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ABSTRACT 

Circle detection through the use of Hough transform is 
usually time-consuming. In this paper, an idea of VLSI 
processor design for Hough transform-based circle 
detection is presented. In our design, we use multiple 
processors to generate candidate circle center addresses in 
parallel, while in each processor only adder operation is 
needed to determine the accumulator address. To match the 
speed of accumulator memory updating with parallel 
address generation, the accumulator memory is partitioned 
into modules for parallel accumulator update.  With the 
number of memory modules chosen equal to the number of 
processors, an interleaving scheme for partitioning the 
circle template table and accumulator memory is proposed. 
It balances the load of processors and avoids accumulator 
memory contention. Variations of our design are presented 
and analyzed. 

1. INTRODUCTION 

Detection of round objects is needed in many cases of 
image analysis. It is especially important for industrial 
applications such as automatic inspection and assembly, as 
patterns of many components are round objects. Detecting 
circles in digitized image is frequently approached through 
the use of Hough transform [1-3], because the Hough 
transform (HT) is an effective technique for pattern 
recognition which has good performance even if applied 
over images with noise and occlusion [5]. 

Based on the principle of Hough transform, for any point 
P(x, y) on a circle in the image space, it may possibly 
belong to a circle of radius r with circle center located at (i, 
j) as given by 

  i = x + r cosθ 

  j = y + r sinθ     (1) 

whereθ, ranging from 0° to 360°, represents the direction 
of circle center with respect to the point P. In other words, 
a detected edge point of image coordinates P(x, y) can be 
mapped to a set of locations ((i, j), r) in the 3-dimensional 
parameter space, according to Equation (1). While the 
content of each such mapped location AC((i, j), r) in the 
accumulator array must be incremented by one for each 
edge point. The basic operation steps for circle-detection 
Hough transform can be summarized as follows: 

1. Quantize the parameter space between appropriate 
maximum and minimum values for i, j, and r, 
respectively; and form an accumulator array AC((i, j), 
r). 

2. Initialize the contents of the whole accumulator array 
AC to zero. 

3. For each edge point P(x, y) in the edge map (image), 
produced by edge detection, increment all locations of 
its possible circle centers in the accumulator array, i.e., 

AC((i, j), r) = AC((i, j), r) + 1 

for (i, j) and r satisfying  i = x + r cosθ, j = y + r sinθ, 
in the range of our definition. 

4. With certain threshold, extract local maxima from the 
accumulator array and report their locations (circle 
centers). 

Appropriate threshold value usually depends on the radius 
r and the essence of applications. While the count value of 
the detected location provides a measure of the number of 
edge points on the circle, the locations of local peaks 
indicate the parameters of the detected circles. 

The major drawback of the above conventional circle 
Hough transform (CCHT) is the need of large memory 
space and relatively long processing time. To reduce the 
accumulator memory requirement, a simple way is to 
perform the full Hough transform by a series of 
Hough-transforms, each dealing with a single value of 
radius [4]. By this scheme, only a two-dimensional 
accumulator plane is needed, yet the total processing time 
remains unreduced. 

To reduce the processing time, two approaches are 
generally adopted. One is to modify the circle Hough 
transform to simplify the process, the other is to apply 
parallel processing. Quite a few modified versions of 
Hough transform have been proposed [5-12]. Many of 
them use edge directions while some combines the use of 
other properties of the circle to reduce the complexity of 
Hough transform voting process. In general, these methods 
take advantage of certain properties of circles to reduce the 
processing time of the image. Nevertheless, with the more 
specific analysis on part of extracted image features to 
reduce the algorithm’s complexity, it becomes more 
difficult to perform parallel processing further on these 
algorithms. And the chance for further improvement of the 
processing speed is usually limited. 
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In our attempt to reduce the processing time, the use of 
VLSI parallel processors is considered. The success of this 
approach depends on the parallelism of the underlying 
algorithm, the homogeneity of the data flow, and the 
simplicity of the processor operations and system I/O.  As 
noted in [8], the approach of using edge directions to guide 
the voting in accumulator plane(s) facilitates the serial 
performance but may not lead to the homogeneous 
operations for the SIMD parallel processing. 

Kumar et al. [13] reported a more recent work on parallel 
circle detection. Three parallel algorithms on an n x n 
mesh-connected processor array were proposed (where n x 
n is the image size). The first algorithm is for CCHT; the 
second one performs circle HT with the guidance of 
gradient directions. Yet the performance of these two 
designs is still worse than the best (theoretical) time 
complexity for an order of magnitude. The third one, based 
on the tracing of circle edge points, runs with a time 
complexity of O(n2) and is the best of the three. Although 
the third design is efficient, the implementation of the large 
n x n image-sized processor array is very costly unless the 
circuit of the element processor can be much simplified. 
Further research on their design is still needed. 

So far, few cost-effective parallel architecture (array 
processor) designs have been proposed for circle detection. 
To explore the possibility of designing cost-effective VLSI 
parallel processor, we constrain this research on parallel 
processor design using only dozens to few hundred 
processor elements. For the array processor we propose 
here, it does not make use of gradient direction. With the 
proposed partitioned memory scheme, the array processor 
is highly cost-effective for Hough transform-based circle 
detection and can be implemented on a single VLSI chip. 

2. BASIC HARDWARE CONFIGURATIONS 

For some applications, the radius of circles that we want to 
detect is known in advance. So we can focus on the 
fixed-radius circle detection. If we do not have such priori 
knowledge, we may still work on each possible radius one 
at a time. With fixed radius in Equation (1), we can 
pre-calculate the r cosθ (latter denoted xr) and  r sinθ 
(denoted yr) values for all angles θ  and store them in a 
table for later use to save computation time. When the 
point P(x, y) in the image is an edge point, its candidate 
circle center locations (i, j) can be calculated by adding the 
(x, y) coordinates with each table-stored (xr, yr) value 
respectively. This table look-up scheme is efficient, 
because it uses only the integer addition to determine the 
circle center (i, j). To generate the circle points (xr, yr) in 
the table (circle template), knowing the fixed radius, we 
may use the midpoint circle scan conversion algorithm 
[14,15]. There are three coordinates systems involved. The 
location of the edge pixel is expressed in the image 
coordinates; the circle-template coordinates expresses the 
address of a circle point relative to its center; and the 
accumulator-array coordinates expresses the location of 
circle center in the accumulator array.  The notation of 
these three systems is shown in Figure 1. 
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Figure 1.  The three involved coordinate systems 

Without losing the generality, we assume the image size of 
512x512. Then each coordinate pair (xr, yr) of the circle 
template points stored in the table is chosen to be of 9 bits 
each (one bit for sign and 8 bits corresponding to the 
maximal radius size of 255). 

According to Equation (1), the coordinates of circle center 
(i, j) may be negative or positive, but the accumulator array 
(memory) is usually accessed with positive addressing. To 
remedy this problem, we propose a simple address offset 
scheme in the hardware implementation. The 
address-offset scheme is also convenient to confine the 
circle detection to the range of the image space we are 
interested in. The offset values (xoff, yoff) are determined by 
the position of upper left corner of the accumulator array 
with respect to the origin of the image coordinates system. 
Figure 2 shows the relationship between the offset values 
(xoff, yoff) and the position of accumulator array with 
respect to the origin of the image space. 

(x0, y0)

accumulator array

x

y

(0, 0)

image
(512x512)

 
Figure 2. The relationship between offset values (xoff = -x0, 

yoff = -y0) and the upper left corner (x0, y0) of the 
accumulator array with respect to the origin of 
the image space 

 
With the added address offset, the equations for calculating 
the accumulator address (i, j) must be modified as: 

 i = ( x + r cosθ) + xoff = (x + xr) + xoff 

 j = ( y + r sinθ) + yoff = (y + yr) + yoff 

And the basic hardware implementation with added 
address offset for calculating the (i, j) address is depicted in 
Figure 3. Note that in the implementation, we add the (xoff, 
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yoff) value first, because this sum can be shared by the 
parallel processors. Adding this offset first, we need only 

one adder pair to get the sum for all processors in the 
system. 
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Figure 3.  Basic processor hardware configuration for circle detection 

The table in Figure 3 contains the address pairs (xr, yr) of 
the points in the circle template, and (x, y) denotes the 
position of edge point in the image. By adding the 
edge-point address (x, y) and the accumulator offset 
quantity (xoff, yoff), we have the offset edge-point address 
(xc, yc). 

   xc = x + xoff 

   yc = y + yoff 

The details of the Offset Adder are shown in Figure 4. 
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Figure 4.  The offset adder circuit 

The values of (xc, yc) are then added to each pair of the (xr, 
yr) entries in the circle template table, with their sum to 
become the candidate circle center address (i, j) 
corresponding to each location (AC(i, j)) of the 
accumulator array to be incremented. That is, 

   i = xc + xr 

   j = yc + yr    (2) 

Before updating the accumulator array, the address (i, j) 
must be filtered first by an Address Checker. The address 
checker compares the incoming (i, j) address with the 
predefined upper and lower bounds of the accumulator 
array. In Figure 3, the Xw0, Xw1, Yh0, and Yh1 values are 
preloaded into registers as our defined accumulator array 
boundary.  Only when the address (i, j) is in range: Xw0≦ 

i ≦Xw1 and Yh0≦ j ≦Yh1, the control signal CE will be 
active. Then its corresponding position AC(i, j) of the 
accumulator array will be incremented. This scheme 
protects the accumulator memory from erroneous access. It 
confines the detection of circles all centered within a 
predefined window in the parameter space. Moreover, this 
provision in effect saves unnecessary accumulator memory 
access time and updating time as well. 

After all the pair entries (xr, yr) in the circle template table 
have each summed with (xc, yc) to generate the address 
needed, the (x, y) position of the next edge point will be 
read in. And the same process is repeated. When all edge 
points in the image are processed, the peak detector then 
extracts peaks from the accumulator array. The locations of 
the extracted peaks indicate the circle center positions of 
the detected circles. 

3.  PARALLEL PROCESSING FOR ADDRESS 

GENERATION 

In the operation of circle Hough transform, for each edge 
point, there will be usually quite a few candidate circle 
center addresses (i, j) to be generated.  The calculation of 
(i, j) by addition, though simple, would still become the 
speed bottleneck.  Taking the advantage of the uniform 
operation in calculating (i, j), we may adopt a number of 
adder-pairs (which are the element processors, called 
processing elements or PEs in short) to share the load and 
to largely facilitate the speed of processing (i.e., the 
address generation). 

For an incoming edge point P(x, y), the value of (xc, yc) can 
be calculated through the Offset Adder. Then the remaining 
tasks are to add this (xc, yc) value with every stored entry 
(xr, yr) of the circle template table. Just like the data flow 
computer, it is important to provide (or arrange) the 
operands for each PE to proceed. Now the problem is how 
to distribute the operands to the available PEs. As 
mentioned before, the (xc, yc) values can be broadcast to all 
PEs. In order to calculate the (i, j) address in parallel and to 
balance the load of each PE, the stored entries of the circle 
template table should be equally or near-equally divided 
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into N partitions, one for each available PE. 

The approach of partitioning the circle template table by 
pages (multiple consecutive rows of fixed size, such as the 
exponent of 2) looks feasible but may not work well for 
circles of small sizes. In some cases, a few PEs may not 
have any jobs to do. In order to minimize the difference on 
the number of stored entries (xr, yr) in the partial table 
module for each PE, we propose a simple address-based 
interleaving scheme for partitioning the circle template 
table. With N the number of PEs in use, the entry (xr, yr) 
allocated to the k-th partial table module must match the 
relationship: 

 k = mod(yr, N)    (3) 

For convenience in our design, usually the number N is set 
to an exponent of 2. Taking N = 8 as an example, we use 
the lower-order 3 bits of the yr-value to determine the table 
module number k for the pair-entry (xr, yr) to store. Figure 
5 shows how the circle template is partitioned into partial 
table modules for N=8. 

circle template
module 0

circle template
module 1

y (xr, yr)

x

 
Figure 5. The partitioning of circle template table by 

interleaving scheme 
 

4. ACCUMULATOR MEMORY PARTITIONING 

With multiple processors generating the address (i, j) in 
parallel, it is important that the accumulator array (memory) 
can be updated in parallel as well. The accumulator array 
must be partitioned into multiple memory modules to 
match the speed of PEs. Since memory updating takes 
about the same cycle time for (i, j) address calculation, we 
choose the number of memory modules to be N, which is 
the same as the number of processors (PEs). Now the next 
problem is how to partition the memory. And what is the 
scheme that can avoid memory contention? 

As the circle template table is divided into N modules by 
interleaving scheme as mentioned, the N processors in our 
design are each devoted to one different module of the 
circle template. Thus if the accumulator memory is 
partitioned in the same row-interleaving way, for any one 
specific incoming edge point P(x, y), all the accumulator 
address (i, j) generated from a specific processor would fall 
into the one memory module. On the other hand, the 
addresses generated from different processors would fall 
into different memory modules, since the circle template 
entries of different modules undergo the same displacement 
in the address calculation. 

The need of partitioning accumulator memory modules by 
the same row-interleaving scheme is quite obvious. It 
allows a one-to-one mapping between the address 

generation PEs and the accumulator memory modules for 
any edge point P(x, y). This scheme simplifies our design 
and avoids memory contention. 

With choice of ways to assign the memory module 
numbering, here we let the h-th row of the accumulator 
memory be allocated to the l-th memory module based on 
the expression in (4). 

  l = mod(h, N)    (4) 

where N is the number of memory modules (i.e. the 
number of PEs as well). 

Using Equation (3) for circle template modularization and 
Equation (4) for accumulator memory,  the circle centers 
(i, j) calculated by each PE for an edge point P(x, y) 
correspond to a specific memory module. Unless the row 
address of the edge pixel is changed, the circle centers (i, j) 
calculated by one PE are all mapped into the same memory 
module.  And this characteristic allows some convenience 
of data flow arrangement in our design to be presented 
latter. 

Figure 6 presents a basic configuration of our design. It 
uses a switching network for the connection between PEs 
and accumulator memory modules. 
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Figure 6.  The parallel processor configuration for circle 

detection, with a switching network for the PE 
to accumulator module connection 

 
The table of each PE contains the values of the pairs (xr, yr) 
associated with circle template module (i.e. the circle 
template module k is preloaded into the table k). When the 
edge point P(x, y) is read from edge map, the (x, y) values 
are addressed offset by the Offset Adder. Then (xc, yc) 
values are broadcast to all PEs. The values of each stored 
entry (xr, yr) in each table and the (xc, yc) value are then 
added together to become circle center address (i, j). The (i, 
j) values from the same PE connects to each corresponding 
accumulator memory module through the switching 
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network. Before the memory module is updated, the (i, j) 
value is checked first by address checker. If it is in the 
range of our defined window (the range values is preloaded 
into the checker), the checker sends the control signal CE 
to the memory module to allow the increment of the 
corresponding accumulator location AC(i, j). 

It is possible to use the lower-order bits of row address of 
each calculated  (i, j) to control the switching network. 
Taking N=16 as an example, we may use the lower-order 4 
bits of the row-address (j) to determine which memory 
module Mk this j-th row in the accumulator memory should 
belong to. From the regularity of the switching behaviors, 
we can even use only the y-address of the incoming edge 
point to control the switching of the whole interconnection 
network. The switching control thus can be quite simplified. 
Nevertheless, besides propagation delay, the switching 
network requires quite a few switches (channel-width x N2 
switches). This induces the thought of alternative designs 
to reduce the switching network, or even better, completely 
eliminate the need of such a network. 

5.  PROCESSORS TO ACCUMULATOR MODULES 

CONNECTION 

In order to reduce the interconnection network between the 
PEs and the accumulator memory modules, we explore the 
various possibility in the (i, j) address generation scheme. 
For each PE, if it can always generate the (i, j) addresses 
which fall into the same accumulator memory module, then 
the architecture of one-to-one fixed connection can be 
employed and the switching network will be no longer 
needed. 

To achieve the above premise, each PE connecting to a 
specific accumulator memory module must access to 
appropriate circle template module in responding to the 
input edge-point address (x, y).  This means, each PE 
must process one appropriate (xr, yr) module, in responding 
to the current offset edge-point address (xc, yc), such that 
the resultant (i, j) addresses will map to the one specific 
accumulator module connected. 

The one-to-one fixed connection scheme eliminates the 
need of interconnection network and thus much reduces the 
complexity of our parallel processor system. The key issue 
resides on the problem of how to determine which (xr, yr) 
circle template module should be selected and how to 
access to the selected module for each PE. Three variations 
of the processor design for solving this problem are to be 
presented in the following. 

5.1 Each Processor with Full Template Table 

The parallel processor configuration with each processor 
having a full circle template table is shown in Figure 7. 
Without losing the generality, we assume that the k-th 
accumulator memory module is connected to the k-th PE. 
The table of each PE contains all the stored pair-entries 
{(xr, yr)}, and the PE can access any pair (xr, yr) in the table. 
For a given edge point P(x, y) addressed with offset, the 
k-th PE may select to process the group of table entries 

which belong to the same circle template module. Since we 
desire to have all the generated (i, j) addresses falling into 
the k-th accumulator module, we must have: 

mod(j, N) = k    (5) 

From equation (2), we have j = yr + yc . Thus the above 
equation can be rewritten as: 

  mod((yr + yc), N) = k 

  mod((yr + yc - k), N) = 0 

  mod(yr, N) = mod(-yc + k, N)   (6) 

where yr is the y-value of the pair (xr, yr); yc is edge point’s 
y-value with offset; k is the numbering of the accumulator 
module for the k-th processor (0≦k≦N-1); and N is the 
total number of processors. For N=16, we may use the 
lower-order 4 bits in (-yc + k) to determine which group of 
entries (xr, yr) should be selected. As a result of this 
mechanism, all the (i, j) addresses generated by the k-th PE 
will definitely have the lower-order 4 bits of the j-address 
equal to k.  In fact,  only the remaining bits of the (i, j) 
address is used to address the connected accumulator 
memory module. 

Since each PE must access to all the entries {(xr, yr)} of the 
circle template, a large table memory is needed in each PE. 
Based on the geometric symmetry of circle in Figure 5, we 
may store only the right half of circle in the template table 
and use 2’s complement to generate the left half (i.e. the 
entry (xr, yr) generates (-xr, yr) through the 2’s complement 
device). The entry (xr, yr) may generate (i, j) and (-xr, yr) 
values at the same time, so no extra time is consumed. This 
scheme reduces the table (memory) size to one half; it 
saves hardware resources. 
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Figure 7.  Parallel processor configuration of which each 

processor has a full circle template table 
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The above proposed design has two major drawbacks: (1) 
Each PE needs to determine which entries (xr, yr) are to be 
used to generate (i, j) for the connected accumulator 
module. (2) The table’s memory requirement is somewhat 
large, though the full table can be reduced to a half table. 
The mechanism of using partial circle template (i.e., the 
circle template module) in the table is thus proposed in the 
following. 

5.2 Each Processor with One Partial Table 

The parallel processor configuration with each processor 
having one partial table is shown in Figure 8. This new 
configuration is almost the same as the one shown in 
Figure 7 except its table size and the table circulation 
capability. 
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Figure 8.  Parallel processor configuration of which each 

processor has one partial table 
 
Initially, based on the relationship in Equation (2), the 
contents of each circle template module are preloaded in 
the partial table of each corresponding PE. On the other 
hand, the edge points to be processed are sorted into N sets 
according to the lower-order bits of their y-addresses. With 
the pre-known offset value (xoff, yoff), we may let an edge 
point (x, y) belong to the set with ID number = 
mod(y+yoff ,N) = mod(yc ,N). For edge points of the same 
set performed with the same circle template module (i.e., 
the same partial table), the resultant addresses will all map 
to the same accumulator memory module. This is obvious, 
as we can see from the equation: 

mod((yr + yc), N) = mod((yr + y + yoff), N) = k 

With the set number defined above, the sorted edge points 
are input to our system sequentially and set by set in the 
order of ascending set number. Every time before the first 
edge point of the next set is processed, the circle template 
module in each PE must be shifted to the partial table of 
the next PE for matching the new-coming set of edge 

points to produce addresses belonging to the same 
accumulator memory module. The one-to-one fixed 
connection between the processors and accumulator 
memory modules thus can be maintained. Figure 9 shows 
an example of which the contents of circle template 
modules for the set of mod(yc , N) = 0 are shifted for the 
next set with mod(yc , N) = 1. 

This proposed design reduces the memory requirement 
much by using the partial table scheme, but it needs the 
shifting time for each new set of the edge points. To reduce 
the processing time further, the approach of using 
alternating partial tables can be adopted. 
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5.3 Each Processor with Two Partial Tables 

In the alternating partial table scheme, two partial tables 
are implemented for each processor. During the operation, 
one of these two tables contains the entries of the current 
circle template module, while the other is used to load the 
circle template for the next incoming set of edge points. 
The PE accesses the data from its two partial tables in an 
alternating way. Thus using two partial tables can eliminate 
the effect of the circle template data shifting time delay in 
the previous design. 

6.  SYSTEM OPERATION 

We use the proposed design to detect circles of specific 
radius. At first, the pre-calculated circle template entries of 
the specific radius are loaded into the table of each PE. 
Then the address offset values are loaded into the Offset 
Adder registers, while the check-bound (window limits) 
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values are loaded into the address-checker registers for 
confining the range of circle center (i, j) within our defined 
domain. With all the preloaded data ready and the 
accumulator memory been reset, the edge points in the 
image are then sequentially read in to generate candidate 
circle center locations for Hough transform. 

After all the edge points are processed, the above-threshold 
peaks in the accumulator array must be extracted. The peak 
point detected in the accumulator array indicates the 
detection of a circle, which is centered at that peak position 
and of the specific radius. The count value of the peak 
point represents the number of the edge points on that 
circle. As to the hardware for detecting peaks from the 
accumulator memory, there are different ways to design it. 
In our study, an on-chip parallel hardware for such peak 
detection has been reported in [16]. 

The proposed array processor is designed for detecting 
circles of a specific size (radius). For circles of unknown 
size or within a limited range of radius values, the 
detection of circles of each possible radius can be 
successively applied on our processor. On the other hand, 
since the PE circuit in our processor design is quite simple 
and the number of PEs is around hundred or fewer, it is 
feasible to implement such array processor on one single 
VLSI chip. Thus in case we want to facilitate the 
processing speed, we may use multiple VLSI array 
processor chips to construct a parallel circle detector 
hardware for the 3-parameter ((i, j), r) space. 

7. PERFORMANCE ANALYSIS 

Our proposed parallel processor design is based on the 
much-simplified operations for the circle detection Hough 
transform. With the use of table look-up technique, the 
calculation of the candidate circle center address is reduced 
to the operation of addition only. The concurrent and 
pipelined operations of specialized hardware components, 
such as the offset adder, the address checker, and the 
accumulator memory incrementor, do contribute to the 
speed-up of our processor over the step-by-step operation 
of the usual general-purpose processor CPU for several 
folds. 

On the other hand, the number of processors N contributes 
to the speed-up factor in another dimension. Theoretically, 
the upper limit of speed-up due to the N-processor parallel 
processing is N times. With the increase of N, the 
accompanying increase of processing speed depends on 
whether the workload can be evenly distributed to all 
processors. In our circle detection array processor design, 
the workload is the number of circle template entries to be 
accessed in each PE. The PE, which has the largest number 
of circle template entries, would become the bottleneck of 
the whole array processor. Under the row-interleaving 
scheme, the top row and the bottom row of a circle usually 
have the largest number of circle template entries. For large 
radius and relatively small N, the workload is about evenly 
distributed and the speed-up factor follows N, since there is 
only a small percentage of variation among the workload 
of all PEs. When N comes near the size of the radius, the 
performance is improved only stepwise (i.e., when the 

largest number of template entries is reduced). 

8. CONCLUSION 

In this paper, we present an idea of VLSI parallel design 
for high-speed circle detection. Our proposed designs are 
mainly composed of the template table(s), dual-adder 
based processing elements (PEs), address checkers, and 
accumulator memory modules. The r cosθ(xr) and r sinθ 
(yr) values are stored in tables, thus the circle center 
candidates (i, j) can be determined using only the addition 
operations. The large number of dual-adders (PEs) are used 
to calculate circle centers (i, j) in parallel, while the 
accumulator array is partitioned into memory modules so 
that it can be updated in parallel.  In our design, we adopt 
the row-interleaving scheme to modularize the circle 
template for the partial table in each PE, and to allocate 
one accumulator memory module for each PE. This 
scheme achieves to distribute the (i, j) calculation evenly 
among the multiple PEs, and avoid the contention on 
accumulator array memory updating. 

The four variations of our proposed VLSI parallel 
processor design for circle detection are described and 
compared. We find that the “alternating partial tables” 
design may obtain the best execution time. While the 
proposed designs can be extended for other geometrical 
shapes detection. Since our designs have a high degree of 
modularity, regularity and simplicity, they are highly 
suitable for VLSI implementation. In practice, our 
proposed array processor can be implemented on a single 
VLSI chip and is highly cost-effective for parallel 
circle-detection. 
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