

 1

ARRAY PROCESSOR WITH PARTITIONED MEMORY
FOR HOUGH TRANSFORM-BASED CIRCLE DETECTION

Ming-Yang Chern and Chi-Mor Dai

Department of Electrical Engineering,
National Chung-Cheng University, Chiayi, Taiwan, R.O.C.

Email: ieemyc@ccunix.ccu.edu.tw

ABSTRACT

Circle detection through the use of Hough transform is
usually time-consuming. In this paper, an idea of VLSI
processor design for Hough transform-based circle
detection is presented. In our design, we use multiple
processors to generate candidate circle center addresses in
parallel, while in each processor only adder operation is
needed to determine the accumulator address. To match the
speed of accumulator memory updating with parallel
address generation, the accumulator memory is partitioned
into modules for parallel accumulator update. With the
number of memory modules chosen equal to the number of
processors, an interleaving scheme for partitioning the
circle template table and accumulator memory is proposed.
It balances the load of processors and avoids accumulator
memory contention. Variations of our design are presented
and analyzed.

1. INTRODUCTION

Detection of round objects is needed in many cases of
image analysis. It is especially important for industrial
applications such as automatic inspection and assembly, as
patterns of many components are round objects. Detecting
circles in digitized image is frequently approached through
the use of Hough transform [1-3], because the Hough
transform (HT) is an effective technique for pattern
recognition which has good performance even if applied
over images with noise and occlusion [5].

Based on the principle of Hough transform, for any point
P(x, y) on a circle in the image space, it may possibly
belong to a circle of radius r with circle center located at (i,
j) as given by

 i = x + r cosθ

 j = y + r sinθ (1)

whereθ, ranging from 0° to 360°, represents the direction
of circle center with respect to the point P. In other words,
a detected edge point of image coordinates P(x, y) can be
mapped to a set of locations ((i, j), r) in the 3-dimensional
parameter space, according to Equation (1). While the
content of each such mapped location AC((i, j), r) in the
accumulator array must be incremented by one for each
edge point. The basic operation steps for circle-detection
Hough transform can be summarized as follows:

1. Quantize the parameter space between appropriate
maximum and minimum values for i, j, and r,
respectively; and form an accumulator array AC((i, j),
r).

2. Initialize the contents of the whole accumulator array
AC to zero.

3. For each edge point P(x, y) in the edge map (image),
produced by edge detection, increment all locations of
its possible circle centers in the accumulator array, i.e.,

AC((i, j), r) = AC((i, j), r) + 1

for (i, j) and r satisfying i = x + r cosθ, j = y + r sinθ,
in the range of our definition.

4. With certain threshold, extract local maxima from the
accumulator array and report their locations (circle
centers).

Appropriate threshold value usually depends on the radius
r and the essence of applications. While the count value of
the detected location provides a measure of the number of
edge points on the circle, the locations of local peaks
indicate the parameters of the detected circles.

The major drawback of the above conventional circle
Hough transform (CCHT) is the need of large memory
space and relatively long processing time. To reduce the
accumulator memory requirement, a simple way is to
perform the full Hough transform by a series of
Hough-transforms, each dealing with a single value of
radius [4]. By this scheme, only a two-dimensional
accumulator plane is needed, yet the total processing time
remains unreduced.

To reduce the processing time, two approaches are
generally adopted. One is to modify the circle Hough
transform to simplify the process, the other is to apply
parallel processing. Quite a few modified versions of
Hough transform have been proposed [5-12]. Many of
them use edge directions while some combines the use of
other properties of the circle to reduce the complexity of
Hough transform voting process. In general, these methods
take advantage of certain properties of circles to reduce the
processing time of the image. Nevertheless, with the more
specific analysis on part of extracted image features to
reduce the algorithm’s complexity, it becomes more
difficult to perform parallel processing further on these
algorithms. And the chance for further improvement of the
processing speed is usually limited.

 2

In our attempt to reduce the processing time, the use of
VLSI parallel processors is considered. The success of this
approach depends on the parallelism of the underlying
algorithm, the homogeneity of the data flow, and the
simplicity of the processor operations and system I/O. As
noted in [8], the approach of using edge directions to guide
the voting in accumulator plane(s) facilitates the serial
performance but may not lead to the homogeneous
operations for the SIMD parallel processing.

Kumar et al. [13] reported a more recent work on parallel
circle detection. Three parallel algorithms on an n x n
mesh-connected processor array were proposed (where n x
n is the image size). The first algorithm is for CCHT; the
second one performs circle HT with the guidance of
gradient directions. Yet the performance of these two
designs is still worse than the best (theoretical) time
complexity for an order of magnitude. The third one, based
on the tracing of circle edge points, runs with a time
complexity of O(n2) and is the best of the three. Although
the third design is efficient, the implementation of the large
n x n image-sized processor array is very costly unless the
circuit of the element processor can be much simplified.
Further research on their design is still needed.

So far, few cost-effective parallel architecture (array
processor) designs have been proposed for circle detection.
To explore the possibility of designing cost-effective VLSI
parallel processor, we constrain this research on parallel
processor design using only dozens to few hundred
processor elements. For the array processor we propose
here, it does not make use of gradient direction. With the
proposed partitioned memory scheme, the array processor
is highly cost-effective for Hough transform-based circle
detection and can be implemented on a single VLSI chip.

2. BASIC HARDWARE CONFIGURATIONS

For some applications, the radius of circles that we want to
detect is known in advance. So we can focus on the
fixed-radius circle detection. If we do not have such priori
knowledge, we may still work on each possible radius one
at a time. With fixed radius in Equation (1), we can
pre-calculate the r cosθ (latter denoted xr) and r sinθ
(denoted yr) values for all angles θ and store them in a
table for later use to save computation time. When the
point P(x, y) in the image is an edge point, its candidate
circle center locations (i, j) can be calculated by adding the
(x, y) coordinates with each table-stored (xr, yr) value
respectively. This table look-up scheme is efficient,
because it uses only the integer addition to determine the
circle center (i, j). To generate the circle points (xr, yr) in
the table (circle template), knowing the fixed radius, we
may use the midpoint circle scan conversion algorithm
[14,15]. There are three coordinates systems involved. The
location of the edge pixel is expressed in the image
coordinates; the circle-template coordinates expresses the
address of a circle point relative to its center; and the
accumulator-array coordinates expresses the location of
circle center in the accumulator array. The notation of
these three systems is shown in Figure 1.

x

y

(0,0)

image
(512x512)

x

y
(xr,yr)

circle template

i

j

(0,0)

accumulator array

Figure 1. The three involved coordinate systems

Without losing the generality, we assume the image size of
512x512. Then each coordinate pair (xr, yr) of the circle
template points stored in the table is chosen to be of 9 bits
each (one bit for sign and 8 bits corresponding to the
maximal radius size of 255).

According to Equation (1), the coordinates of circle center
(i, j) may be negative or positive, but the accumulator array
(memory) is usually accessed with positive addressing. To
remedy this problem, we propose a simple address offset
scheme in the hardware implementation. The
address-offset scheme is also convenient to confine the
circle detection to the range of the image space we are
interested in. The offset values (xoff, yoff) are determined by
the position of upper left corner of the accumulator array
with respect to the origin of the image coordinates system.
Figure 2 shows the relationship between the offset values
(xoff, yoff) and the position of accumulator array with
respect to the origin of the image space.

(x0, y0)

accumulator array

x

y

(0, 0)

image
(512x512)

Figure 2. The relationship between offset values (xoff = -x0,

yoff = -y0) and the upper left corner (x0, y0) of the
accumulator array with respect to the origin of
the image space

With the added address offset, the equations for calculating
the accumulator address (i, j) must be modified as:

 i = (x + r cosθ) + xoff = (x + xr) + xoff

 j = (y + r sinθ) + yoff = (y + yr) + yoff

And the basic hardware implementation with added
address offset for calculating the (i, j) address is depicted in
Figure 3. Note that in the implementation, we add the (xoff,

 3

yoff) value first, because this sum can be shared by the
parallel processors. Adding this offset first, we need only

one adder pair to get the sum for all processors in the
system.

Table

Accumulator
Array

Checker

A
dd

er (i, j)

CE

(x, y) Offset
Adder

(xc, yc)

(xr, yr)

xoff yoff

Xw0,Xw1
Yh0,Yh1

Figure 3. Basic processor hardware configuration for circle detection

The table in Figure 3 contains the address pairs (xr, yr) of
the points in the circle template, and (x, y) denotes the
position of edge point in the image. By adding the
edge-point address (x, y) and the accumulator offset
quantity (xoff, yoff), we have the offset edge-point address
(xc, yc).

 xc = x + xoff

 yc = y + yoff

The details of the Offset Adder are shown in Figure 4.

reg. reg.

Ad
de

r
Ad

de
r

xoff yoff

x

y

xc

yc

Offset
Adder

re
g.

re
g.

Figure 4. The offset adder circuit

The values of (xc, yc) are then added to each pair of the (xr,
yr) entries in the circle template table, with their sum to
become the candidate circle center address (i, j)
corresponding to each location (AC(i, j)) of the
accumulator array to be incremented. That is,

 i = xc + xr

 j = yc + yr (2)

Before updating the accumulator array, the address (i, j)
must be filtered first by an Address Checker. The address
checker compares the incoming (i, j) address with the
predefined upper and lower bounds of the accumulator
array. In Figure 3, the Xw0, Xw1, Yh0, and Yh1 values are
preloaded into registers as our defined accumulator array
boundary. Only when the address (i, j) is in range: Xw0≦

i ≦Xw1 and Yh0≦ j ≦Yh1, the control signal CE will be
active. Then its corresponding position AC(i, j) of the
accumulator array will be incremented. This scheme
protects the accumulator memory from erroneous access. It
confines the detection of circles all centered within a
predefined window in the parameter space. Moreover, this
provision in effect saves unnecessary accumulator memory
access time and updating time as well.

After all the pair entries (xr, yr) in the circle template table
have each summed with (xc, yc) to generate the address
needed, the (x, y) position of the next edge point will be
read in. And the same process is repeated. When all edge
points in the image are processed, the peak detector then
extracts peaks from the accumulator array. The locations of
the extracted peaks indicate the circle center positions of
the detected circles.

3. PARALLEL PROCESSING FOR ADDRESS

GENERATION

In the operation of circle Hough transform, for each edge
point, there will be usually quite a few candidate circle
center addresses (i, j) to be generated. The calculation of
(i, j) by addition, though simple, would still become the
speed bottleneck. Taking the advantage of the uniform
operation in calculating (i, j), we may adopt a number of
adder-pairs (which are the element processors, called
processing elements or PEs in short) to share the load and
to largely facilitate the speed of processing (i.e., the
address generation).

For an incoming edge point P(x, y), the value of (xc, yc) can
be calculated through the Offset Adder. Then the remaining
tasks are to add this (xc, yc) value with every stored entry
(xr, yr) of the circle template table. Just like the data flow
computer, it is important to provide (or arrange) the
operands for each PE to proceed. Now the problem is how
to distribute the operands to the available PEs. As
mentioned before, the (xc, yc) values can be broadcast to all
PEs. In order to calculate the (i, j) address in parallel and to
balance the load of each PE, the stored entries of the circle
template table should be equally or near-equally divided

 4

into N partitions, one for each available PE.

The approach of partitioning the circle template table by
pages (multiple consecutive rows of fixed size, such as the
exponent of 2) looks feasible but may not work well for
circles of small sizes. In some cases, a few PEs may not
have any jobs to do. In order to minimize the difference on
the number of stored entries (xr, yr) in the partial table
module for each PE, we propose a simple address-based
interleaving scheme for partitioning the circle template
table. With N the number of PEs in use, the entry (xr, yr)
allocated to the k-th partial table module must match the
relationship:

 k = mod(yr, N) (3)

For convenience in our design, usually the number N is set
to an exponent of 2. Taking N = 8 as an example, we use
the lower-order 3 bits of the yr-value to determine the table
module number k for the pair-entry (xr, yr) to store. Figure
5 shows how the circle template is partitioned into partial
table modules for N=8.

circle template
module 0

circle template
module 1

y (xr, yr)

x

Figure 5. The partitioning of circle template table by

interleaving scheme

4. ACCUMULATOR MEMORY PARTITIONING

With multiple processors generating the address (i, j) in
parallel, it is important that the accumulator array (memory)
can be updated in parallel as well. The accumulator array
must be partitioned into multiple memory modules to
match the speed of PEs. Since memory updating takes
about the same cycle time for (i, j) address calculation, we
choose the number of memory modules to be N, which is
the same as the number of processors (PEs). Now the next
problem is how to partition the memory. And what is the
scheme that can avoid memory contention?

As the circle template table is divided into N modules by
interleaving scheme as mentioned, the N processors in our
design are each devoted to one different module of the
circle template. Thus if the accumulator memory is
partitioned in the same row-interleaving way, for any one
specific incoming edge point P(x, y), all the accumulator
address (i, j) generated from a specific processor would fall
into the one memory module. On the other hand, the
addresses generated from different processors would fall
into different memory modules, since the circle template
entries of different modules undergo the same displacement
in the address calculation.

The need of partitioning accumulator memory modules by
the same row-interleaving scheme is quite obvious. It
allows a one-to-one mapping between the address

generation PEs and the accumulator memory modules for
any edge point P(x, y). This scheme simplifies our design
and avoids memory contention.

With choice of ways to assign the memory module
numbering, here we let the h-th row of the accumulator
memory be allocated to the l-th memory module based on
the expression in (4).

 l = mod(h, N) (4)

where N is the number of memory modules (i.e. the
number of PEs as well).

Using Equation (3) for circle template modularization and
Equation (4) for accumulator memory, the circle centers
(i, j) calculated by each PE for an edge point P(x, y)
correspond to a specific memory module. Unless the row
address of the edge pixel is changed, the circle centers (i, j)
calculated by one PE are all mapped into the same memory
module. And this characteristic allows some convenience
of data flow arrangement in our design to be presented
latter.

Figure 6 presents a basic configuration of our design. It
uses a switching network for the connection between PEs
and accumulator memory modules.

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

sig
na

ls

(x, y)

sw
itc

hi
ng

ne
tw

or
k

(i, j)

where l=mod(j,N)

Offset
Adder

(xc, yc)

(xr, yr)

xoff yoff

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

(i, j/N)

Figure 6. The parallel processor configuration for circle

detection, with a switching network for the PE
to accumulator module connection

The table of each PE contains the values of the pairs (xr, yr)
associated with circle template module (i.e. the circle
template module k is preloaded into the table k). When the
edge point P(x, y) is read from edge map, the (x, y) values
are addressed offset by the Offset Adder. Then (xc, yc)
values are broadcast to all PEs. The values of each stored
entry (xr, yr) in each table and the (xc, yc) value are then
added together to become circle center address (i, j). The (i,
j) values from the same PE connects to each corresponding
accumulator memory module through the switching

 5

network. Before the memory module is updated, the (i, j)
value is checked first by address checker. If it is in the
range of our defined window (the range values is preloaded
into the checker), the checker sends the control signal CE
to the memory module to allow the increment of the
corresponding accumulator location AC(i, j).

It is possible to use the lower-order bits of row address of
each calculated (i, j) to control the switching network.
Taking N=16 as an example, we may use the lower-order 4
bits of the row-address (j) to determine which memory
module Mk this j-th row in the accumulator memory should
belong to. From the regularity of the switching behaviors,
we can even use only the y-address of the incoming edge
point to control the switching of the whole interconnection
network. The switching control thus can be quite simplified.
Nevertheless, besides propagation delay, the switching
network requires quite a few switches (channel-width x N2
switches). This induces the thought of alternative designs
to reduce the switching network, or even better, completely
eliminate the need of such a network.

5. PROCESSORS TO ACCUMULATOR MODULES

CONNECTION

In order to reduce the interconnection network between the
PEs and the accumulator memory modules, we explore the
various possibility in the (i, j) address generation scheme.
For each PE, if it can always generate the (i, j) addresses
which fall into the same accumulator memory module, then
the architecture of one-to-one fixed connection can be
employed and the switching network will be no longer
needed.

To achieve the above premise, each PE connecting to a
specific accumulator memory module must access to
appropriate circle template module in responding to the
input edge-point address (x, y). This means, each PE
must process one appropriate (xr, yr) module, in responding
to the current offset edge-point address (xc, yc), such that
the resultant (i, j) addresses will map to the one specific
accumulator module connected.

The one-to-one fixed connection scheme eliminates the
need of interconnection network and thus much reduces the
complexity of our parallel processor system. The key issue
resides on the problem of how to determine which (xr, yr)
circle template module should be selected and how to
access to the selected module for each PE. Three variations
of the processor design for solving this problem are to be
presented in the following.

5.1 Each Processor with Full Template Table

The parallel processor configuration with each processor
having a full circle template table is shown in Figure 7.
Without losing the generality, we assume that the k-th
accumulator memory module is connected to the k-th PE.
The table of each PE contains all the stored pair-entries
{(xr, yr)}, and the PE can access any pair (xr, yr) in the table.
For a given edge point P(x, y) addressed with offset, the
k-th PE may select to process the group of table entries

which belong to the same circle template module. Since we
desire to have all the generated (i, j) addresses falling into
the k-th accumulator module, we must have:

mod(j, N) = k (5)

From equation (2), we have j = yr + yc . Thus the above
equation can be rewritten as:

 mod((yr + yc), N) = k

 mod((yr + yc - k), N) = 0

 mod(yr, N) = mod(-yc + k, N) (6)

where yr is the y-value of the pair (xr, yr); yc is edge point’s
y-value with offset; k is the numbering of the accumulator
module for the k-th processor (0≦k≦N-1); and N is the
total number of processors. For N=16, we may use the
lower-order 4 bits in (-yc + k) to determine which group of
entries (xr, yr) should be selected. As a result of this
mechanism, all the (i, j) addresses generated by the k-th PE
will definitely have the lower-order 4 bits of the j-address
equal to k. In fact, only the remaining bits of the (i, j)
address is used to address the connected accumulator
memory module.

Since each PE must access to all the entries {(xr, yr)} of the
circle template, a large table memory is needed in each PE.
Based on the geometric symmetry of circle in Figure 5, we
may store only the right half of circle in the template table
and use 2’s complement to generate the left half (i.e. the
entry (xr, yr) generates (-xr, yr) through the 2’s complement
device). The entry (xr, yr) may generate (i, j) and (-xr, yr)
values at the same time, so no extra time is consumed. This
scheme reduces the table (memory) size to one half; it
saves hardware resources.

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

(x, y)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

sig
na

ls

Offset
Adder

(xc, yc)

(xr, yr/N) (i,j/N)

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

Figure 7. Parallel processor configuration of which each

processor has a full circle template table

 6

The above proposed design has two major drawbacks: (1)
Each PE needs to determine which entries (xr, yr) are to be
used to generate (i, j) for the connected accumulator
module. (2) The table’s memory requirement is somewhat
large, though the full table can be reduced to a half table.
The mechanism of using partial circle template (i.e., the
circle template module) in the table is thus proposed in the
following.

5.2 Each Processor with One Partial Table

The parallel processor configuration with each processor
having one partial table is shown in Figure 8. This new
configuration is almost the same as the one shown in
Figure 7 except its table size and the table circulation
capability.

M0

M1

M(N-1)

+1

+1

+1

Ml

+1

PE0

PE1

PEk

PE(N-1)

Table0

Table1

Tablek

Table
(N-1)

(x, y)

da
ta

 lo
ad

in
g

bu
s

da
ta

 lo
ad

in
g

co
nt

ro
l

si
gn

al
s

Offset
Adder

(xc, yc)

(xr, yr/N) (i,j/N)

checker

checker

checker

checker

Xw0,Xw1
Yh0,Yh1

Figure 8. Parallel processor configuration of which each

processor has one partial table

Initially, based on the relationship in Equation (2), the
contents of each circle template module are preloaded in
the partial table of each corresponding PE. On the other
hand, the edge points to be processed are sorted into N sets
according to the lower-order bits of their y-addresses. With
the pre-known offset value (xoff, yoff), we may let an edge
point (x, y) belong to the set with ID number =
mod(y+yoff ,N) = mod(yc ,N). For edge points of the same
set performed with the same circle template module (i.e.,
the same partial table), the resultant addresses will all map
to the same accumulator memory module. This is obvious,
as we can see from the equation:

mod((yr + yc), N) = mod((yr + y + yoff), N) = k

With the set number defined above, the sorted edge points
are input to our system sequentially and set by set in the
order of ascending set number. Every time before the first
edge point of the next set is processed, the circle template
module in each PE must be shifted to the partial table of
the next PE for matching the new-coming set of edge

points to produce addresses belonging to the same
accumulator memory module. The one-to-one fixed
connection between the processors and accumulator
memory modules thus can be maintained. Figure 9 shows
an example of which the contents of circle template
modules for the set of mod(yc , N) = 0 are shifted for the
next set with mod(yc , N) = 1.

This proposed design reduces the memory requirement
much by using the partial table scheme, but it needs the
shifting time for each new set of the edge points. To reduce
the processing time further, the approach of using
alternating partial tables can be adopted.

Table0
circle

template
module 0

Table1
circle

template
module 1

Table0
circle

template
module 7

Table1
circle

template
module 0

Table2
circle

template
module 2

Table2
circle

template
module 1

Table7
circle

template
module 7

Table7
circle

template
module 6

y=xxxxxx000 y=xxxxxx001
Figure 9. The circle template modules for the set

(mod(yc ,N) = 0) are shifted for the next set
(mod(yc ,N) = 1)

5.3 Each Processor with Two Partial Tables

In the alternating partial table scheme, two partial tables
are implemented for each processor. During the operation,
one of these two tables contains the entries of the current
circle template module, while the other is used to load the
circle template for the next incoming set of edge points.
The PE accesses the data from its two partial tables in an
alternating way. Thus using two partial tables can eliminate
the effect of the circle template data shifting time delay in
the previous design.

6. SYSTEM OPERATION

We use the proposed design to detect circles of specific
radius. At first, the pre-calculated circle template entries of
the specific radius are loaded into the table of each PE.
Then the address offset values are loaded into the Offset
Adder registers, while the check-bound (window limits)

 7

values are loaded into the address-checker registers for
confining the range of circle center (i, j) within our defined
domain. With all the preloaded data ready and the
accumulator memory been reset, the edge points in the
image are then sequentially read in to generate candidate
circle center locations for Hough transform.

After all the edge points are processed, the above-threshold
peaks in the accumulator array must be extracted. The peak
point detected in the accumulator array indicates the
detection of a circle, which is centered at that peak position
and of the specific radius. The count value of the peak
point represents the number of the edge points on that
circle. As to the hardware for detecting peaks from the
accumulator memory, there are different ways to design it.
In our study, an on-chip parallel hardware for such peak
detection has been reported in [16].

The proposed array processor is designed for detecting
circles of a specific size (radius). For circles of unknown
size or within a limited range of radius values, the
detection of circles of each possible radius can be
successively applied on our processor. On the other hand,
since the PE circuit in our processor design is quite simple
and the number of PEs is around hundred or fewer, it is
feasible to implement such array processor on one single
VLSI chip. Thus in case we want to facilitate the
processing speed, we may use multiple VLSI array
processor chips to construct a parallel circle detector
hardware for the 3-parameter ((i, j), r) space.

7. PERFORMANCE ANALYSIS

Our proposed parallel processor design is based on the
much-simplified operations for the circle detection Hough
transform. With the use of table look-up technique, the
calculation of the candidate circle center address is reduced
to the operation of addition only. The concurrent and
pipelined operations of specialized hardware components,
such as the offset adder, the address checker, and the
accumulator memory incrementor, do contribute to the
speed-up of our processor over the step-by-step operation
of the usual general-purpose processor CPU for several
folds.

On the other hand, the number of processors N contributes
to the speed-up factor in another dimension. Theoretically,
the upper limit of speed-up due to the N-processor parallel
processing is N times. With the increase of N, the
accompanying increase of processing speed depends on
whether the workload can be evenly distributed to all
processors. In our circle detection array processor design,
the workload is the number of circle template entries to be
accessed in each PE. The PE, which has the largest number
of circle template entries, would become the bottleneck of
the whole array processor. Under the row-interleaving
scheme, the top row and the bottom row of a circle usually
have the largest number of circle template entries. For large
radius and relatively small N, the workload is about evenly
distributed and the speed-up factor follows N, since there is
only a small percentage of variation among the workload
of all PEs. When N comes near the size of the radius, the
performance is improved only stepwise (i.e., when the

largest number of template entries is reduced).

8. CONCLUSION

In this paper, we present an idea of VLSI parallel design
for high-speed circle detection. Our proposed designs are
mainly composed of the template table(s), dual-adder
based processing elements (PEs), address checkers, and
accumulator memory modules. The r cosθ(xr) and r sinθ
(yr) values are stored in tables, thus the circle center
candidates (i, j) can be determined using only the addition
operations. The large number of dual-adders (PEs) are used
to calculate circle centers (i, j) in parallel, while the
accumulator array is partitioned into memory modules so
that it can be updated in parallel. In our design, we adopt
the row-interleaving scheme to modularize the circle
template for the partial table in each PE, and to allocate
one accumulator memory module for each PE. This
scheme achieves to distribute the (i, j) calculation evenly
among the multiple PEs, and avoid the contention on
accumulator array memory updating.

The four variations of our proposed VLSI parallel
processor design for circle detection are described and
compared. We find that the “alternating partial tables”
design may obtain the best execution time. While the
proposed designs can be extended for other geometrical
shapes detection. Since our designs have a high degree of
modularity, regularity and simplicity, they are highly
suitable for VLSI implementation. In practice, our
proposed array processor can be implemented on a single
VLSI chip and is highly cost-effective for parallel
circle-detection.

ACKNOWLEDGMENT

This research work was supported by the grant
NSC-85-2215-E-194-002 from the National Science
Council of the Republic of China.

REFERENCES

[1] P.V.C. Hough, “Method and means for recognizing
complex patterns,” U.S. Patent 3069654, 1962.

[2] R.O. Duda and P.E. Hart, “Use of Hough
transformation to detect lines and curves in pictures,”
Comm. ACM, Vol. 15, pp. 11-15, 1975.

[3] C. Kimme, D.H. Ballard, and J. Sklansky, “Finding
circles by an array of accumulators,” Comm. ACM,
Vol. 18, pp. 120-122, 1975.

[4] G. Gerig and F. Klein, “Fast contour identification
through efficient Hough Transform and simplified
interpretation strategy,” Proc. 8th Int. Joint Conf.
Pattern Recognition, pp. 495-500, 1986.

[5] J. Illingworth, and J. Kittler, “A survey of the Hough
transform,” Computer vision, Graphics and Image
Processing, Vol. 44, pp. 87-116, 1988.

[6] E.R. Davies, “A modified Hough scheme for general
circle location,” Pattern Recognition Letters, Vol. 7,
pp. 37-43, 1988.

 8

[7] H.K. Yuen, J. Princen, J. Illingworth, and J. Kittler,
“Comparative study of Hough Transform methods for
circle finding,” Image and Vision Computing, Vol. 8,
pp. 71-78, 1990.

[8] R. Chan and W.C. Siu, “New parallel Hough
transform for circles,” IEE Proceedings-E, Vol. 138,
pp. 335-344, 1991.

[9] R.K.K. Yip, P.K.S. Tam, and D.N.K. Leung,
“Modification of Hough transform for circles and
ellipses detection using a 2-dimensional array,”
Pattern Recognition, Vol. 25, pp. 1007-1022, 1992.

[10] P. Kierkegaard, “A method for detection of circular
arcs based on the Hough transform,” Machine Vision
and Applications, Vol. 5, pp. 249-263, 1992.

[11] C.T. Ho, and L.H. Chen, “A fast ellipse/circle
detector using geometric symmetry,” Pattern
Recognition, Vol. 28, pp. 117-124, 1995.

[12] N. Guil and E.L. Zapata, “Lower order circle and
ellipse Hough transform,” Pattern Recognition, Vol.
30, pp. 1729-1744, 1997.

[13] S. Kumar, N. Ranganathan, and D. Goldgof,
“Parallel algorithms for circle detection in images,”
Pattern Recognition, Vol. 27, pp. 1019-1028, 1994.

[14] B.K.P. Horn, “Circle generators for display devices,”
Computer Graphics and Image Processing, Vol. 5,
pp. 280-288, 1976.

[15] D. Hearn, and M.P. Baker, Computer Graphics, 2nd
Ed., Prentice-Hall, Chapter 3, 1994.

[16] M.Y. Chern and C.M. Dai, “Design of VLSI Parallel
Processors for Hough Transform-based Line
Detection”, Journal of The Chinese Institute of
Electrical Engineering, Vol.7, no.1, 2000, pp.41-52.

