
A HYBRID CASE-BASED REASONING ARCHITECTURE
AND ITS APPLICATION

Chien-Chang Hsu1 and Cheng-Seen Ho2

1Department of Information Management, Ming Chuan University,

5 Teh-Ming Rd., Gwei Shan District, Taoyuan County, Taiwan 333
2Department of Electronic Engineering, National Taiwan University of Science and Technology,

 43 Keelung Road, Section 4, Taipei, TAIWAN 106
1cch133@mcu.edu.tw and 2csho@ et.ntust.edu.tw

ABSTRACT

This paper proposes a hybrid CBR architecture to help CBR

reasoning. It hybridizes CBR, fuzzy neural networks, induction,

utility-based decision theory, and knowledge-based planning

technology to facilitate solutions finding. The basic mechanism

is CBR which accumulates experiences as cases in the case

library and proposes solutions by adapting the old cases that have

successfully solved similar previous case. The distributed fuzzy

neural network is introduced to perform approximate matching to

tolerate potential noise in case retrieval. The induction

technology along with relevance theory is used in case selection,

adaptation, and retaining. Knowledge-based planning is used as

a general architecture for case adaptation by creating an

adaptation plan, whose execution, in turn, proposes a solution.

Hybridizing these techniques in the CBR module can effectively

produce a high-quality solution for a given problem.

1. INTRODUCTION

Case-based reasoning (CBR) is a problem solving method that

maps problem features to potential solutions through the process

of case retrieval, case selection, case adaptation, and case

retaining. However, a solution may get involved in a huge

number of problem features. How do we know which are

relevant or significant? How do we correctly and completely

identify them? How do we efficiently retrieve relevant past

cases that are most worth adaptation without too much adaptation

effort? How do we manipulate candidate cases in order to

generate a new solution that fits a given problem? Finally, how

do we maintain a case library so that it only assimilates worthy

adapted cases? These are "classical" issues associated with

CBR. Currently published CBR systems have proposed a

variety of hybridization techniques to solve all or some of the

issues. Their efforts, however, still haven’t promoted CBR into

one of the main stream intelligent problem solving methods.

We noticed that the following shortcomings appear in current

CBR systems and need to be carefully addressed. First, most

existent CBR systems use a hierarchy structure to index the cases

in the case library. The hierarchy structure extracts common

features into a prototype that classifies cases into different groups

or classes to facilitate search of similar cases. It is, however, not

appropriate for a static index hierarchy, to be used in different

types of problems since the significance of a feature may change

in different contexts. Second, some CBR systems use surface

features and complex similarity measurement to find the most

similar case for a given problem without considering the

adaptability of the case. The most similar case, however, does

not guarantee to be the most adaptable. Finally, many CBR

systems use context-dependent adaptation knowledge to do case

adaptation. The adaptation mechanisms are ad hoc and few of

them can be re-used in other domains.

This paper proposes a hybrid case-based reasoner (HCBR)

architecture to alleviate the above issues. It hybridizes a

distributed fuzzy neural network with induction, utility-based

decision theory, and knowledge-based planning technology to

facilitate CBR. The basic mechanism is CBR. The distributed

fuzzy neural network performs approximate matching to tolerate

potential noise in case retrieval. The induction technology

along with relevance theory is used in case selection, adaptation,

and retaining, which helps a lot in hammering out valuable

features for the target case from existent ones and in pruning

unnecessary search space. Knowledge-based planning is used

as a general architecture for case adaptation. It creates an

adaptation plan from an adaptation tree that covers all the

relevant problem features, satisfies all the relevant constraints,

and contains all the cases whose expected utilities are over a

threshold. Execution of the case adaptation plan can

successfully propose solutions.

To validate the approach, the hybridized techniques are applied in

the medicine domain to do medical diagnosis with multiple

diseases. The experiment shows that hybridizing these

techniques in the CBR paradigm does effectively produce a high

quality solution for a given medical consultation.

The rest of paper is organized as follows. Section 2 gives a

description of the HCBR architecture. Section 3 then explores

the case retrieval and selection, while Section 4 elaborates case

adaptation and retaining. Section 5 illustrates how the HCBR

system works on medical diagnosis. Section 6 concludes the

work and makes some comparisons with other works.

2. SYSTEM ARCHITECTURE

Fig. 1 shows the architecture of HCBR. It contains six major

modules, namely, case library, case retrieval, case selector, case

adapter, adaptation plan library, and case retainer. Basically, the

case library contains instances of problem data and solutions in

form of feature-value pairs, each called a case. A problem data

contains two types of features, namely, general features and

specific features. The former describes domain-related general

information about the problem. The latter describes

domain-specific information about the problem. Take medical

diagnosis as an example, the general features refer to subjective

findings and objective findings, while specific features refer to

pathology and laboratory data. All cases are pre-classified into

a set of categories to facilitate retrieval. Each category is

further refined into a set of sub-types to help the training process

of the distributed neural network used in the case selector.

Fuzzy
problem data

Case
retrieval

Case
selector

Case
adapter

Case
retainer

Case
library

Adaptation
plan

library

Solutions

Fig. 1 Hybrid case-based reasoner

The case retrieval takes the fuzzy problem data as a pattern to

retrieve the cases from the case library. Candidate cases are

those that are mostly likely to be useful to solve this data by a

distributed fuzzy neural network. The case selector then

induces an induction tree from the features of the selected cases

and calculates expected utility for each feature. Note that the

output of the case retrieval may contain more than one candidate

case. All of them contain features that are somewhat related to

the characteristics of the problem. The induction tree is a

decision tree with constraint links that guide the selection of most

possible diagnoses. It provides a way to structure the features in

terms of their usefulness. It is easy for the selector to follow the

tree to calculate expected utility for each node, i.e., each feature

in the tree. The calculation process, basically, compares the

difference of the context of the feature value against the given

case and accordingly estimates the adaptability of the feature.

The adaptability is then transformed into expected utility by

decision theory for the feature. The expected utility serves as a

metric for selecting cases for adaptation.

The case adapter does actual adaptation with the help of the

adaptation plan library by following the induction tree. The

basic adaptation strategy is as follows. It first creates a subtree

from the induction tree, called adaptation tree, that covers all the

problem features, satisfies all the relevant constraints, and

contains no nodes whose expected utilities are below a threshold.

It then generates a feature adaptation plan for each node in the

adaptation tree from the adaptation plan library, which contains

experienced feature adaptation plans and adaptation operators.

It finally produces an adapted case severing as a solution to the

problem data by executing each above plan to adapt the

corresponding value. This may involve the manipulation of

feature values that appear in multiple adaptation paths, i.e.,

multiple solutions.

Finally, the adapted case is sent to the case retainer to see

whether it deserves storage in the case library. It uses the

adaptation tree to check whether there already exist analogous or

subsumed cases in the case library. This approach of case

retaining features the comparison of all existing candidate cases

(represented by the adaptation tree) at the same time, which

reduces the growing speed of the case library and the re-training

need of the distributed neural network.

3. CASE RETRIEVAL AND SELECTION

3.1 Case Retr ieval

The retrieval of candidate cases is performed by a

distributed fuzzy neural network that contains two layers of nets

(Fig. 2). The first layer is a general net. It determines the

similarity between a given problem and the cases in the case

library with respect to the general problem features and

hypothesized solution types. The second layer is a specific net,

which does the similar job on the specific problem features.

Each layer is further partitioned into sub-nets in accord with the

sub-types of the cases. The main advantage of this sub-net

design is to alleviate re-training complexity; when a new case is

to be introduced into the case library, we only need to re-train the

corresponding sub-nets while keeping the others intact. In

addition, introducing fuzzy representation avoids the problem of

matching nothing from the case library.

Each sub-net is a fuzzy ARTRON model by combining the Fuzzy

ART architecture and the superposed perceptrons [4]. The

fuzzy ART architecture allows for flexible partition of the input

feature space and self-regulation of the cluster nodes. The

superposed perceptrons allows for dynamic association from the

cluster nodes to the class nodes. The node number of the input

node layer of each sub-net is related to the number of problem

features. Each feature is encoded by the importance of a

numeric feature value or by the feature code of a symbolic feature

value [8]. Note that the input node layer does complement

coding on the input vector before sending it out. The outputs of

the general net are the case numbers of the selected cases. They

are fed, along with the specific problem data, into each sub-net of

the specific net to find all the candidate cases.

Sub-net1 Sub-netn

Fuzzy problem data

General
problem data

Specific
problem data

Sub-net1 Sub-netn

.

Candidate cases

General net

Specific net

Fig. 2 Distributed fuzzy neural network

3.2 Case Selection

Given a set of candidate cases, HCBR needs to do evaluation

before being actually selected for case adaptation. The

following two concepts are involved in this evaluation process.

First, the evaluation is based on the utility of each feature to

support the subsequent feature-based adaptation. Second, the

evaluation is on all the candidate cases, not just a single one to

improve the quality of the subsequent adapted solution. First, to

take care of all the candidate cases at the same time, HCBR

induces their features into an induction tree. The construction

algorithm for an induction tree is shown in Fig. 3, which is based

on the CLS algorithm [3, 12]. Fig. 4 exemplifies an induction

tree. Note that each nonterminal node in an induction tree

represents a feature of the candidate cases. Each outgoing link

from a node represents a value for the node. Each leaf of an

induction tree stores the surface feature similarity of each

candidate case. One interesting feature of this tree is that

feature values that appear in more candidate cases are grouped

more closely to the root for easy and fast subsequent inspection.

1. If all the feature value vi, i=1..n in each case of training set
S are the same, then create a same node and go to step 7.

2. Otherwise, select the attribute in the following sequence:
A、 Problem data (both general and specific problem

features)
B、 Solution

3. Select an attribute A with values vi, i=1..n and create a
decision node.

4. Partition the training features in training set S into subsets si,
i=1..n according to the value of vi.

5. Compute the probability P(A→si) for each attribute value.
6. Apply the algorithm recursively to each of the set si.
7. Create a constraint node for each constraint ci; connect a

constraint link to each node in ci.

Fig. 3 Construction algorithm of induction tree

A B D E Constraint 1

Case (C1) V11 V21 V31 V41

Case (C2) V12 V21 V32 V42 C21: (A, D)

Case (C3) V11 V21 V31 V43

Case (C4) V11 V21 V32 V44 C41: (B, E)

B

A

D1 D2

E1 E2
E

V21

V12 V11

V32

V42

V32 V31

V44

V41V43

C2 C4 C3 C1

C41

C21

Fig. 4 Example induction tree

HCBR evaluates the expected utility for each feature in the tree.

This involves the concept of adaptability of a feature value,

formally defined below.

)]Am(A)[1A(ADWV)A(ADV

)AAD(A

jkjjkjjkj

jkj

→−→•→−=

→

1
, (1)

where AD stands for adaptability, Aj→Ajk represents a value of

the feature Aj, DV is the difference vector, DWV is the difference

weight vector, and m is the domain model difference between the

given case and the candidate case [8]. The calculated

adaptability value can be further transformed into one of the

following fuzzy adaptability values: definite, high, medium, low,

and hard as shown in Fig. 5.

Fuzzy adaptablility value

Hard Low Medium High Definite

Adaptability
value (AD)

0.2 0.4 0.6 0.8 1.0

Fig. 5 Fuzzy partition for case adaptability value

Now, we can use the feature value adaptability to recursively

calculate expected utility for each feature as follows.

∑
=

→→=
n

k
jkjjkjjkj AAPAAADAEUAEU

1

)(*)(*)()(
, (2)

where Ajk stands for the kth child node of the feature node Aj , n

is the number of children of the feature node Aj , AD(Aj→ Ajk) is

the adaptability value of the feature value represented by link

Aj→Ajk, and P(Aj→ Ajk) stands for the probability of the feature

value represented by link Aj→Ajk.

The calculation of expected utility starts by setting the expected

utility of the leaf node Ci to Ci's similarity, i.e., EU(Ci)=Si, where

Si represents the similarity of case Ci to the given problem [13].

The AD(Aj→ Ajk) is calculated by Equation (1). The probability

P(Aj→Ajk) represents the occurrences of the feature value Aj→Ajk

in the case library, and is calculated by Equation (3).

,
)AA(N

)AA(N
)AA(P

n

m
jmj

jkj
jkj

∑
=

→

→
=→

1

 (3)

where N(Aj→Ajk) is the occurrences of Aj→Ajk, n is the number

of siblings, and k is the kth sibling of Aj, 1≤ k ≤ n.

The EU(Ci) is then backed up to its father node by Equation (2)

to compute its father's expected utility. This process repeats

until it reaches the root node. Fig. 6 exemplifies the

computation of expected utility for Fig. 4

This evaluation method essentially says that the more frequently

a feature value occurs in the case base, the higher the probability

that the value will occur again in the new problem. The

evaluation is based on the ability of adaptation from the

viewpoint of both cases and individual features. It uses the

expected utility EU(Aj) to estimate how useful it would be to use

the subtree rooted at Aj for adaptation; higher expected utility

means higher relevance [7, 11].

B

A

D1 D2

E1 E2
E

V21

V12 V11

V32

V42

V32 V31

V44

V41V43

C2 C4 C3 C1

C41

C21

EU(C2)
= U(C2)
= 0.5

EU(C4)
= U(C4)
= 0.8

EU(C3)
= U(C3)
= 0.7

EU(C1)
= U(C1)
= 0.7

EU(E)
= 0.1

EU(E1)
= 0.64

EU(E2)
= 0.37

EU(D1)
= 0.04

EU(D2)
= 0.26

EU(A)
= 0.27

EU(B)
= 0.27

Link Value Adaptability Probability

B → A V21 1.0 1.0

A → D1 V12 0.6 0.33
A → D2 V11 1.0 0.67
D1→ E V32 0.4 1.0
D2→ E1 V32 0.8 0.57
D2→ E2 V31 0.6 0.43
E → C2 V42 0.2 1.0

E1 → C4 V44 0.8 1.0
E2 → C3 V43 0.6 0.67
E2 → C1 V41 0.4 0.33

Fig. 6 Example of expected utility computation

4. CASE ADAPTATION AND RETAINING

4.1 Case Adaptation

The basic strategy to do case adaptation contains three steps,

namely, adaptation tree creation, adaptation plan generation, and

adaptation plan execution, to be detailed below. First, the

adaptation process creates an adaptation tree from a subtree of

the induction tree by pruning the nodes whose expected utilities

are below a threshold. It then re-arranges the nodes that are

under constraints into a proper causal sequence using the

constraint adaptation operators. It also checks for those features

that contain no values in the candidate cases. The

corresponding feature values in the problem data will be used for

the features if they satisfy the related constraints. Conversely, if

some feature in the problem data contains no value, the process

computes and uses the following closeness measurement to

decide how to adapt the case.

)AA(PR*)AA(P)AA(Closness jkjijkjjkj →→=→ , (4)

where P(Aj→Ajk) is the occurrence probability of the feature

value Aj→Ajk and PRi(Aj→Ajk) is the proximity of the feature

value Aj→Ajk to the solution type i. If the closeness is above a

threshold, the corresponding feature value in the candidate case is

considered to be relevant to the new problem and retained in the

adaptation tree. In this case, the judged solution is stated to be

true “under the condition that the feature value Aj→Ajk occurred,”

i.e., IF (Aj→Ajk) THEN (solutions). If the closeness is below

the threshold, the corresponding feature value as well as the

associated constraints is removed. This strategy of handling

null feature values in adaptation can reduce most user

intervention. Fig. 7 shows the adaptation tree created from

Fig.6.

A D2

E1

E2

V11

V32

V31

V44

V41

V43

B
V21

C1

C3

C4

Fig. 7 Example adaptation tree

Second, the adaptation process develops a case adaptation plan

from the adaptation tree with the help of a feature adaptation

library by creating a feature adaptation plan for each node.

Basically, if a feature adaptation plan that can reduce the DV of

the feature can be found in the feature adaptation plan library, it

is selected. If none of such feature adaptation plan exists, a

partial-order planning (POP) planner [2, 10] is called to produce

a new feature adaptation plan from the adaptation operators of

the plan library for the feature. Fig. 8 depicts the POP

algorithm to do feature adaptation planning. Note that the

algorithm resolves the multiple paths problem by choosing a path

that has the minimum adaptation effort (Step 6). Adaptation

effort (AE) is defined below to calculate the adaptation cost of an

adaptation step in a feature adaptation plan.

)(S)(S)AE(S iii DWVDV •= , (5)

where Si is the ith step in the feature adaptation plan. Fig. 9

illustrates a feature adaptation plan with multiple paths. Note

that each step contains an AE value and the path containing Steps

D_1 and D_2 is selected as the feature adaptation plan since its

total path AE is minimum.

Step 1: Initialize a plan that contains a start and a finish step.
a. DVPostcondition of the start step equals the DV of

the feature value,
b. DVPrecondition of the finish step is a zero vector.

Step 2: Pick a plan step with DVPrecondition that has not been
satisfied.

Step 3: Create a new step containing an operator whose
precondition matches the DVPrecondition.

Step 4. Go to step 3 until all matched operators are applied.
Step 5: Go to step 2 until all DVPrecondition of all steps have been

satisfied.
Step 6: Find a minimal adaptation effort path.

Fig. 8 Feature adaptation planning

Step # Feature
name

Feature
value DVPrecondition DVPosconditiont AE Adaptation

operator
Start D V51 N/A <1, 0, 1, 1,

0> 0.5 N/A

D_1 D V51
<1, 0, 1, 1,

0>
<0, 0, 0, 0,

1> 0.2 Heuristic
adjustment

D_2 D V52
<0, 0, 0, 0,

1>
<0, 0, 0, 0,

0> 0 Constraint
deletion

D_3 D V5
<1, 0, 1, 1,

0>
<1, 0, 1, 0,

0> 0.35 Problem
abstraction

D_4 D V50
<1, 0, 1, 0,

0>
<1, 0, 0, 0,

0> 0.1 Problem
Refinement

D_5 D V52
<1, 0, 0, 0,

0>
<0, 0, 0, 0,

0> 0 Value
specialization

Finish D V52
<0, 0, 0, 0,

0> N/A 0 N/A

Start

D_1 D_2

D_4

Finish

D_5D_3

Fig. 9 Example feature adaptation plan

Finally, the adaptation process follows the case adaptation plan to

adapt the feature values in the adaptation tree to meet the

problem features in order to produce a new solution. If there are

multiple paths in the adaptation tree, each path has to be visited

in order to take care of multiple solutions. This process

eventually generates a new case containing judged solution types.

Fig. 10 shows the newly adapted case given the problem data of

Table 1 and the adaptation tree in Fig.7. Note that the solution

in Fig. 10, i.e., S1, S3, and S4, contains the solutions from Cases

1, 3, and 4.

1. B: V21 • Solution model
2. A:V11 Solution type: T1

3. D:V33 Solution: S1, S3, and S4

4. E: V45

5. Constraints: [B(V21), E(V45)]

Fig. 10 Newly adapted case

Table 1 Example problem data

Feature A B D E
Value V11 V21 V33 V45

4.2 Case Retaining

The adaptation tree servers as a clue to whether we need to store

a newly adapted case in the case library for later reuse. This is

done by calculating an average adaptation effort for a new case,

defined as follows.

∑∑
= =

→•→=
m

1k

n

1j
jkjjkj)A(ADWV)A(ADV

m
1AAF , (6)

where m is the number of cases in the adaptation tree, n is the

number of features in the new case, and DV is the feature

different vector and DWV is the difference weight vector for the

feature Aj→Ajk. If the value of AAF is over some reuse

threshold (e.g., 10%), the new case is worth storage in the case

library. The philosophy for this case retaining strategy is that a

new case with AAF below the reuse threshold is highly similar to

some cases in the case library. It can be re-produced the second

time without much effort. One immediate benefit of this

approach is that the index structure in the distributed fuzzy

network need not be re-trained too often. The apparent

advantage of this philosophy is thus the case library only grows

when its coverage is too narrow.

5. MEDICAL DIAGNOSIS AS AN APPLICATION

Medical diagnosis from surface etiology is difficult since there

involve lots of complications. A clinician has to carefully

investigate a patient's symptoms, chief complaints, and pathology

examination in order to decide possible diseases. It takes years

of training and practice for a physician to make correct decisions.

This worsens when the related etiology is hard to discern or

multiple diseases suffered. The rapidly growing medical

knowledge and new patient cases make the diagnosis process

even more difficult. Updating the medical knowledge

incrementally in a traditional medical diagnosis system to cope

with this is not that easy [6]. It can be made easier and reliable,

however, if supplied with a system that contains and provides

recommendations from the past diagnosis cases of different

morbidity, since the clinician can benefit a lot from these prior

cases. This implies that the CBR approach is appropriate to the

problem.

For medical diagnosis, we define a case to be a structure that

contains a patient model and a diagnosis model [8]. The patient

model describes subjective findings, objective findings, and

pathology and laboratory examinations about a patient. The

diagnosis model records the scenario of how a diagnosis is

proceeded. It serves as the diagnosis the case recommends. It

includes judged disease types, affected organs, and impression.

A judged disease type refers to one of the 11 disease categories

[5]. An affected organ indicates a human body's system that

was under attack by the diseases. The impression indicates the

judged disease names. The feature-value pair format is used in

a case to represent the information in both models. Some

features fuzzy linguistic terms to denote the importance of their

values. Finally, a case is also annotated with specific adaptation

knowledge and differential diagnosis knowledge. The former

helps constrain the causal relations among the symptoms, test

data, and diseases, and hypothesize the suspected diseases from

the adapted case data. The latter helps differentiate diseases

with analogous morbidity.

Our medicine case library contains 280 cases, including 20 cases

for “cardiology,” 20 cases for “respiratory,” 30 cases for

“hematology,” 35 cases for “GIH (gastric, intestine, and

hepatology),” 20 cases for “neoplasm,” 20 cases for “urology,”

40 cases for “immune,” 30 cases for “infectious,” 30 cases for

“endocrine,” 20 cases for “neurology,” and 15 cases for

“miscellaneous” [5].

There are 22 nodes in the input node layer of each sub-net in the

symptom net [8]. They represent the following subjective

findings and objective findings in the patient data: sexuality,

history 1, history 2, chief compliant, present illness 1, present

illness 2, present illness 3, present illness 4, temperature, pulse,

respiratory rate, blood pressure, consciousness, HEENT, neck,

heart, thorax and lung, breast, abdomen, extremity, urinary, and

neurologic. The training data for each subnet are taken from the

case library and encoded in numeric values between 0 and 0.87.

The vigilance parameter ρ in the fuzzy ARTRON is set to 0.9

with learning rate set to 1 initially. We have shown in [8] that

the architecture can successfully produce a solution that contains

multiple diagnoses for a given patient data input.

6. CONCLUSION

We have described a hybrid CBR architecture and how it is

applied in medical diagnosis. It hybridizes CBR, fuzzy neural

networks, induction, utility-based decision theory, and

knowledge-based planning technology to facilitate solutions

finding. The basic mechanism is CBR that accumulates

experiences as cases in the case library and proposes solutions by

adapting the old cases that have successfully solved previous

cases. The distributed fuzzy neural network performs

approximate matching to tolerate potential noise in case retrieval.

The induction technology along with relevance theory is used in

case selection, adaptation, and retaining, which helps a lot in

hammering out valuable features for the target case from existent

ones and in pruning unnecessary search space.

Knowledge-based planning is used as a general architecture for

case adaptation. It creates an adaptation plan from an

adaptation tree that covers all the relevant problem features,

satisfies all the relevant constraints, and contains all cases whose

expected utility are over a threshold. Execution of the case

adaptation plan can successfully propose high-quality solutions.

In summary, the case retrieval accepts fuzzy input, which is more

natural and efficient, with the help of fuzzy neural network.

The case adaptation is effective with the help of feature expected

utilities. It also dynamically tackles multiple cases with the help

of the adaptation tree. Moreover, the case adaptation is a

planning-based general mechanism, which is thus unlikely to be

performance-degraded. Finally, the case retaining is efficient

with the help of the adaptation tree.

We have applied the hybridized techniques in the medicine

domain to do medical diagnosis with multiple diseases. The

experiment shows that the architecture can successfully interact

with the physician with different proficiency levels in collecting

complete patient data, which in turns leads to a correct diagnosis

of multiple diseases. The best thing is that it also successfully

discovers new medical adaptation knowledge from the relevant

cases [8]. The application of the technique in the medicine

domain not only improves the quality of the diagnosed diseases

but reduces the burden of a physician.

Most current integrations of induction and CBR are applied in

case retrieval. For instance, Inreca+ integrates CBR and

induction for diagnosing poison cases caused by psycholotropes.

It focuses on case retrieval and uses Inreca trees and compiled

knowledge to measure case similarity [1]. M. C. Jaulent et al.

[9] uses CBR to diagnose histopathology. It employs an index

tree to structure specific features of a case, and uses structure

similarity as a metric for searching of cases. They focus on

using induction to support case retrieval and/or similarity

measurement by constructing a static induction tree to index the

case library. They neither can reflect problem contexts in CBR

reasoning nor can handle complex situations like multiple

solutions or noise feature values. Even worse, the maintenance

of the index structure is difficult if new cases need to be

frequently added to the library. Our approach is quite different

in the integration and application of the various techniques. It

not only supports case retrieval, but also supports case selection,

case adaptation and knowledge discovery [8].

7. REFERENCES

[1] K. D. Althoff, R. Bergman, S. Wess, M. Manago, E. Auriol,

O. I. Laricher, A. Bolotor, Y. I. Zhuravlev, S. I. Gurov,

“Case-Based Reasoning for Medical Decision Support Tasks:

The Inreca Approach,” Artificial Intelligence in Medicine,

vol. 12, no. 1, pp. 25-41, 1998.

[2] A. Barrett and D. Weld, "Partial Order Planning: Evaluating

Possible Efficiency Gains," Artificial Intelligence, vol. 67,

no. 1, pp. 71-112, 1994.

[3] P. R. Cohen and E. A. Feigenbaum, Handbook of Artificial

Intelligence, vol. III, Willian Kaufmann Pub, Los Altos, CA.,

1982.

[4] J. S. Chou and C. S. Ho, "A Fuzzy-ART-Enhanced Neural

Classifier," Proceedings of the third International

Conference on Knowledge-Based Intelligent Information

Engineering Systems (KES'99), pp. 488-491, Adelaide, SA,

Australia, 1999.

[5] A. S. Fauui, E. Brauwald, K. J. Isselbacker, J. D. Wilson, J.

B. Martin, D. L. Kasper, S. L. Hauser, and D. L. Longo,

Harrison’s Principles of Internal Medicine, 14th ed.,

McGraw-Hill, NY, 1998.

[6] L. Gierl, M. Bull, and R. Schmidt, CBR in Medicine, in M.

Lenz, S. B. Bartsch, & S. Wess (Eds.) Case-Based

Reasoning Technology, From Foundations to Applications,

Springer, Berlin, pp. 273-297, 1998.

[7] M. Hadzikadic, B. F. Bohren, “Learning to Predict:

INC2.5,” IEEE Transactions on Knowledge and Data

Engineering, vol. 9, no. 1, pp. 168-173, 1997.

[8] C. C. Hsu, A Hybrid Case-Based Reasoning Architecture

and Its Application, Ph. D. Dissertation of National Taiwan

University of Science and Technology, Taiwan, 2000.

[9] M. C. Jaulent, C. L. Bozee, E. Zapletal, and P. Degoulet, A

Case-Based Reasoning Method for Computer-Assisted

Diagnosis in Histopathology, Proceedings of AI in Medicine

(AIME'97), Grenoble, France, pp. 39-242, 1997.

[10] S. Kambhampti, C. A. Knoblock, and Q. Yang, "Planning as

Refinement Search: A Unified Framework for Evaluating

the Design Tradeoffs in Partial Order Planning," Artificial

Intelligence, vol. 76, no. 1-2, pp. 107-238, 1995.

[11] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann,

San Mateo, CA., 1993.

[12] J. R. Quinlan, "Introduction of Decision Trees," Machine

Learning, vol. 1, pp. 81-106, 1986.

[13] A. Tversky, "Features of Similarity," Psychological Review,

vol. 84, pp. 327-352, 1977.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8

