ho, Birgitta
Tam, Rocky Lau, Michael Chua, and Kai Hwang.
Collaborative and scalable financial analysis with
multi-agent technology. In Proceedings of the 32nd
Annual Hawaii International Conference on Sys-
tems Sciences, 1999.

