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ABSTRACT

This study investigated a genetic approach to solve some
fuzzy equations for optimization problems. We argue that
the classical methods of solving fuzzy equations are too
restrictive and that an alternative of the solution concept is
possibly needed. By applying genetic algorithms to solve
fuzzy equations, the use of membership functions for
fuzzy numbers is no longer needed. We give some
illustrative numerical examples to demonstrate both
feasibility and efficiency of the proposed genetic
algorithms while solving fuzzy equations.

1. INTRODUCTION

Solving fuzzy equations is one of the fundamental
problems in fuzzy set theory [1, 5, 9]. In many practical
applications, uncertainty will be modeled using fuzzy sets
so that the parameters of the problem will be fuzzy
numbers producing fuzzy equationsto be solved [2, 3].

Consider a quadratic algebraic expression ax? +bx for
a, b real parametersand x areal variable. Let y =N(a, b, X)
= ax’ +bx. After substituting triangular fuzzy numbers
A, B, and X into ax’+bx for a b, and X,
respectively, we obtain the fuzzy set AX? +BX?. The
triangular  fuzzy numbers are represented by
A=(a- D,aa+D,), B=(b-w,bb+w,), ad
X =(x- d;,x, x+d,) together with their membership
functions nfa | A), ntb | B), and n(x | X), respectively. In
the literature [3, 5], there are two ways of classical
methods to evaluate the above fuzzy expression. The first

method of finding the value of AX? +BX? is by using
the extension principle. Let B(a, b, x) denote the

minimum of N | A), nfo | B), and nix | X ). Assume that
weset Y equal to AX? + BX ?. Then the membership
function for Y is defined by nfx |Y ) = sup{ B(a, b, X) |

N(a, b, x) =y}. Tofinda-cutsof Y , welet F(a) = {N(a,
b,X)|]al A@),b1 B@),xT X(@},0£a£ 1. Then
we have F(a) = V(a) . Alternately, the second method is
that we evaluate AX 2 + BX? usi ng a-cuts and interval

arithmetic [3]. For any triangular fuzzy numbers A and
B, the following operations hold.

(1) (AB)@ = A(@) B@),and
(2 (AxB)@) = A@) tB(@).

Theterms AB and A + B are computed using the
extension principle and the terms  A(a) I§(a) A@) *
I§(a) are computed using interval arithmetic. Let Z(a)
= A@) X(@) X(@@) + B(@) X(@),for0 £ a£ 1 We
can see that Y(@) is a subset of Z(a). Obviously, a

fuzzy algebraic expression using a-cuts and interval
arithmetic for evaluation can produce a larger fuzzy set
then the use of the extension principle.

In this paper, however, we propose a genetic approach to
evaluate fuzzy algebraic expressions but without the need
to define membership functions while using fuzzy
numbers. By applying Genetic Algorithms (GAS) to solve
fuzzy equations, the computation of fuzzy equations needs
neither the extension principle nor a-cuts and interval

arithmetic, but the usual evolution. Assume that X isan
a -~

arbitrary fuzzy set ontheinterval [0,—] and N(X) isa
b

fuzzy equation. In the genetic approach, we do not need to
define the membership functions of N(X). Instead, the

a
interval [0,—] is equally divided into M pieces. Let
b

. a , S .
ijjm OE£JEM . Let X(xj)—rr]l[O,JJ,



O£ j£M, be the membership grade of X in X.

Thus we obtain a discrete fuzzy set X =
(M, m,..., Ny ), where ), O£ j£M, isarandom

number in [0, 1]. In other words, we wish to find X in

a ~
[0,—] that maximizing N(X) via GAs. However, we
b

cannot maximize N()z) directly since it is a fuzzy set.

Instead, we can compute the centroid of fuzzy eguations
for the maximization problem. The centroid can be used
asthefitness value for the evolution of GAs. Therefore all

we need to do is to find avector X in [0, J"*! that
maximizes the centroid.

2. STATEMENTSOF THE PROBLEM

The problem considered in this paper is stated as follows.
We have three equations of the problem, the price, the cost,
and the profit functions. The price function is

P(x)=a- bx, 0Ex £alb, @
where x is a demand, and the cost function is
C(x) =e+ gx+ kx2,x3 0, 2

where a,b e g,k are all known positive numbers, and
b(a- g)<2a(b+k) , g<a. The objective of the

problem is to obtain the maximization of the profit
function N(x), which is defined by

N(x) = XP(x)- C(x) = - e+ (a- g)x- b+k)x* , (3)
O£ x£ al/b, and also to obtain the optimal price for the
demand x. Since N¢x)=a- g- 2(b+Kk)x, we have

a-g * - a
X = (=x ,say),xl (0,—] , and hence, the
2(b + k) b
maximum profit is
2
* a-
N(x):-e+& : )
4(b + k)

Now, consider the fuzzy case of the problem. Assume that
the demand X is vague even for the same price P(x)

(see Fig. 1). Hence, the demand X can be represented as
the following triangular fuzzy number,

X =(x- Dy,x,x+D5),0<D; <x, Dy >0 5)

Clearly, the fuzzy profit is N(X) . Let N(X) =y, then (3)
becomes

(b+K)x%- (a- g)x+e+y=0. ©6)

From (6), we can see that D(y) = (a- g)2 -
4(b+Kk)e+y) 20when O£ y£ N(x).If D(y)3 O,

then (6) obviously has two roots which are given by the
quadratic formula,

YA P(x) =a- bx

P() /

Dy x xtDy

A\

alb

Fig. 1 The fuzzy demand x

_a- g-«D(y)
ny)=———™
2(b + k)

rz(y) :LD(y)_ @
2(b + k)

After applying the extension principle and doing some
calculations, we obtain the membership function of fuzzy

profit N(X) asfollows, N(X)(y)=

_ o ima|X(ry(y)), X(rp ()], IFO£ y £ NG
sup X(x) =|
y=N(x) 70

_ ®
,otherwise

where the membership function of the triangular fuzzy
number X is X(X) and the membership function of
the fuzzy profit N(X) is N(X)(y) . However, the finding
of N(X)(y) is not an easy task at all. Therefore we

propose the genetic approach for evaluating fuzzy
expressions but without the need to define membership
functions for those fuzzy numbers. By applying GAs to
solve fuzzy eguations, the computation of fuzzy equations
needs neither the extension principle nor a-cuts and
interval arithmetic, but the usual evolution.

3. THE GENETIC APPROACH

The concept of proposed genetic approach is stated @
follows. We first discretize triangular fuzzy number X =
(X - Dy, X, x + Do) of (5) inaninterva [0, a/b] yielding an
arbitrary fuzzy set X (see Fig. 2). Then we divide the

a .
interval [0, a/b] into M pieces, Xj = i—.,0£J£EM.
bM

L et the membership grade of X at X;j be
X(xj)=m, O£ J£EM and m1 [0]]. ©)

Thus we obtain a discrete fuzzy set
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Fig. 2 Fuzzy set X
X = (my, M, ..., my; ) or
x-R N8, v (10)
o % XM

From N(x) =y (in (3)) and (10), if each N(x),
OE kE£M , is different, the fuzzy profit function is
definedby N(X) =N(mg, m,... my)

m m My

= + + ..+ (11)
N(xg) N(xq) N(Xp )

and the centroid is defined by
~ j—
A(N(X)) = —y—- 12

From (6) and (7), if OEYEN and N(x) =y, the
equations yield two solutions, i.e. X = ry(y), X =r(y) .
Therefore, in (11), if N(x;) = N(x,) = yp(say), i * k,

il m

. ma . m)
NG NGy

becomes ——— |, and the
N(X;)

~ ~ R
centroid of N(X) becomes q(N(X)) =—, where
P

" jléil,kn} +ma(.m) and
R=1_15}kN(Xj)rT]+N(Xi)(m@<[ m,ml). 13

Similarly, the optimal price for X is

4 (x;)
a P(x;
i T
M
a
j=0

Obviously, with the proposed genetic approach, all we
need to do is to find a vector X in [0, " (real

numbers) that maximizing q(N (>?)) :

4. GENETICALGORITHMS

Genetic algorithms (GASs) are stochastic search technique
based on the principles and mechanisms of natural
genetics and natural selection [8]. The basic concepts of
GAs are they start with a population of randomly
generated candidates and evolve towards better solutions
by applying genetic operators such as crossover and
mutation, modeled on natural genetic inheritance and
Darwinian survival-of-the-fittest [6, 7]. The proposed GAs
for solving fuzzy equations is given as follows, which is
different from the fuzzy genetic algorithms to solve fuzzy
optimization problem in [4]. The genera structure of the
proposed GAsisgiveninthe Appendix.

Stepl. Generateinitial population.
Initial population of sizen is randomly generated from [O,
1] according to uniform distribution in the closed
interval [0,1]. Let the population be

X] = (mjo, mjl,...,mj M ) =

Do Mk, JOv (14)

Xo X XM
where 1£ j £n and misarea numberin [0, 1],i =0,
1,2, ., M. Each individual X in the population is a
chromosome.

Step 2. Calculate the fitness value for each chromosome.
For each chromosome X , 1£ j £n, the centroid

J!
a(N(X;)) is caculated as the

chromosomes can be rated in terms of their fitness. Let the

fitness. Then

n ~
total fitness for the populationbe T = éq(N(Xj)).The
j=
cumulative fitness (partial sum) for each chromosome,
k ~
Sc =aq(N(X;)) ,1£k£n , is caculated. Next,
j=1

intervalsl; = [0, ], I; =[S.1,§].j =2, 3, ..,n-1, and I, =
[Sh-1, S are constructed for the purpose of selection. In
our implementation, a roulette wheel strategy is adopted
as the selection procedure.

Step 3. Selection and reproduction.

The selection process begins by spinning the roulette
wheel n times; each time, a single chromosome is selected
for a new population in the following way. Each time a
random number r from the range [0, T] is generated. If r

I1, then select first chromosome X ; otherwise, select the



kth chromosome )Zk 2E£KEn,ifr1 I Thisselection

process is ontinued until the new population has been
created. Finally, rename the new population into

Zl, Z~2,Z~3,... in the order they were picked. The
probability of a selection for each chromosome >Zj to
. . aN(X;) ,
appear in the new population is ——— and its
T

a(N(X ;)
T
tends to choose more X i with higher q(N()Z j))

expected value is n . Thus, this procedure

fitness to go on into the next population.

Step 4. Perform crossover.

Crossover used here is the one-point method, which
randomly selects one cut-point and exchanges the right
parts of two parents to generate offspring. Each pair

(Z1,Z5) (Z3,24), - (Zp.1, Zp) produces two

children via crossover. Let p be the probability of a
crossover, 0 £ p £ 1. Usudly p is between 0.6 and 0.8, so
we expect that, on average, 60% to 80% of chromosomes

undergo crossover. Consider two chromosomes 21 and
22 for crossover. We generate a random number r in the

interval [0, 1]. If r £ p, then perform crossover on Zl
=~ L . = ¢
and Z,. Otherwise, if r > p, the two children Z; and

~ ¢ . . . ~ ~
Z, areidentical to their parents Z; and Z,. Suppose

we are to perform crossover. We generate another random
integer number u from the range [0, M-1]. Assume that u

equals 3, the two chromosomes Z; and 22 are cut

after the fourth position, and the offspring 21¢ and 22¢
are generated by exchanging the right parts of them.

Step 5. Perform mutation.
Mutation resets one position to zero with a probability
equal to the mutation rate. Let q be the probability of a

mutation, O£ g £ 1. Usually q isavery small value around
0.003 to 0.03, so we expect that, on average, 0.3% to 3%
of total position of population would undergo mutation.
Thereare N° M positions in the whole population; we
expect 0.003 N° M to 003 N° M mutations per

generation. For example, consider chromosome 21¢- Let
w; be arandom number in [0,1], 0 £i £ M. If w; < g then
reset the i+1th position in 21¢ to zero. After the
mutation is completed on the whole population, we
let ij = th,j =1,2..,n. Now we just completed one

iteration of GAs. Step 2 through step 5 is done K times,
where K is the maximum number of iterations.

Finally, the algorithm is terminated after K generations.
L et the last population be >~(1 )Z; )Z; Now, we need

to calculate the centroid of each chromosome )Zj ,
1£ j £n,inthelast population. The maximum value of
q(N()Z;)) is the best chromosome in the population,
i.e.lra%an(N()ZT)) = q(N(X,)) for some ki {1, 2, .., n}.

The best chromosome is definitely the optimal solution of
the problem. Let the best chromosome be

SY okt oo _ Mo My Mav
Xk =(Mo, My My ) =——+—=+ .+ ——
X0 X XM
According to (1), the fuzzy priceis
P(Xy)=a-bXp=—R0 T4, o, T
a-bxg a-bx a- bxy

and the centroid of P()le) is

M *
a (a- bx;)my

E(P(X,)) = 122 (15)

M s

Q

&

5. ILLUSTRATIVE EXAMPLES

In this section, we give three illustrative numerical
examples to demonstrate both feasibility and efficiency of
the genetic algorithms while solving fuzzy equations

Example 1. The problem instance is. the price
function, P(x) =100 - 2x , O£Xx£50 ; the cost
function, C(x) =10 +x ; and the profit function,
N(x)= xP(X)- C(x) = -10+ 99x - 2, 0£ x £ 50.
The optimal solution of the crisp case is obtained as
follows. Since N€x) =99 - 4x =0, weobtain X = 24.75.

Thus the optimal solutions are P(24.75) = 50.5 and
N(24.75) = 1215.125.

Now, consider the fuzzy case, i.e. the demand x is vague.

50
Let M = 10. Wehave x, =k— =5k, 0 £ k £ 10, as
10

shown in Table 1. Then we obtain N(xo) =-10, N(x3) = 435,
N(x2) = 780, N(x3) = 1025, N(x4) = 1170, N(xs) = 1215,
N(xg) = 1160, N(x7) = 1005, N(xg) = 750, N(Xg) = 395, and
N(xi) = -60. From (12) and (13), we have

N(f) =N(my,m,.., Mg) and the centroid



10

a N(xj)m

q(N()Z)) = J_Olo—.The optimal pricein the fuzzy

a

j=0

10
_ A& POgm
senseis given by E(P(X))=J_10—.
2o

The parameters for genetic algorithms are: (1) population
sizen = 100; (2) the probability of acrossover p = 0.6; (3)
the probability of a mutation g = 0.003; (4) the maximum
number of iterations K = 4000. The result obtained from

GAsfor X over 4000 generations is shown in Table 1.
The count of crossover is 120,263 and the count of

mutation is 1,225. We obtain X = (0.00, 0.00, 0.00, 0.00,
0.00, 0.80, 0.00, .., 0.00) with the largest value of

q(N(X)), 1215, and the optimal price in the fuzzy sense
E(P(X)), 50.

Table 1 Best valuefor >? in the examplel over 4000
generations

jl]o0]l1]12]3]4|5]|6]|]7]18]9]1

x| 0.0 [ 5.0 |10.0{15.0{20.0| 25.0{30.0| 35.0{40.0|45.0| 50.0

) 0.00{ 0.00| 0.00{0.00] 0.00{0.80| 0.00{ 0.00{ 0.00] 0.00{0.00

Note: crossover : 120,263, mutation : 1,225, q(N(X)) =
1215, E(P(X)) = 50.

Example 2. The problem instance is: the price function is
aquadratic, P(x) = 101 — 10x + x%, 0 £ x £ 5; the cost
function, C(x) = 10 + x, x ® 0; and the profit function is
N(x) = - 10 + 100x - 10x°+ x3, 0 £ x £ 5. Since b? - 4ac =
100 - 404 < O, then we have x = 102 = 5 and
N&x) =100 - 20x + 2x° =2(x- 5)2 +50>0. In the
crisp case of the problem, when x = 5, the optimal solution
are P(5) = 76 and N(5) = 365.

Consider when x is vague. Let M = 10 we

5
havex, = k— =0.5k, 0 £ k £ 10, as shown in Table 2.
10

We obtain N(xo) =-10, N(x) = 37.625, N(X2) = 81, N(xs) =
120.875, N(xs) = 158, N(xs) = 193.125, N(Xg) = 227, N(X7)

= 260.375, N(Xg) = 294, N(xo) = 328.625, and N(x10) = 365.

10

a N(xj)m
From (13), the centroid is q(N(X)) = J_Olo

a

j=0

and the optimal price in the fuzzy sense is E( P()Z)) =
10

a P(x;)
prs
10

a

j=0

. The parameters for genetic algorithms are:

(1) population size n = 100; (2) the probability of a
crossover p = 0.6; (3) the probability of a mutation q =
0.003; (4) the maximum number of iterations K = 3,000.

The result obtained from GAs for X over 3,000
generationsis shown in Table 2. The count of crossover is

89,732 and the count of mutation is 918. We obtain X =
(0.00, 0.00, 0.00, ..., 0.00, 0.915) with the largest value

of q(N(X)), 365, and the optima price in the fuzzy
sense E(P()Z)),?B.

Table 2 Best value for >? in the example2 over 3000
generations

jlol1]12]13|4|5]|]6|7[8[9]10

x| 00[{05]10({15)/20[25]|30|35|40[45]| 50

r 0.00{ 0.00|0.00] 0.00] 0.00] 0.00/0.00| 0.00] 0.00 0.00{0.915

Note: crossover : 89,732, mutation : 918, q(N()?)) =
365, E(P(X))=76.

Example 3. The problem instance is: the demand function
is p(x) =30- 2x; the cost function, C(x) =10 + 6x ;

and the profit function, N(x)=-10+ 24x- 2x> ,

O£ x£15. The optimal solutions of the crisp case are
N(6) = 62 and P(6) = 18.

15
Now when x is vague. Let M = 20. We havex, = —k =
20

0.75k, 0 £ k £ 20. We obtain N(Xg) = N(X16) = - 10, N(X1)
= N(X15) = 6.875, N(Xz) = N(X14) =215, N(X3) = N(X13) =
33.875, N(X4) =N(X12) =44, N(Xs5) =N(X11) = 51.875, N(Xg)
=N(X10) = 57.5, N(X7) = N(xg) = 60.875, N(Xg) = 62, N(X17)
= - 29.125, N(x1g) = -50.5, N(x19) = - 74.125, N(Xz0) =
-100. The parameters for genetic algorithms are: (1)
population size n = 100; (2) the probability of a crossover
p = 0.8; (3) the probability of a mutation g = 0.03; (4) the
maximum number of iterations K = 6,000. The result
obtained from GAsfor X over 6,000 generations isrg=
0.75 while the others are 0.00. The count of crossover is
240,271 and the count of mutation is 18,102. We obtain

the largest value of q(N(X)), 62, and the optimal price
inthe fuzzy sense E(P(X)), 18.



6. CONCLUSON

In this study we proposed the genetic approach to solve
fuzzy equations, but without the need to define the
membership functions, using fuzzy numbers. Since the

2(b + k)
we can take M a suitable value to divide the interval [0,

* * a
optimal demand x ,eg. x = ,isin (0,—],
b

a
a/b] into small pieces, ie. Xx; =j—, OfjEM. Let
bM

X = x for some i 1{0,1,2,..M}.From (9), we can see
that the m, ... N, , which
generated from [0, 1], should have a possibility of
m =0,"jti and m * 0. Thus (10) will become

random numbers

" m _ m
X = (0!"'101 rTi],O,...,O) = — = ¥
Xj X

From (11), we

m x

obtain N(0...,0,m0,..,0) = ——, where N(x ) is
N(x )

the centroid and also is the maximum profit. Therefore,

we conclude that the search space of GAs includes the

crisp optimal solution and near-optimal solutions for the

fuzzy caseof the problem.

APPENDI X
The general structure of genetic algorithms.

Start
\ 4
Generateinitial
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-t Mutation
: t

Calculate fitness
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