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ABSTRACT

This paper proposes a hybrid CBR architecture to help CBR

reasoning.  It hybridizes CBR, fuzzy neural networks, induction, 

utility-based decision theory, and knowledge-based planning 

technology to facilitate solutions finding.  The basic mechanism 

is CBR which accumulates experiences as cases in the case 

library and proposes solutions by adapting the old cases that have 

successfully solved similar previous case.  The distributed fuzzy 

neural network is introduced to perform approximate matching to 

tolerate potential noise in case retrieval.  The induction 

technology along with relevance theory is used in case selection, 

adaptation, and retaining.  Knowledge-based planning is used as 

a general architecture for case adaptation by creating an 

adaptation plan, whose execution, in turn, proposes a solution.  

Hybridizing these techniques in the CBR module can effectively 

produce a high-quality solution for a given problem.

1. INTRODUCTION

Case-based reasoning (CBR) is a problem solving method that 

maps problem features to potential solutions through the process 

of case retrieval, case selection, case adaptation, and case 

retaining.  However, a solution may get involved in a huge 

number of problem features.  How do we know which are 

relevant or significant?  How do we correctly and completely 

identify them?  How do we efficiently retrieve relevant past 

cases that are most worth adaptation without too much adaptation 

effort?  How do we manipulate candidate cases in order to 

generate a new solution that fits a given problem?  Finally, how 

do we maintain a case library so that it only assimilates worthy 

adapted cases?  These are "classical" issues associated with 

CBR.  Currently published CBR systems have proposed a 

variety of hybridization techniques to solve all or some of the 

issues.  Their efforts, however, still haven’t promoted CBR into 

one of the main stream intelligent problem solving methods.

We noticed that the following shortcomings appear in current 

CBR systems and need to be carefully addressed.  First, most 

existent CBR systems use a hierarchy structure to index the cases 

in the case library.  The hierarchy structure extracts common 

features into a prototype that classifies cases into different groups 

or classes to facilitate search of similar cases.  It is, however, not 

appropriate for a static index hierarchy, to be used in different 

types of problems since the significance of a feature may change 

in different contexts.  Second, some CBR systems use surface 

features and complex similarity measurement to find the most 

similar case for a given problem without considering the 

adaptability of the case.  The most similar case, however, does 

not guarantee to be the most adaptable.  Finally, many CBR 

systems use context-dependent adaptation knowledge to do case 

adaptation.  The adaptation mechanisms are ad hoc and few of 

them can be re-used in other domains.

This paper proposes a hybrid case-based reasoner (HCBR) 

architecture to alleviate the above issues.  It hybridizes a 



distributed fuzzy neural network with induction, utility-based 

decision theory, and knowledge-based planning technology to 

facilitate CBR.  The basic mechanism is CBR.  The distributed 

fuzzy neural network performs approximate matching to tolerate 

potential noise in case retrieval.  The induction technology 

along with relevance theory is used in case selection, adaptation, 

and retaining, which helps a lot in hammering out valuable 

features for the target case from existent ones and in pruning 

unnecessary search space.  Knowledge-based planning is used 

as a general architecture for case adaptation.  It creates an 

adaptation plan from an adaptation tree that covers all the 

relevant problem features, satisfies all the relevant constraints, 

and contains all the cases whose expected utilities are over a 

threshold.  Execution of the case adaptation plan can 

successfully propose solutions.  

To validate the approach, the hybridized techniques are applied in 

the medicine domain to do medical diagnosis with multiple 

diseases.  The experiment shows that hybridizing these 

techniques in the CBR paradigm does effectively produce a high 

quality solution for a given medical consultation.

The rest of paper is organized as follows. Section 2 gives a 

description of the HCBR architecture.  Section 3 then explores 

the case retrieval and selection, while Section 4 elaborates case 

adaptation and retaining.  Section 5 illustrates how the HCBR 

system works on medical diagnosis.  Section 6 concludes the 

work and makes some comparisons with other works.

2. SYSTEM ARCHITECTURE

Fig. 1 shows the architecture of HCBR.  It contains six major 

modules, namely, case library, case retrieval, case selector, case 

adapter, adaptation plan library, and case retainer.  Basically, the 

case library contains instances of problem data and solutions in 

form of feature-value pairs, each called a case.  A problem data 

contains two types of features, namely, general features and 

specific features.  The former describes domain-related general 

information about the problem.  The latter describes 

domain-specific information about the problem.  Take medical 

diagnosis as an example, the general features refer to subjective 

findings and objective findings, while specific features refer to 

pathology and laboratory data.  All cases are pre-classified into 

a set of categories to facilitate retrieval.  Each category is 

further refined into a set of sub-types to help the training process 

of the distributed neural network used in the case selector.
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Fig. 1 Hybrid case-based reasoner

The case retrieval takes the fuzzy problem data as a pattern to 

retrieve the cases from the case library.  Candidate cases are 

those that are mostly likely to be useful to solve this data by a 

distributed fuzzy neural network.  The case selector then 

induces an induction tree from the features of the selected cases 

and calculates expected utility for each feature.  Note that the 

output of the case retrieval may contain more than one candidate 

case.  All of them contain features that are somewhat related to 

the characteristics of the problem.  The induction tree is a 

decision tree with constraint links that guide the selection of most 

possible diagnoses.  It provides a way to structure the features in 

terms of their usefulness.  It is easy for the selector to follow the 

tree to calculate expected utility for each node, i.e., each feature 

in the tree.  The calculation process, basically, compares the 

difference of the context of the feature value against the given 

case and accordingly estimates the adaptability of the feature.  

The adaptability is then transformed into expected utility by 

decision theory for the feature.  The expected utility serves as a 

metric for selecting cases for adaptation.

The case adapter does actual adaptation with the help of the 

adaptation plan library by following the induction tree.  The 

basic adaptation strategy is as follows.  It first creates a subtree 

from the induction tree, called adaptation tree, that covers all the 



problem features, satisfies all the relevant constraints, and 

contains no nodes whose expected utilities are below a threshold.  

It then generates a feature adaptation plan for each node in the 

adaptation tree from the adaptation plan library, which contains 

experienced feature adaptation plans and adaptation operators.  

It finally produces an adapted case severing as a solution to the 

problem data by executing each above plan to adapt the 

corresponding value.  This may involve the manipulation of 

feature values that appear in multiple adaptation paths, i.e., 

multiple solutions. 

Finally, the adapted case is sent to the case retainer to see 

whether it deserves storage in the case library.  It uses the 

adaptation tree to check whether there already exist analogous or 

subsumed cases in the case library.  This approach of case 

retaining features the comparison of all existing candidate cases 

(represented by the adaptation tree) at the same time, which 

reduces the growing speed of the case library and the re-training 

need of the distributed neural network.  

3. CASE RETRIEVAL AND SELECTION

3.1 Case Retr ieval 

The retrieval of candidate cases is performed by a 

distributed fuzzy neural network that contains two layers of nets 

(Fig. 2).  The first layer is a general net.  It determines the 

similarity between a given problem and the cases in the case 

library with respect to the general problem features and 

hypothesized solution types.  The second layer is a specific net, 

which does the similar job on the specific problem features.  

Each layer is further partitioned into sub-nets in accord with the 

sub-types of the cases.  The main advantage of this sub-net 

design is to alleviate re-training complexity; when a new case is 

to be introduced into the case library, we only need to re-train the 

corresponding sub-nets while keeping the others intact.  In 

addition, introducing fuzzy representation avoids the problem of 

matching nothing from the case library.

Each sub-net is a fuzzy ARTRON model by combining the Fuzzy 

ART architecture and the superposed perceptrons [4].  The 

fuzzy ART architecture allows for flexible partition of the input 

feature space and self-regulation of the cluster nodes.  The 

superposed perceptrons allows for dynamic association from the 

cluster nodes to the class nodes.  The node number of the input 

node layer of each sub-net is related to the number of problem 

features.  Each feature is encoded by the importance of a 

numeric feature value or by the feature code of a symbolic feature 

value [8].  Note that the input node layer does complement 

coding on the input vector before sending it out.  The outputs of 

the general net are the case numbers of the selected cases.  They 

are fed, along with the specific problem data, into each sub-net of 

the specific net to find all the candidate cases.  
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Fuzzy problem data
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Fig. 2 Distributed fuzzy neural network

3.2 Case Selection

Given a set of candidate cases, HCBR needs to do evaluation 

before being actually selected for case adaptation.  The 

following two concepts are involved in this evaluation process.  

First, the evaluation is based on the utility of each feature to 

support the subsequent feature-based adaptation.  Second, the 

evaluation is on all the candidate cases, not just a single one to 

improve the quality of the subsequent adapted solution.  First, to 

take care of all the candidate cases at the same time, HCBR 

induces their features into an induction tree.  The construction 

algorithm for an induction tree is shown in Fig. 3, which is based 

on the CLS algorithm [3, 12].  Fig. 4 exemplifies an induction 

tree.  Note that each nonterminal node in an induction tree 

represents a feature of the candidate cases.  Each outgoing link 

from a node represents a value for the node.  Each leaf of an 

induction tree stores the surface feature similarity of each 

candidate case.  One interesting feature of this tree is that 

feature values that appear in more candidate cases are grouped 

more closely to the root for easy and fast subsequent inspection.



1. If all the feature value vi, i=1..n in each case of training set 
S are the same, then create a same node and go to step 7.

2. Otherwise, select the attribute in the following sequence:
A、 Problem data (both general and specific problem 

features)
B、 Solution

3. Select an attribute A with values vi, i=1..n and create a 
decision node.

4. Partition the training features in training set S into subsets si,
i=1..n according to the value of vi.

5. Compute the probability P(A→si) for each attribute value. 
6. Apply the algorithm recursively to each of the set si.
7. Create a constraint node for each constraint ci; connect a 

constraint link to each node in ci.

Fig. 3 Construction algorithm of induction tree

A B D E Constraint 1

Case (C1) V11 V21 V31 V41

Case (C2) V12 V21 V32 V42 C21: (A, D)

Case (C3) V11 V21 V31 V43

Case (C4) V11 V21 V32 V44 C41: (B, E)
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Fig. 4 Example induction tree

HCBR evaluates the expected utility for each feature in the tree.  

This involves the concept of adaptability of a feature value, 

formally defined below.
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where AD stands for adaptability, Aj→Ajk represents a value of 

the feature Aj, DV is the difference vector, DWV is the difference 

weight vector, and m is the domain model difference between the 

given case and the candidate case [8].  The calculated 

adaptability value can be further transformed into one of the 

following fuzzy adaptability values: definite, high, medium, low,

and hard as shown in Fig. 5.

Fuzzy adaptablility value

Hard Low Medium High Definite

Adaptability
value (AD)

0.2  0.4 0.6 0.8 1.0

Fig. 5 Fuzzy partition for case adaptability value

Now, we can use the feature value adaptability to recursively 

calculate expected utility for each feature as follows.   
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where Ajk stands for the kth child node of the feature node Aj , n 

is the number of children of the feature node Aj , AD(Aj→ Ajk) is 

the adaptability value of the feature value represented by link 

Aj→Ajk, and P(Aj→ Ajk) stands for the probability of the feature 

value represented by link Aj→Ajk.

The calculation of expected utility starts by setting the expected 

utility of the leaf node Ci to Ci's similarity, i.e., EU(Ci)=Si, where 

Si represents the similarity of case Ci to the given problem [13].  

The AD(Aj→ Ajk) is calculated by Equation (1).  The probability 

P(Aj→Ajk) represents the occurrences of the feature value Aj→Ajk

in the case library, and is calculated by Equation (3).  
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where N(Aj→Ajk) is the occurrences of Aj→Ajk, n is the number 

of siblings, and k is the kth sibling of Aj, 1≤ k ≤ n.

The EU(Ci) is then backed up to its father node by Equation (2) 

to compute its father's expected utility.  This process repeats 

until it reaches the root node.  Fig. 6 exemplifies the 

computation of expected utility for Fig. 4

This evaluation method essentially says that the more frequently 

a feature value occurs in the case base, the higher the probability 

that the value will occur again in the new problem.  The 

evaluation is based on the ability of adaptation from the 

viewpoint of both cases and individual features.  It uses the 

expected utility EU(Aj) to estimate how useful it would be to use 

the subtree rooted at Aj for adaptation; higher expected utility 

means higher relevance [7, 11].  
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Link Value Adaptability Probability

B → A V21 1.0 1.0

A → D1 V12 0.6 0.33
A → D2 V11 1.0 0.67
D1→ E V32 0.4 1.0
D2→ E1 V32 0.8 0.57
D2→ E2 V31 0.6 0.43
E → C2 V42 0.2 1.0

E1 → C4 V44 0.8 1.0
E2 → C3 V43 0.6 0.67
E2 → C1 V41 0.4 0.33

Fig. 6 Example of expected utility computation

4. CASE ADAPTATION AND RETAINING

4.1 Case Adaptation

The basic strategy to do case adaptation contains three steps, 

namely, adaptation tree creation, adaptation plan generation, and 

adaptation plan execution, to be detailed below.  First, the 

adaptation process creates an adaptation tree from a subtree of 

the induction tree by pruning the nodes whose expected utilities 

are below a threshold.  It then re-arranges the nodes that are 

under constraints into a proper causal sequence using the 

constraint adaptation operators.  It also checks for those features 

that contain no values in the candidate cases.  The 

corresponding feature values in the problem data will be used for 

the features if they satisfy the related constraints.  Conversely, if 

some feature in the problem data contains no value, the process 

computes and uses the following closeness measurement to 

decide how to adapt the case.   

)AA(PR*)AA(P)AA(Closness jkjijkjjkj →→=→ ,   (4)

where P(Aj→Ajk) is the occurrence probability of the feature 

value Aj→Ajk and PRi(Aj→Ajk) is the proximity of the feature 

value Aj→Ajk to the solution type i.  If the closeness is above a 

threshold, the corresponding feature value in the candidate case is 

considered to be relevant to the new problem and retained in the 

adaptation tree.  In this case, the judged solution is stated to be 

true “under the condition that the feature value Aj→Ajk occurred,” 

i.e., IF (Aj→Ajk) THEN (solutions).  If the closeness is below 

the threshold, the corresponding feature value as well as the 

associated constraints is removed.  This strategy of handling 

null feature values in adaptation can reduce most user 

intervention.  Fig. 7 shows the adaptation tree created from 

Fig.6. 
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Fig. 7 Example adaptation tree

Second, the adaptation process develops a case adaptation plan 

from the adaptation tree with the help of a feature adaptation 

library by creating a feature adaptation plan for each node.  

Basically, if a feature adaptation plan that can reduce the DV of 

the feature can be found in the feature adaptation plan library, it 

is selected.  If none of such feature adaptation plan exists, a 

partial-order planning (POP) planner [2, 10] is called to produce 

a new feature adaptation plan from the adaptation operators of 

the plan library for the feature.  Fig. 8 depicts the POP 

algorithm to do feature adaptation planning.  Note that the 

algorithm resolves the multiple paths problem by choosing a path 

that has the minimum adaptation effort (Step 6).  Adaptation 

effort (AE) is defined below to calculate the adaptation cost of an 

adaptation step in a feature adaptation plan.

)(S)(S)AE(S iii DWVDV •= ,            (5)

where Si is the ith step in the feature adaptation plan.  Fig. 9 

illustrates a feature adaptation plan with multiple paths.  Note 

that each step contains an AE value and the path containing Steps 

D_1 and D_2 is selected as the feature adaptation plan since its 

total path AE is minimum. 



Step 1: Initialize a plan that contains a start and a finish step.
a. DVPostcondition of the start step equals the DV of 

the feature value,
b. DVPrecondition of the finish step is a zero vector.

Step 2: Pick a plan step with DVPrecondition that has not been 
satisfied.

Step 3: Create a new step containing an operator whose 
precondition matches the DVPrecondition.

Step 4. Go to step 3 until all matched operators are applied.
Step 5: Go to step 2 until all DVPrecondition of all steps have been 

satisfied.
Step 6: Find a minimal adaptation effort path.

Fig. 8 Feature adaptation planning

Step # Feature 
name

Feature 
value DVPrecondition DVPosconditiont AE Adaptation 

operator
Start D V51 N/A <1, 0, 1, 1, 

0> 0.5 N/A

D_1 D V51
<1, 0, 1, 1, 

0>
<0, 0, 0, 0, 

1> 0.2 Heuristic
adjustment

D_2 D V52
<0, 0, 0, 0, 

1>
<0, 0, 0, 0, 

0> 0 Constraint 
deletion

D_3 D V5
<1, 0, 1, 1, 

0>
<1, 0, 1, 0, 

0> 0.35 Problem
abstraction

D_4 D V50
<1, 0, 1, 0, 

0>
<1, 0, 0, 0, 

0> 0.1 Problem
Refinement

D_5 D V52
<1, 0, 0, 0, 

0>
<0, 0, 0, 0, 

0> 0 Value
specialization

Finish D V52
<0, 0, 0, 0, 

0> N/A 0 N/A

Start

D_1 D_2

D_4

Finish

D_5D_3

Fig. 9 Example feature adaptation plan

Finally, the adaptation process follows the case adaptation plan to 

adapt the feature values in the adaptation tree to meet the 

problem features in order to produce a new solution.  If there are 

multiple paths in the adaptation tree, each path has to be visited 

in order to take care of multiple solutions.  This process 

eventually generates a new case containing judged solution types.  

Fig. 10 shows the newly adapted case given the problem data of 

Table 1 and the adaptation tree in Fig.7.  Note that the solution 

in Fig. 10, i.e., S1, S3, and S4, contains the solutions from Cases 

1, 3, and 4.

1. B: V21 • Solution model
2. A:V11 Solution type: T1

3. D:V33 Solution: S1, S3, and S4

4. E: V45

5. Constraints: [B(V21), E(V45)]

Fig. 10 Newly adapted case

Table 1 Example problem data

Feature A B D E
Value V11 V21 V33 V45

4.2 Case Retaining

The adaptation tree servers as a clue to whether we need to store 

a newly adapted case in the case library for later reuse.  This is 

done by calculating an average adaptation effort for a new case, 

defined as follows.  
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where m is the number of cases in the adaptation tree, n is the 

number of features in the new case, and DV is the feature 

different vector and DWV is the difference weight vector for the 

feature Aj→Ajk.  If the value of AAF is over some reuse 

threshold (e.g., 10%), the new case is worth storage in the case 

library.  The philosophy for this case retaining strategy is that a 

new case with AAF below the reuse threshold is highly similar to 

some cases in the case library.  It can be re-produced the second 

time without much effort.  One immediate benefit of this 

approach is that the index structure in the distributed fuzzy 

network need not be re-trained too often.  The apparent 

advantage of this philosophy is thus the case library only grows 

when its coverage is too narrow.

5. MEDICAL DIAGNOSIS AS AN APPLICATION

Medical diagnosis from surface etiology is difficult since there 

involve lots of complications.  A clinician has to carefully 

investigate a patient's symptoms, chief complaints, and pathology 

examination in order to decide possible diseases.  It takes years 

of training and practice for a physician to make correct decisions.  

This worsens when the related etiology is hard to discern or 

multiple diseases suffered.  The rapidly growing medical 

knowledge and new patient cases make the diagnosis process 

even more difficult.  Updating the medical knowledge 

incrementally in a traditional medical diagnosis system to cope 

with this is not that easy [6].  It can be made easier and reliable, 

however, if supplied with a system that contains and provides 

recommendations from the past diagnosis cases of different 

morbidity, since the clinician can benefit a lot from these prior 



cases.  This implies that the CBR approach is appropriate to the 

problem.  

For medical diagnosis, we define a case to be a structure that 

contains a patient model and a diagnosis model [8].  The patient 

model describes subjective findings, objective findings, and 

pathology and laboratory examinations about a patient.  The 

diagnosis model records the scenario of how a diagnosis is 

proceeded.  It serves as the diagnosis the case recommends.  It 

includes judged disease types, affected organs, and impression.  

A judged disease type refers to one of the 11 disease categories 

[5].  An affected organ indicates a human body's system that 

was under attack by the diseases.  The impression indicates the 

judged disease names.  The feature-value pair format is used in 

a case to represent the information in both models.  Some 

features fuzzy linguistic terms to denote the importance of their 

values.  Finally, a case is also annotated with specific adaptation 

knowledge and differential diagnosis knowledge.  The former 

helps constrain the causal relations among the symptoms, test 

data, and diseases, and hypothesize the suspected diseases from 

the adapted case data.  The latter helps differentiate diseases 

with analogous morbidity.  

Our medicine case library contains 280 cases, including 20 cases 

for “cardiology,” 20 cases for “respiratory,” 30 cases for 

“hematology,” 35 cases for “GIH (gastric, intestine, and 

hepatology),” 20 cases for “neoplasm,” 20 cases for “urology,” 

40 cases for “immune,” 30 cases for “infectious,” 30 cases for 

“endocrine,” 20 cases for “neurology,” and 15 cases for 

“miscellaneous” [5].

There are 22 nodes in the input node layer of each sub-net in the 

symptom net [8].  They represent the following subjective 

findings and objective findings in the patient data: sexuality, 

history 1, history 2, chief compliant, present illness 1, present 

illness 2, present illness 3, present illness 4, temperature, pulse, 

respiratory rate, blood pressure, consciousness, HEENT, neck, 

heart, thorax and lung, breast, abdomen, extremity, urinary, and 

neurologic.  The training data for each subnet are taken from the 

case library and encoded in numeric values between 0 and 0.87.  

The vigilance parameter ρ in the fuzzy ARTRON is set to 0.9 

with learning rate set to 1 initially.  We have shown in [8] that 

the architecture can successfully produce a solution that contains 

multiple diagnoses for a given patient data input.

6. CONCLUSION

We have described a hybrid CBR architecture and how it is 

applied in medical diagnosis.  It hybridizes CBR, fuzzy neural 

networks, induction, utility-based decision theory, and 

knowledge-based planning technology to facilitate solutions 

finding.  The basic mechanism is CBR that accumulates 

experiences as cases in the case library and proposes solutions by 

adapting the old cases that have successfully solved previous 

cases.  The distributed fuzzy neural network performs 

approximate matching to tolerate potential noise in case retrieval.  

The induction technology along with relevance theory is used in 

case selection, adaptation, and retaining, which helps a lot in 

hammering out valuable features for the target case from existent 

ones and in pruning unnecessary search space.  

Knowledge-based planning is used as a general architecture for 

case adaptation.  It creates an adaptation plan from an 

adaptation tree that covers all the relevant problem features, 

satisfies all the relevant constraints, and contains all cases whose 

expected utility are over a threshold.  Execution of the case 

adaptation plan can successfully propose high-quality solutions.

In summary, the case retrieval accepts fuzzy input, which is more 

natural and efficient, with the help of fuzzy neural network.  

The case adaptation is effective with the help of feature expected 

utilities.  It also dynamically tackles multiple cases with the help 

of the adaptation tree.  Moreover, the case adaptation is a 

planning-based general mechanism, which is thus unlikely to be 

performance-degraded.  Finally, the case retaining is efficient 

with the help of the adaptation tree.

We have applied the hybridized techniques in the medicine 

domain to do medical diagnosis with multiple diseases.  The 

experiment shows that the architecture can successfully interact 

with the physician with different proficiency levels in collecting 

complete patient data, which in turns leads to a correct diagnosis 

of multiple diseases.  The best thing is that it also successfully 



discovers new medical adaptation knowledge from the relevant 

cases [8].  The application of the technique in the medicine 

domain not only improves the quality of the diagnosed diseases 

but reduces the burden of a physician.  

Most current integrations of induction and CBR are applied in 

case retrieval.  For instance, Inreca+ integrates CBR and 

induction for diagnosing poison cases caused by psycholotropes.  

It focuses on case retrieval and uses Inreca trees and compiled 

knowledge to measure case similarity [1].  M. C. Jaulent et al. 

[9] uses CBR to diagnose histopathology.  It employs an index 

tree to structure specific features of a case, and uses structure 

similarity as a metric for searching of cases.  They focus on 

using induction to support case retrieval and/or similarity 

measurement by constructing a static induction tree to index the 

case library.  They neither can reflect problem contexts in CBR 

reasoning nor can handle complex situations like multiple 

solutions or noise feature values.  Even worse, the maintenance 

of the index structure is difficult if new cases need to be 

frequently added to the library.  Our approach is quite different 

in the integration and application of the various techniques.  It 

not only supports case retrieval, but also supports case selection,

case adaptation and knowledge discovery [8].
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