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ABSTRACT 

 
This study investigated a genetic approach to solve some 
fuzzy equations for optimization problems. We argue that 
the classical methods of solving fuzzy equations are too 
restrictive and that an alternative of the solution concept is 
possibly needed. By applying genetic algorithms to solve 
fuzzy equations, the use of membership functions for 
fuzzy numbers is no longer needed. We give some 
illustrative numerical examples to demonstrate both 
feasibility and efficiency of the proposed genetic 
algorithms while solving fuzzy equations. 
 
 

1. INTRODUCTION 
 
Solving fuzzy equations is one of the fundamental 
problems in fuzzy set theory [1, 5, 9]. In many practical 
applications, uncertainty will be modeled using fuzzy sets 
so that the parameters of the problem will be fuzzy 
numbers producing fuzzy equations to be solved [2, 3]. 
 

Consider a quadratic algebraic expression bxax +2  for 
a, b real parameters and x a real variable. Let  y = N (a, b, x)  

= bxax +2 . After substituting triangular fuzzy numbers 

A~ , B~ , and X~  into bxax +2  for a, b, and x, 

respectively, we obtain the fuzzy set 22 ~~~~
XBXA + . The 

triangular fuzzy numbers are represented by 
)21 ,,(~ ∆+∆−= aaaA , ),,(~

21 wbbwbB +−= , and 

),,(~
21 δδ +−= xxxX  together with their membership 

functions µ(a | A~ ), µ(b | B~ ), and µ(x | X~ ), respectively. In 
the literature [3, 5], there are two ways of classical 
methods to evaluate the above fuzzy expression. The first 

method of finding the value of 22 ~~~~
XBXA +  is by using 

the extension principle. Let Ð (a, b, x) denote the 
minimum of µ(a  | A~ ), µ(b | B~ ), and µ(x  | X~ ). Assume that 

we set Y~  equal to 22 ~~~~
XBXA + . Then the membership 

function for Y~  is defined by µ(x  | Y~ ) = sup{ Ð (a, b, x) | 

N(a, b, x) = y}. To find α-cuts of Y~ , we let Φ(α) = {N(a, 
b, x) | a ∈ )(~ αA , b ∈ )(~ αB , x  ∈ X~ (α)}, 0 ≤α ≤ 1. Then 

we have Φ(α) = )(~ αY . Alternately, the second method is 

that we evaluate 22 ~~~~
XBXA +  using α-cuts and interval 

arithmetic [3]. For any triangular fuzzy numbers A~  and 
B~ , the following operations hold. 
 

(1) ( A~ B~ )(α)  = )(~ αA )(~ αB , and 

(2) ( A~ ± B~ )(α)  = )(~ αA  ± )(~ αB . 
 
The terms A~ B~  and A~  ± B~  are computed using the 

extension principle and the terms )(~ αA )(~ αB , )(~ αA  ±  

)(~ αB  are computed using interval arithmetic. Let )(~ αZ  

= )(~ αA )(~ αX )(~ αX  + )(~ αB )(~ αX , for 0 ≤ α ≤ 1. We 

can see that )(~ αY  is a subset of )(~ αZ . Obviously, a 

fuzzy algebraic expression using α-cuts and interval 
arithmetic for evaluation can produce a larger fuzzy set 
then the use of the extension principle. 
 
In this paper, however, we propose a genetic approach to 
evaluate fuzzy algebraic expressions but without the need 
to define membership functions while using fuzzy 
numbers. By applying Genetic Algorithms (GAs) to solve 
fuzzy equations, the computation of fuzzy equations needs 
neither the extension principle nor α-cuts and interval 
arithmetic, but the usual evolution. Assume that X~  is an 

arbitrary fuzzy set on the interval ] ,0[
b

a
 and )~(XN  is a 

fuzzy equation. In the genetic approach, we do not need to 

define the membership functions of )~(XN . Instead, the 

interval ] ,0[
b

a
 is equally divided into M pieces. Let 

bM

a
jx j = ， Mj ≤≤0 . Let ]1,0[)(

~ ∈= jjxX µ , 
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Mj ≤≤0 , be the membership grade of jx  in X~ . 

Thus we obtain a discrete fuzzy set X~ = 
) ...., , ,( 10 Mµµµ , where jµ , Mj ≤≤0 , is a random 

number in [0, 1]. In other words, we wish to find X~  in 

] ,0[
b

a
 that maximizing )~(XN  via GAs. However, we 

cannot maximize )~(XN  directly since it is a fuzzy set. 
Instead, we can compute the centroid of fuzzy equations 
for the maximization problem. The centroid can be used 
as the fitness value for the evolution of GAs. Therefore all 

we need to do is to find a vector X~  in  [0, 1]M+1 that 
maximizes the centroid. 
 
 

2. STATEMENTS OF THE PROBLEM 
 
The problem considered in this paper is stated as follows. 
We have three equations of the problem, the price, the cost, 
and the profit functions. The price function is 

baxbxaxP /0  ,)( ≤≤−= ,                    (1) 
where x  is a demand, and the cost function is 

0,)( 2 ≥++= xkxgxexC ,             (2) 
where kgeba ,,,,  are all known positive numbers, and 

)(2)( kbagab +<− , ag < . The objective of the 
problem is to obtain the maximization of the profit 
function N(x), which is defined by 

2)()()()()( xkbxgaexCxxPxN +−−+−=−= , (3) 
bax /0 ≤≤ , and also to obtain the optimal price for the 

demand x. Since xkbgaxN )(2)( +−−=′ , we have 

],0(, ),(  
)(2

*

b

a
xsayx

kb

ga
x ∈=

+

−
= , and hence, the 

maximum profit is  

  
)(4

)(
)(

2
*

kb

ga
exN

+

−
+−= .          (4) 

 
Now, consider the fuzzy case of the problem. Assume that 
the demand x  is vague even for the same price )(xP  
(see Fig. 1). Hence, the demand x  can be represented as 
the following triangular fuzzy number, 

,),,(~
21 ∆+∆−= xxxx x<∆< 10 , 0 2 >∆       (5) 

 
Clearly, the fuzzy profit is )~( xN . Let yxN =)( , then (3) 
becomes 

0)()( 2 =++−−+ yexgaxkb .        (6) 

From (6), we can see that )( yD = 2)( ga − − 

))((4 yekb ++  ≥ 0 when )(0 xNy ≤≤ . If 0)( ≥yD , 

then (6) obviously has two roots which are given by the 
quadratic formula, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

)(2

)(
)(1

kb

yDga
yr

+

−−
= ,     

)(2

)(
)(2

kb

yDga
yr

+

+−
= .            (7) 

 
After applying the extension principle and doing some 
calculations, we obtain the membership function of fuzzy 
profit )~( xN  as follows, ))(~( yxN = 
 







 ≤≤

=
= otherwise ,                                    0

0))],((~)),((~max[
)(~sup

21

)(

Nyifyrxyrx
xx

xNy
  (8) 

 
where the membership function of the triangular fuzzy 
number x~  is )(~ xx  and the membership function of 

the fuzzy profit )~( xN  is ))(~( yxN . However, the finding 

of ))(~( yxN  is not an easy task at all. Therefore we 
propose the genetic approach for evaluating fuzzy 
expressions but without the need to define membership 
functions for those fuzzy numbers. By applying GAs to 
solve fuzzy equations, the computation of fuzzy equations 
needs neither the extension principle nor α-cuts and 
interval arithmetic, but the usual evolution. 
 
 

3. THE GENETIC APPROACH 
 
The concept of proposed genetic approach is stated as 
follows. We first discretize triangular fuzzy number x~ = 
(x - ∆1, x, x + ∆2) of (5) in an interval [0, a/b] yielding an 
arbitrary fuzzy set x~  (see Fig. 2). Then we divide the 

interval [0, a/b] into M pieces, 
bM

a
jx j = , Mj ≤≤0 . 

Let the membership grade of X~  at xj be  

jjxX µ=)(
~

, Mj ≤≤0  and ]1,0[∈jµ .    (9) 

 
Thus we obtain a discrete fuzzy set 

 

)(xP

y
bxaxP −=)(

x

ba /x-∆1  x  x+∆2 

Fig. 1 The fuzzy demand x 
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X~  = ) ...., , ,( 10 Mµµµ or  

X~  = 
M

M

xxx

µµµ
+++ ....

1

1

0

0 .            (10) 

 
From yxN =)(  (in (3)) and (10), if each )( kxN , 

Mk ≤≤0 , is different, the fuzzy profit function is 

defined by )~(XN  = ),...,,( 10 MN µµµ  

= 
)(

...
)()( 1

1

0

0

M

M

xNxNxN

µµµ
+++            (11) 

 
and the centroid is defined by  
 

∑

∑
=

=

=
M

j
j

M

j
jjxN

XN

0

0
)(

))
~

((
µ

µ

θ .             (12) 

 

From (6) and (7), if Ny ≤≤0  and yxN =)( , the 

equations yield two solutions, i.e. )( ),( 21 yrxyrx == . 

Therefore, in (11), if 0)()( yxNxN ki == (say), ki ≠ , 

)()( k

k

i

i

xNxN

µµ
+  becomes 

)(

),max(

i

ki

xN

µµ
, and the 

centroid of )~(XN  becomes 
P

R
XN =))
~

((θ , where  

),max(
,

ki
kij

jP µµµ +∑=
≠

 and  

]),)(max[()(
,

kiij
kij

j xNxNR µµµ +∑=
≠

.      (13) 

Similarly, the optimal price for X~  is  
 

∑

∑
=

=

=
M

j
j

M

j
jjxP

XPE

0

0
)(

))
~

((
µ

µ
. 

 
Obviously, with the proposed genetic approach, all we 
need to do is to find a vector X~  in  [0, 1]M+1 (real 

numbers) that maximizing ))~(( XNθ . 
 
 

4. GENETIC ALGORITHMS 
 
Genetic algorithms (GAs) are stochastic search technique 
based on the principles and mechanisms of natural 
genetics and natural selection [8]. The basic concepts of 
GAs are they start with a population of randomly 
generated candidates and evolve towards better solutions 
by applying genetic operators such as crossover and 
mutation, modeled on natural genetic inheritance and 
Darwinian survival-of-the-fittest [6, 7]. The proposed GAs 
for solving fuzzy equations is given as follows, which is 
different from the fuzzy genetic algorithms to solve fuzzy 
optimization problem in [4]. The general structure of the 
proposed GAs is given in the Appendix.  
 
Step1 . Generate initial population. 
Initial population of size n is randomly generated from [0, 
1]M+1 according to uniform distribution in the closed 
interval [0,1]. Let the population be 
  

),...,,(~
10 MjjjjX µµµ=  =  

M

jMjj

xxx

µµµ
+++ ....

1

1

0

0
                      (14) 

 
where nj ≤≤1  and µji is a real number in [0, 1], i = 0, 

1, 2, …, M. Each individual jX
~

 in the population is a 

chromosome. 
 
Step 2. Calculate the fitness value for each chromosome . 
For each chromosome jX

~
, nj ≤≤1 , the centroid 

))
~

(( jXNθ  is calculated as the fitness. Then 

chromosomes can be rated in terms of their fitness. Let the 

total fitness for the population be ))~
((

1
∑=
=

n

j
jXNT θ . The 

cumulative fitness (partial sum) for each chromosome, 

))
~

((
1

∑=
=

k

j
jk XNS θ , nk ≤≤1 , is calculated. Next, 

intervals I1 = [0, S1], Ij = [Sj-1, Sj], j = 2, 3, .., n-1, and In = 
[Sn-1, Sn] are constructed for the purpose of selection. In 
our implementation, a roulette wheel strategy is adopted 
as the selection procedure. 
 
Step 3. Selection and reproduction. 
The selection process begins by spinning the roulette 
wheel n  times; each time, a single chromosome is selected 
for a new population in the following way. Each time a 
random number r from the range [0, T] is generated. If r ∈ 
I1, then select first chromosome 1

~
X ; otherwise, select the 

Fig. 2  Fuzzy set x~  

1 

x  

)(~ xXµ2 

µ1 
µ0 

0 1x baxM /=
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k th chromosome kX
~

, nk ≤≤2 , if r ∈ Ik.. This selection 

process is continued until the new population has been 
created. Finally, rename the new population into 

...,
~

 ,
~

 ,
~

321 ZZZ  in the order they were picked. The 

probability of a selection for each chromosome jX
~

 to 

appear in the new population is  
T

XN j ))
~

((θ
 and its 

expected value is  
T

XN
n

j ))
~

((θ
. Thus, this procedure 

tends to choose more jX
~

 with higher ))
~

(( jXNθ  

fitness to go on into the next population. 
 
Step 4. Perform crossover. 
Crossover used here is the one-point method, which 
randomly selects one cut-point and exchanges the right 
parts of two parents to generate offspring. Each pair 

( 1
~
Z , 2

~
Z ), ( 3

~
Z , 4

~
Z ), …  ,  ( 1

~
−nZ , nZ

~
) produces two 

children via crossover. Let p be the probability of a 
crossover, 0 ≤ p ≤ 1. Usually p is between 0.6 and 0.8, so 
we expect that, on average, 60% to 80% of chromosomes 

undergo crossover. Consider two chromosomes 1
~
Z  and 

2
~
Z  for crossover. We generate a random number r in the 

interval [0, 1]. If r ≤ p, then perform crossover on 1
~
Z  

and 2
~
Z . Otherwise, if r > p, the two children 

′
1

~
Z  and 

′
2

~
Z  are identical to their parents 1

~
Z  and 2

~
Z . Suppose 

we are to perform crossover. We generate another random 
integer number u from the range [0, M-1]. Assume that u 
equals 3, the two chromosomes 1

~
Z  and 2

~
Z  are cut 

after the fourth position, and the offspring 
′

1
~
Z  and 

′
2

~
Z  

are generated by exchanging the right parts of them.  
 
Step 5. Perform mutation. 
Mutation resets one position to zero with a probability 
equal to the mutation rate. Let q be the probability of a 
mutation, 0 ≤ q ≤ 1. Usually q is a very small value around 
0.003 to 0.03, so we expect that, on average, 0.3% to 3% 
of total position of population would undergo mutation. 
There are mn ×  positions in the whole population; we 
expect 0.003 mn ×  to 0.03 mn ×  mutations per 

generation. For example, consider chromosome 
′

1
~
Z . Let 

wi be a random number in [0,1], 0 ≤ i ≤ M . If wi < q then 

reset the i+1th position in 
′

1
~
Z  to zero. After the 

mutation is completed on the whole population, we 
let njZX jj ,...,2,1,

~~ =′= . Now we just completed one 

iteration of GAs. Step 2 through step 5 is done K times, 
where K is the maximum number of iterations. 

Finally, the algorithm is terminated after K generations. 

Let the last population be **
2

*
1

~
,....,

~
,

~
nXXX . Now, we need 

to calculate the centroid of each chromosome
*~
jX , 

nj ≤≤1 , in the last population. The maximum value of 

))
~

(( *
kXNθ is the best chromosome in the population, 

i.e. ))
~

(())
~

((max **

1 kjnj
XNXN θθ =

≤≤
for some k∈{1, 2, .., n}.  

The best chromosome is definitely the optimal solution of 
the problem. Let the best chromosome be 

 ),....,,(
~ **

1
*

0
*

kMkkkX µµµ=
M

kMkk

xxx

*

1

*
1

0

*
0 ....

µµµ
+++= .  

According to (1), the fuzzy price is  
 

M

kMkk
kk

bxabxabxa
XbaXP

−
++

−
+

−
=−=

*

1

*
1

0

*
0** ...

~
)

~
(

µµµ
,  

and the centroid of )
~

( *
kXP is  

 

∑

∑ −
=

=

=
M

j
kj

M

j
kjj

k

bxa
XPE

0

*

0

*

*
)(

))
~

((
µ

µ
 .       (15) 

 
 

 
5. ILLUSTRATIVE EXAMPLES 

 
In this section, we give three illustrative numerical 
examples to demonstrate both feasibility and efficiency of 
the genetic algorithms while solving fuzzy equations 

. 
Example 1. The problem instance is: the price 
function, xxP 2100)( −= , 500 ≤≤ x ; the cost 

function, xxC += 10)( ; and the profit function, 

)()()( xCxxPxN −=  =  −10 + 99x − 2x2, 0 ≤ x ≤ 50.  
The optimal solution of the crisp case is obtained as 
follows. Since 0499)( =−=′ xxN , we obtain x = 24.75. 
Thus the optimal solutions are P(24.75) = 50.5 and 
N(24.75) = 1215.125.  
 
Now, consider the fuzzy case, i.e. the demand x is vague. 

Let M = 10. We have kkxk 5
10

50
== , 0 ≤ k  ≤ 10, as 

shown in Table 1. Then we obtain N(x0) = -10, N(x1) = 435, 
N(x2) = 780, N(x3) = 1025, N(x4) = 1170, N(x5) = 1215, 
N(x6) = 1160, N(x7) = 1005, N(x8) = 750, N(x9) = 395, and 
N(x10) = −60. From (12) and (13), we have 

),...,,()
~

( 1010 µµµNXN =  and the centroid  
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∑

∑
=

=

=
10

0

10

0
)(

))
~

((

j
j

j
j

jxN
XN

µ

µ
θ . The optimal price in the fuzzy 

sense is given by ))~(( XPE =
∑

∑

=

=
10

0

10

0
)(

j
j

j
j

jxP

µ

µ
.  

 
The parameters for genetic algorithms are: (1) population 
size n  = 100; (2) the probability of a crossover p = 0.6; (3) 
the probability of a mutation q = 0.003; (4) the maximum 
number of iterations K = 4000. The result obtained from 

GAs for X~  over 4000 generations is shown in Table 1. 
The count of crossover is 120,263 and the count of 

mutation is 1,225. We obtain X~  = (0.00, 0.00, 0.00, 0.00, 
0.00, 0.80, 0.00, …., 0.00) with the largest value of 

))~(( XNθ , 1215, and the optimal price in the fuzzy sense 

))~(( XPE , 50. 
 
 

Table 1 Best value for X~ in the example1 over 4000 
generations 

 
j 0 1 2 3 4 5 6 7 8 9 10 
xj 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 
µj 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 

Note: crossover : 120,263, mutation : 1,225, ))~(( XNθ  = 

1215, ))~(( XPE  = 50. 
 
 

Example 2. The problem instance is: the price function is 
a quadratic, P(x) = 101 – 10x  + x2, 0 ≤ x ≤ 5; the cost 
function, C(x) = 10 + x, x  ≥ 0; and the profit function is 
N(x) = −10 + 100x −10x2 + x3, 0 ≤ x ≤ 5. Since b2 - 4ac = 
100 - 404 < 0, then we have x = 10/2 = 5 and 

050)5(2220100)( 22 >+−=+−=′ xxxxN . In the 
crisp case of the problem, when x = 5, the optimal solution 
are P(5) = 76 and N(5) = 365.  
 
Consider when x is vague. Let M = 10 ， we 

have ,5.0
10

5
kkxk ==  0 ≤ k  ≤ 10, as shown in Table 2. 

We obtain N(x0) = -10, N(x1) = 37.625, N(x2) = 81, N(x3) = 
120.875, N(x4) = 158, N(x5) = 193.125, N(x6) = 227, N(x7) 
= 260.375, N(x8) = 294, N(x9) = 328.625, and N(x10) = 365. 

From (13), the centroid is
∑

∑
=

=

=
10

0

10

0
)(

))
~

((

j
j

j
j

jxN
XN

µ

µ
θ   

and the optimal price in the fuzzy sense is ))~(( XPE  = 

∑

∑

=

=
10

0

10

0
)(

j
j

j
j

jxP

µ

µ
. The parameters for genetic algorithms are:  

 
(1) population size n = 100; (2) the probability of a 
crossover p = 0.6; (3) the probability of a mutation q = 
0.003; (4) the maximum number of iterations K = 3,000. 

The result obtained from GAs for X~  over 3,000 
generations is shown in Table 2. The count of crossover is 

89,732 and the count of mutation is 918. We  obtain X~  = 
(0.00, 0.00, 0.00, …. , 0.00, 0.915) with the largest value 
of ))~(( XNθ , 365, and the optimal price in the fuzzy 

sense ))~(( XPE , 76. 
 

 

Table 2 Best value for X~ in the examp le2 over 3000 
generations 

 
j 0 1 2 3 4 5 6 7 8 9 10 
xj 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
µj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.915 

Note: crossover : 89,732, mutation : 918, ))~(( XNθ  = 

365, ))~(( XPE = 76. 
 
 
Example 3 . The problem instance is: the demand function 
is xxp 230)( −= ; the cost function, xxC 610)( += ; 

and the profit function, 222410)( xxxN −+−= , 
150 ≤≤ x . The optimal solutions of the crisp case are 

N(6) = 62 and P(6) = 18. 
 

Now when x is vague. Let M = 20. We have
20

15
=kx k  = 

0.75k , 200 ≤≤ k . We obtain N(x0) = N(x16) = −10, N(x1) 
= N(x15) = 6.875, N(x2) = N(x14) = 21.5, N(x3) = N(x13) = 
33.875, N(x4) = N(x12) = 44, N(x5) = N(x11) = 51.875, N(x6) 
= N(x10) = 57.5, N(x7) = N(x9) = 60.875, N(x8) = 62, N(x17) 
= −29.125, N(x18) = −50.5, N(x19) = −74.125, N(x20) = 
−100. The parameters for genetic algorithms are: (1) 
population size n = 100; (2) the probability of a crossover 
p = 0.8; (3) the probability of a mutation q = 0.03; (4) the 
maximum number of iterations K = 6,000. The result 
obtained from GAs for X~  over 6,000 generations is µ8 = 
0.75 while the others are 0.00. The count of crossover is 
240,271 and the count of mutation is 18,102. We obtain 

the largest value of ))~(( XNθ , 62, and the optimal price 

in the fuzzy sense ))~(( XPE , 18. 
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6. CONCLUSION 
  
In this study we proposed the genetic approach to solve 
fuzzy equations, but without the need to define the 
membership functions, using fuzzy numbers. Since the 

optimal demand *x , e.g. 
)(2

*

kb

ga
x

+

−
= , is in ],0(

b

a
, 

we can take M a suitable value to divide the interval [0, 

a/b] into small pieces, i.e. 
bM

a
jx j = , Mj ≤≤0 . Let 

*xxi =  for some i ∈{0,1,2,…,M}. From (9), we can see 

that the random numbers Mµµµ ,...,, 21 , which 

generated from [0, 1], should have a possibility of 

ijj ≠∀=  ,0µ  and 0≠iµ . Thus (10) will become  

)0,...,0,,0,...,0(
~

iX µ=  = 
i

i

x

µ
 = .*x

iµ
 From (11), we 

obtain 
)(

)0,...,0,,0,...,0( *xN
N i

i
µ

µ = , where )( *xN  is 

the centroid and also is the maximum profit . Therefore, 
we conclude that the search space of GAs includes the 
crisp optimal solution and near-optimal solutions for the 
fuzzy case of the problem.  
 
 

APPENDIX  

The general structure of genetic algorithms. 
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