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ABSTRACT

Two robots working in a shared workspace can be
programmed by planning the trajectory of each robot
independently. To account for collision avoidance between
them, a real-time velocity tuning strategy based on fast and
accurate collision detection is proposed in this paper to
determine the step of next motion of slave (low priority)
robot for collision-free trajectory planning of two robots
with priorities. The effectiveness of the method depends
largely on a newly developed method of accurate estimate
of distance between links. Under the control of the proposed
strategy, the master robot always moves at a constant speed
while the slave robot moves at the selected velocity, based
on a tradeoff between collision trend index and velocity
reduction in one servoing time, to keep moving as long as
possible and as fast as possible while avoid possible
collisions along the path. The collision trend index is a
fusion of distance and relative velocity between links of two
robots to reflect the possibility of collision at present and in
the future. Graphic simulations of two PUMA560 robot
arms working in common workspace but with independent
goals are conducted to demonstrate the collision avoidance
capability of the proposed approach as compared to the
approach based on bounding volumes. It shows that a
potential benefit of our approach is less number of speed
alterations required to react to potential collisions.

1. INTRODUCTION

Flexible manufacturing systems increasingly catch
manufacturers’ eyes for recent years. In order to construct a
reconfigurable and reprogrammable system, robot arms
have been widely used in manufacturing processes to
increase productivity, reduce production costs, and improve
product quality. However, for some types of complex tasks,
the capabilities of single robot arm are insufficient. The use
of multiple robot arms in a common workspace is essential
to enhance the utilization of robots and improve the
versatility of potential applications. As a consequence, it
usually leads to the problems of cooperation and collision
avoidance in dynamically varying environment since the
robot arm may become moving obstacles to each other.

Therefore, motion planning must take account of collision
avoidance between robot arms. In general, collision-free
motion planning for multiple robots can be decomposed into
two sub-problems: path planning and trajectory planning [3].
Path planning finds the robots’ geometric paths that do not
intersect static obstacle, and trajectory planning determines
how fast each robot must move along its path to avoid
collision with others. Partitioning as the above, the collision
avoidance problem of multiple robots is simplified. In this
paper, the proposed method focuses on dealing with the
problem of collision-free trajectory planning for multiple
robots. One of the major features of time/velocity adjusting
approaches for trajectory planning is that the number of
variables to be considered for collision avoidance does not
exceed the number of robots because one variable, usually
the time, is enough to express the moving velocity of each
robot.

To solve the above problem, plenty of research efforts have
been proposed. To premise that the end effectors of robots
move along pre-described straight-line paths, Lee and Lee
[1] presented a decoupled method for speed reduction/time
delay of one robot while the other robot maintains its
original trajectory based on space-time collision maps, and
compared the effects of delay time and velocity reduction on
total traveling time. In their implementation, only the wrist
of robot arm is taken into consideration and is modeled
simply as a sphere for collision detection. To expand Lee’s
approach, a simple time delay method based on collision
map is proposed in [4] for avoiding collisions between two
general robot arms. In his method, robot links are
approximated by polyhedron and the danger of collision is
expressed by the function of the distance between two
robots. Similarly, Basta et al. [2] also proposed an approach
mapping the potential collision segment information into
the time domain to obtain the space-time collision for
planning collision-free motion of two robot arms.

For minimum-time trajectory planning, [5] showed that
under certain condition, a time delay in starting one robot on
its path leads to motion time optimality with collision
avoidance. By considering the limitation of actuator torque
and velocity, [6] constructed a two-dimensional
coordination space and a maximum velocity curve in terms
of parameters defining the position along the paths of two
robots to detect the collision region and to plan a



time-optimal velocity curve, respectively. Under the same
consideration, Lee [7] converted trajectory planning
problem and physical limitations into an optimization
problem and applied dynamic programming approach to
generate a near minimum-time trajectory for two robots. [8]
presented an approach that the collisions between links of
robots in 3D are simplified to the different rectangles, called
forbidden region, in 2D Space/Time graphs. Through
finding the optimal path between the rectangles on the
Space/Time graph, robots can avoid collision by means of
velocity alteration. All of above approaches consider the
trajectory planning problem when both robots are moving
along pre-assigned geometric paths.

The proposed approach models robots’ links using
polyhedra and then computes their enclosing and enclosed
ellipsoids for minimum distance estimate and collision
detection (details can be found in [13]). Based on the
estimated distance for potential collision detection, a
velocity alteration strategy is applied to collision-free
trajectory planning of two robots. The outline of this paper
is as follows. Section 2 describes the approaches for the
construction of enclosing and enclosed ellipsoids of convex
polyhedra. The method for distance estimates between
polyhedra is conducted in Section 3. Collision detection
based on distance estimate is introduced in Section 4.
Section 5 presents the proposed velocity alteration strategy
for trajectory planning of two robots and the simulation
results are shown in Section 6. Finally, Section 7 concludes
the paper.

2. ELLIPSOID GENERATION

How to model the shapes of robots’ links is an important
problem to an efficient collision detection algorithm. For a
modeling method, it should represent the physical system
precisely as possible and must be simple enough to ensure
that the algorithms can be solved fast enough to secure the
real-time operation of the manipulator. For the proposed
algorithm, polyhedra are used to model the geometric
objects, and their enclosing and enclosed ellipsoids
cooperate with the polyhedral model for collision detection
and rapidly distance estimate. The main advantage of the
use of ellipsoids is that it is very simple in mathematical
representation; therefore it can reduce the complexity of
computations to be required. Besides, there is a fullblown
approach to compute the closest points between two

separate ellipsoids. An ellipsoid is represented as ),( Yynε
in the rest of this paper, where n is the dimension, y is the
center, and Y is the characteristic matrix.

The relationship of the enclosed ellipsoids, the enclosing
ellipsoids and the polyhedral models are depicted in Fig. 1.
If the closest points between two enclosed ellipsoids are
computed, than a straight line equation can be generated
based on the two points. The central idea of the proposed
method is to rapidly estimate the closest points between
polyhedral objects by means of computing the intersection
points of the line equation with the polyhedra or enclosing
ellipsoid. Based on all the intersection points, a tight
distance estimate between two polyhedra can be derived
[12]. Therefore, the approach starts from ellipsoids

generation.
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Fig. 1. The distance estimates based on enclosed ellipsoids

2.1 Enclosing Ellipsoid

Löwner-John (L-J) ellipsoid, the minimum-volume
enclosing ellipsoid of a body, is an intuitively appealing
means to lump the detailed geometry into a single quadratic
surface. The computation of the L-J ellipsoid is a convex
optimization problem [9] whose solution can be derived by
applying the ellipsoid algorithm [10]. It is worth noticing
that the L-J ellipsoid is the bounding volume representation
of the convex polyhedron and it can be used for collision
detection.

2.2 Enclosed Ellipsoid

The generation of an appropriate enclosed ellipsoid for a
convex polyhedron is very difficult. Since an unfit enclosed
ellipsoid may cause a large error of distance estimate in this
proposed approach, a 3-phase approach is proposed in order
to generate an enclosed ellipsoid that fits to the polyhedron
for minimum distance estimate. Our approach is to derive
the enclosed ellipsoid of a convex polyhedron by means of
shrinking, stretching, and then scaling an L-J ellipsoid to fit
the polyhedron as tight as possible.

Phase 1 – Isotropically shrinking all principal axes

An initial enclosed ellipsoid is given by shrinking the L-J
ellipsoid along its principal axes isotropically to be

contained in the polyhedron in phase 1. Let ),( Yynε be the
minimum volume n-ellipsoid containing a convex
polyhedron in n-dimensional space. Then, the initial

enclosed ellipsoid is given as ))1(,( 2 Yy +nnε , formed by

shrinking ),( Yynε from its center by a factor of (n+1), to
guarantee that the polyhedron contains the initial ellipsoid

[10]. Therefore, the ellipsoid )16,(3 Yyε is selected to be
the initial guess for enclosed ellipsoid computation in
3-dimensional case. The regulation of the shrinking factor is
based on the bisection method. The phase terminates with a
user-defined error while the ellipsoid cannot extend further
without overlapping with the facets of a polyhedron.

Phase 2 - Stretching



The phase 1 terminated while the enclosed ellipsoid is very
close to one of the polyhedron’s facets; however, it still has
some free space to enlarge the enclosed ellipsoid. Stretching
operation [11] is applied to expand the enclosed ellipsoid
along a given direction in phase 2. Let s be the point to adapt

to and ),(3 Mcε be the enclosed ellipsoid generated in
phase 1. The idea is to move the ellipsoid’s center towards to
the point, i.e. s, and then stretch the ellipsoid along the
movement direction such that the old border point in the
opposite direction remains a border point. Therefore the
new center is represented as

)( cscc −+=′ β ,

where β determines how far to move the ellipsoid’s center.
With the normalized distance vector

||)(||/)( 2/12/1 csMcsMa −−= ,

the new transformation matrix is given as

1/22/1 ))1(( MaaIM T−+=′ α ,

where ||))(||1/(1 csM1/2 −+= βα .

It is worth to notice that enlarging an ellipsoid means that its
transformation matrix makes the vectors shorter, therefore
α is always smaller than 1. In the stretching operation, s is
given as ||||/)( cscs −−⋅ mml , where l is the distance from
the farthest facet of the polyhedron to c, the center of
enclosed ellipsoid, and ms is the mass center of vetices of

the farthest facet. In our implementation, β is initialized as

1 and inside the range from 0 to 1. The selection of β is

also based on the bisection method. The algorithm
terminates while the variation of β is smaller than 0.005.

As mentioned the old border point in the opposite of the
stretching direction is still a border point of the new
ellipsoid, it implies that perhaps there is free space for the
ellipsoid to expand in the opposite side. Therefore, the
stretching operation is applied once again for possibly
enlarging the ellipsoid. In order to hold the interface point
between the facet of a polyhedron and the ellipsoid, the new
s, which needs to be adapted to, is given as

||||/)( iil scscs −−⋅= ,

where is is the interface point.

Phase 3 – One by one enlarging each radius

Let ),(3 Mc ′′ε be the enclosed ellipsoid generated by

means of stretching. Since the matrix M ′ is symmetric and
positive-definite, it can be diagonalized through a rotational
matrix V. The relation is expressed as

D = V-1 M ′ V.

In fact, matrix V is the matrix of eigenvectors of matrix M ′
and matrix D is the canonical form of M ′ , a diagonal matrix
with M ′ ’s eigenvalues on the main diagonal. Since the
inverse square roots of matrix M ′ ’s eigenvalues are
equivalent to the length of principal axes of the enclosing

ellipsoid, the change of ellipsoid’s each radius can be
performed individually by means of multiplying matrix D
with a scaling matrix S, which is also diagonal. Therefore,
each new radius of the enclosed ellipsoid can be written as

SDD =′ ; and the enlarged enclosed ellipsoid can be
represented as

-1VDVM ′=′′ .

By the use of scaling operations, the length of each principal
axis of the enclosed ellipsoid is extended individually until
the enlarging process induces the ellipsoid to intersect with
facets of the polyhedron.

Since ),(3 Mc ′′′ε is generated by stretching along a
specified vector and, then, enlarging some axes of

),(3 Mcε generated in phase 1, the following relationship

),(3 Mcε ⊆ ),(3 Mc ′′′ε always holds.

3. DISTANCE ESTIMATE

For some applications such as path planning in a tight
workspace, an inaccurate or too conservative distance
estimate may result in failing to find a solution even though
it exists. Therefore, the minimum distance estimate between
objects is very important.

3.1 Lower Bound

In general, the minimum distance between the bounding

volumes, i.e. the enclosing ellipsoids 3
1oε and 3

2oε , is set as
the lower bound of distance estimate and is used for
collision detection. However, due to representation error
induced from the difference between a real polyhedron and
the ellipsoid model, the intersection points P1 and P2, at

which the shortest path between the enclosed ellipsoids, 3
1iε

and 3
1iε , intersects with the enclosing L-J ellipsoids, are

more suitable points for lower bound distance estimate
geometrically. According to [9], the closest points of two

separately enclosed ellipsoids ),(3
1 Aaiε and ),(3

2 Bbiε can

be computed as:

[ ] AaIAMMx 1
minmin

* )()( −−= λλ ,

where
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)(min Mλ is its eigenvalue with minimal real part and

),(3
1

* Aax iε∈ . Once *x is obtained, ),(3
2

* Bby iε∈ can be
derived in the same way. Therefore, the intersection points

P1 and P2 of ),( ** yxL , the straight line connecting the

closest points *x and *y on the enclosed ellipsoids, with

the L-J ellipsoids ),(3 Aaε and ),(3 Bbε are computed

respectively based on the coordinate transformations



)( *2/1* axAx −= and )( *2/1* ayAy −= .

Then, the problem becomes how to compute the intersection
point of a unit ball OB centered at the origin and a line

),( ** yxL . The points on the line ),( ** yxL can be

described as vector v with a parameter t:

.)()( *** xxyv +⋅−= tt

The intersection with the unit ball OB occurs when

1|)(| =tv or 1)(2|||| *2*22 =•++ tt nn xaxa , where

** xya −=n ,

and the solution

2

*2*22*

||

)()1|(|||)(

n

nnnt
a

xaxaxa •−−−•
=′ .

The intersection point is found as )(2/1
1 t ′+= − vAaP .

The other intersection point P2 also can be obtained by the
same way. It is worth to notice that 10 <′< t while the two
enclosing L-J ellipsoids are apart. If a L-J ellipsoid
intersects with the enclosed ellipsoid of the other
polyhedron, t ′ will be larger than 1.

3.2 Upper Bound

It is intuitive to set the minimum distance between the two
enclosed ellipsoids as the upper bound. However, this kind
of upper bound still can be improved by taking the
polyhedral facets information into consideration. Let the ith
face of a polyhedron be represented by a plane equation

ini k=• xa . Suppose the polyhedron intersects with the line

),( ** yxL , whose points are described by

*** )()( xxyv +⋅−= tt ,

at the point q, the intersection point q can be found

algebraically by solving the minimum and positive t, or t min ,

subject to ( ) ini kt =• va . Therefore, the intersection points

1q and 2q of both polyhedra (Fig. 1) can be computed
respectively. These two points are close to the closest points
of the enclosed ellipsoids between the polyhedra. The upper
bound of distance estimate is thus apparently improved by
replacing the distance between two enclosed ellipsoids with

21qq .

3.3 Distance Estimate Error

For one of the polyhedra and its L-J ellipsoid, the distance

estimate error is thus computed by iiqP . The error varies
with the sizes of the ellipsoids, and the orientations and
shapes of the polyhedra.

4. COLLISION DETECTION

For collision detection problems, in general, only the
bounding volume, e.g. the enclosing ellipsoid, is applied to
performing intersection check. However, due to the limit of
representation model’s precision, such strategies may cause
a lot of false alarms. To overcome such kind of problem and
to avoid expensive computational expense, a hierarchical
strategy based on the proposed distance estimate method is
introduced. If all the enclosing ellipsoids are enough apart,
the lower bound of the distance estimate between two
polyhedra is larger than zero and collision free is guaranteed.
The further collision detection needs only be performed
when the enclosing ellipsoids intersect with others. In this
way, the proposed approach can be used to efficient localize
collisions in space.
In the proposed method, the geometrical order of the closest
points, which locate on the enclosing and the enclosed
ellipsoids of the two polyhedra for distance estimate, is used
to tell the intersection of enclosing ellipsoids. A “correct”
geometrical order of the set of closet points can be checked

easily by using )( 2121 qqPP •sign , the sign of the inner

product 2121 qqPP • . For two enough separate polyhedra,

)( 2121 qqPP •sign always larger than zero. If it is equal to
zero, the two enclosing ellipsoid collide at one point. If the
result is small than zero, it implies that the geometrical order
is violated and there are intersections among these ellipsoids.
Therefore, further information is needed to classify the
potential collision.
Since the representation of ellipsoid model is not the same
as the original polyhedron, a heuristic safe margin is added
to guarantee no collision condition is lost in collision

detection. The distance estimate error, i.e. 11qP or 22qP ,
are set as the safe margin for the proposed algorithm. Since

1q and 2q are derived from the polyhedra and their
enclosed ellipsoids, they are not the real closest points

between the two polyhedra. In fact, 21qq is larger than the
minimal distance between the two polyhedra. Therefore, if

the distance, i.e. 21qq , between two polyhedra is smaller

than 11qP or 22qP , the two polyhedra may be in the
situation of potential collision. Inspired from the above idea,
the criterion for collision detection is therefore given as: if

),min( 221121 qPqPqq > is satisfied, it is categorized as
collision-free; otherwise, it is judged as potential collision.
Since the detection of potential collision is based on the
distance estimate error, larger distance estimate error leads
to more false warnings for collision detection. It is
undesirable for path planning problem in a workspace that is
cluttered with obstacles. Hence, an artificial threshold is
given to overcome this drawback. The criterion for collision
detection is thus replaced by

)threshold,,min( 221121 qPqPqq > .

5. VELOCITY ALTERATION FOR OLLISION_FREE

TRAJECTORY PLANNING

Instead of constructing the configuration space and planning
a path in joint domain for collision-free trajectory planning



problem, the proposed method implements collision
detection directly in the spatial domain. Through the
efficient and accurate distance estimate, the regions where
potential collisions occur are clearly specified. Besides,
unlike most of the proposed approaches of collision
avoidance for robot trajectory planning based on the
computation of distance function only at each servoing time
[15], the proposed approach also takes the velocity
information between links into consideration. For collision
detection/avoidance, only the minimum distance estimate is
not enough to faithfully reflect the practical situation in a
dynamic environment for robotic applications. For example,
as shown in Fig. 2, object A has the same distances to object
B and to object C; and object A is apart from object B but is
heading to object C. If only the closest distance is used for
collision avoidance, such two cases have the same
imminences. However, the latter, in fact, is more urgent than
former. Therefore, more information about the motion of
objects such as moving speed or moving direction should
also be applied to faithfully reflecting dynamic situation for
collision prediction.

B A C

Fig. 2. The right pair is more imminence than the left pair.

Without loss of generality, we first assume that their
motions are equivalent to the motions of their mass centers.
Then an index to differentiate the objects are approaching or
departing to each other is design as

||
),(

BA

BA
vBAI B •= , where A is controllable object and B is

obstacle.

In fact, the index I is the projection of obstacle’s velocity

Bv on the unit vector from the obstacle B to the controllable
object A. It is noticed that if the obstacle is approaching the
controllable object, I is positive; otherwise, I is zero or
negative. The index indicates not only the relation of the
motion direction but also the magnitude of the relation
between moving objects. Since only the approach case will
induce an imminent danger, therefore, the combination of
the minimum distance and the index to exhibit the practical
situation in dynamic environment can be represented as

BAd
BAIBAP

,1

1
*)0),,(max(),(

+
= ,

where BAd , is the minimum distance between objects A and

B. According to the above equation, if the objects are
departure, )(⋅P is equal to zero. In contrast, if the objects
are close and approach to the other one at high speed, than a
larger P will be generated. By embedding the information of
motion direction and the speed magnitude, the minimum
distance can be more correct to reflect the practical situation
which is imminent or not in a time-varying environment for
many robotic applications.

In the similar way, the collision-trend index P also can be
applied to trajectory planning for robot manipulators.
Consider two robot arms work in a share workspace with
independent goals. In this case, the master robot arm plays a
role of moving obstacle to the slave one. Therefore,
collision avoidance is required to prevent each link from
colliding with the others. The most widely used traditional
technique for collision avoidance for two robot systems is
semaphore method in which one robot waits before running
next path segment till other robot moves out completely
from the dangerous region. It is not efficient because of not
providing the parallel tasking feature. Therefore, by the use
of speed alteration strategy to allow the two robots move
concurrently, the main aim of this work is to minimize the
delay-time induced form collision avoidance.

In our case, it is assumed that the two robot arms’ tips
move along their independently pre-planned geometric
paths in Cartesian space at predefined speeds. Therefore, the
motion of the master robot arm at a constant speed tipmasterV _

can be described as:

tipmasterinitialmastergoalmastermaster VppT ___ /|| −= ,

TTN masters ∆= / , and

,/)( __ Nsppp initialmastergolamastermaster −=∆

where masterT is the total elapsed time of the master robot;

initialmasterp _ and goalmasterp _ are the initial and goal positions

of the master robot’s tip; sN is the number of servoing
times; T∆ is the time duration of a servoing time; and

masterp∆ is the average tip position variation at a servoing
time. Similarly, the motion of the slave robot can be
described in the same way.

When a possible collision is detected in the next servoing
time, the slave robot is required to slow down its tip’s
velocity. It is performed by searching the optimal position,
which minimizes a given objective function, of the possible
positions along the path within the location range where the
predefined tip speed can reach in one servoing time without
any collision. By considering each link of the master robot
as moving obstacle, the collision-trend index between the
master robot’s link i and the slave robot’s link j can be also
represented as

||
),(

ji

ji
i

linklink

linklink
vjiI •= , and

jid
jiIjiP

,1
1

*)0),,(max(),(
+

= ,

where iv is the end-point velocity of the master robot’s link
i with respect to the world coordinate. The object function
based on the collision-trend index for searching an optimal
position is given as
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where 1w and 2w are weighting factors; tipV is the

preprogrammed tip velocity; TtptptV ∆−−= /))1()(()( is
the selected tip velocity for the slave robot; t is the servoing
time index; )(⋅p is the selected tip position of the slave

robot; T∆ is the duration of a servoing time; and n and m
are the number of links. The first and second terms at the
right hand side of Eq. (1) is designed to force the links to
keep a safety distance away from each other while
simultaneously demand the slave robot to move at the
preprogrammed velocity, respectively.

The search algorithm utilizes the objective function to
evaluate the possible positions on the moving path of the
slave robot at each servoing time to select the optimal
position for the slave robot. Fig. 3 shows the next possible
position of the two robots.
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Fig. 3. The moving path of the robots at one servoing time.

Hence, the next possible position of the slave robot’s tip can
be represented as follows:

Nislavetipslavetipslave SSptptp /)1()( __ ⋅∆+−= ,

where iS is the sampling index and NS is the sampling
number/maximum sampling index for a servoing time, and

slavep∆ is the average tip position variation during a

servoing time.

6. SIMULATION EXAMPLE

In order to demonstrate the performance of proposed
distance estimate method and velocity alteration strategy for
collision-free trajectory planning, two RUMA560 robot
arms working in an overlapped working envelope are set up.
It is assumed that the two robots stand away from each other
so that their link 1 and link 2 may not collide with their
counterparts. Therefore, only link 3 to link 6 are involved in
collision detection. The parameters for ellipsoids generation
for PUMA560 are given in [14]. The base coordinates for
the two PUMA560 arms with respect to the world
coordinate are
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The initial and goal positions for the two robots are given as
follows:
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with respect to their individual base coordinates,
respectively.

Since the motion of each joint affects the displacement of all
subsequent links, the maximum displacement for each link
in Cartesian space depends on both the maximum total
distance from a point on the link to the base joint and the
maximum angular displacement of all the links. Therefore,
the approximated maximum tip’s displacement for a
PUMA560 can be given as [4]:

)))cos(1()cos1((2 5321 θθθθ ++−+−= ld ,

where l is the distance from joint 1 to tip. In this example,
the servoing time is given as 20ms and the maximum
angular displacement is assumed to be 0.5 rad/sec. Based on
the constraints, the maximum displacement of the tip of
PUMA560 for each servoing time is computed as 60mm for
a planar motion. The predefined tip velocity for the
PUMA560 arms to move along the preplanned geometric
paths is selected as 50mm for each servoing time in this
example. However, collisions between the links will occur if
both robot arms move along the given trajectories. The
collisions between the two robot arms are shown in Fig.
4(left: 3D display, right: top view).



T=0ms (initial configurations)

T=80ms

T=140ms (collision)

Fig. 4.Two robot arms move along the pre-planned trajectories.

Next, the proposed velocity alteration strategy is applying to
tuning the slave robot’s velocity to avoid this undesired
collision situation without any change of the geometric path.
The master robot’s tip moves at the same preprogrammed
speed as in the previous experiment unless the alteration of
the slave robot’s speed fails to avoid the occurrence of
collision. To decide an alternative velocity for the tip of the
slave robot, the objective function Eq. (1) with 501 =w and

12 =w is used in this simulation example. The sampling
number SN for a servoing time is given as 20. Graphic
display of configurations of two robots for several time
instants and the resultant tip velocity for the slave robot arm
are shown in Fig. 5 and 6, respectively. For comparison
study, applying the same speed alteration strategy, the tip
velocity generated by using ellipsoids as bounding volume
only for distance estimate is also given in Fig. 7. The result
shows that the conservative estimate of minimum distance
induces more delays of arrival time due to earlier alarm and
later relief of potential collisions. Another result generated
by the widely used traditional approaches is also depicted in
Fig. 8. The traditional approaches stop the slave robot if a
collision is detected; otherwise, drive the slave robot at the
maximum velocity. However, in transition state, this control
strategy will induce undesired jerks for deriving robot arms.
In contract, the proposed method provides a smooth
transition in velocity profile for robot arm manipulation.

T=100ms

T=120ms

T=140ms

T=160ms

T=180ms

Fig. 5. Two robot arms move without collision along their
pre-planned trajectories by velocity alteration strategy.

7. CONCLUSION

The paper has presented a systematic approach for velocity
alteration strategy based on fast and accurate collision
detection to solve the collision-free trajectory planning
problem for multi-robot systems. The minimum distance



between robots’ links can be estimated simply and
efficiently by using their enclosing and enclosed ellipsoids.
Based on the estimated minimum distance for collision
detection and avoidance, and the related velocities between
links, the proposed speed alteration strategy is able to guide
the slave robot arm, with less number of alterations, to move
along its predefined geometric path without any collision
with the other one. Instead of constructing the whole
collision regions in C-space or in collision maps for
trajectory planning, the proposed strategy only checks up
collision along a part of collision region. Therefore, it is
much simpler and then the overall computation can be
drastically reduced.
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Fig. 6. Tip velocity controlled by velocity alteration strategy.
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Fig. 7. Tip velocity controlled by velocity alteration strategy
using bounding volume for collision detection.
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Fig. 8. Tip velocity generated by bang-bang control.
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