th#E RE/\+/\FREETERER

—{EE 2= MBI 5 R st

NA-trees: A Nine-Areas Tree for Efficient Data Access in
Spatial Database Systems

wEE, BFg!
Ye-In Chang', and Cheng-Huang Liao?

TEATEER

iDept. of Computer Science and Engineering

ERBEER
'Dept. of Applied Mathematics

ERVCHIIPN- -
National Sun Yat-Sen University
Kaohsiung, Taiwan
Republic of China
{E-mail: changyi@cse.nsysu.edu.tw}

T

ERBRLE, RS EE—EAL AR
WER M IERIT G N, I ERTGEH
AR R M A R E e — RS E R Y
1, TIFTEREI AR, FER9 B A S AV BRI
TS — G RET, B R B SRR RS R A R
BB 1P 2%, P L\ 20 b LT B 8
BENL, FEERR T, —EHERSE,
B (VA-tree) ED%%T%?&%@@%WE
1, HRFURE RS, EHHRMAOA
TTES LA R 18 (R-trees). _QR*' -trees) MR 1%
= (R-files) BRBAHIEERME,

(PR ERRASER, ¢, GEEH, R
&, R, RV, ZMES)

Abstract

In this paper, we consider the problem of re-
trieving spatial data via exact maich queries from
a large, dynamic index, where an exact match
query means to find the specific data object in a
spatial database. By large, it means that most of
the index must be stored on secondary memory.
By dynamic, it means that insertions and dele-
tions are intermized with queries, so that the index
cannot be built beforehand. A new data structure,
a Nine-Areas tree (denoted as a NA-tree), is pre-
sented as a solution to this problem. From our
simulation study, we show that our NA-trees has
lower search cost (in terms of number of visited
nodes) than R-trees, Rt -trees, and R-files.

(Key Words: ezact match queries, G-tree, range
quertes, R-files, R-trees, Rt -trees, spatial index.)

1This research was supported by Natiomal Science
Council of the Republic of China, NCS-88-0408-E-110-004

1 Introduction

‘An index based on objects’ spatial location is
desirable, but classical one-dimensional database
indexing structures are not appropriate to multi-
dimensional spatial searching. Structures based
on exact matching of values, such as hash ta-
bles, are not useful because a range search is re-
quired. Structures using one-dimensional order-
ing of key values, such as B-tree and ISAM in-
dexes, do not work because the search space is
multi-dimensional [9]. None of these solutions is,
however, efficient, and therefore specialized struc-
tures are required to handle multidimensional
queries [12]. Several hierarchical data structures
have been proposed for handling multidimensional
data. The k-d tree [1], grid method [2], K-D-B-
tree [16], BD tree [5], grid file [4], hB-tree [13], MD
tree [14], and G-tree [12] have been developed for
handling point data. For region (non-zero size)
data, the R-tree [9], R*-tree [17], R-file [10], and
GBD tree [15] have been developed. The quadtree
[7] have been extended to manage points, lines, re-
gions, and volume data.

In this paper, we consider the problem of re-
trieving multikey records via exact match queries.
By large, it means that most of the index must"
be stored on secondary memory. By dynamic, it
means that insertions and deletions are intermixed
with queries, so that the index cannot be built
beforehand [16]. A new data structure, a Nine-
Areas tree (denoted as NA-tree), is presented as
a solution to this problem. In this paper, we ex-
perience with the implementation of the NA-tree
and present the results of an experimental perfor-
mance comparison with three related structures:
R-trees [9], R*-trees [17], and R-files [10]. In par-
ticular, we aim at (1) efficient processing of ex-

A-108

act match queries in large spatial data distributed
uniformly, and (2) maintaining a reasonable lower
bound on average disk utilization. From our simu-
lation study, we show that our NA-trees has lower
search cost (in terms of number of visited nodes)
than R-trees, R*-trees and R-files.

2 NA-Trees (Nine-Areas Trees)

In this Section, we first describe the bucket
numbering scheme. Next, we describe the details
of our structure. Then, we give algorithms for
performing insertions and deletions operations, re-
spectively. Finally, we present some difficult cases
that some other tree structures are hard to handle,
but the NA-tree can solve them easily.

2.1 The Bucket Numbering Scheme

A spatial object, e.g., a polygon, can take an
arbitrary shape. A common way to characterize
an object is by specifying its bounding rectangle,
which is oriented parallel to the coordinate axes,
say X and Y. Thus an object O is hereafter rep-
resented by its four bounding coordinates, Xi, X,
(ie. the leftmost and rightmost X coordinates,
respectively), Y5, and Y; (ie. the bottommost
and topmost Y coordinates, respectively). For
simplicity, we assume that no two objects have
identical X or Y bounding coordinates [19]. In
our approach, we use two points, L(X;,Y;) and
U(X,,Y;), to represent a spatial object, where L
is the lower left coordinate and U is the upper
right coordinate of the object.

A bucket is numbered as a binary string of 0’s
and 1’s, the so-called DZ expression. The rela-
tionship between the space decomiposition process
and the DZ expression is as follows.

1. Symbols ‘0’ and ‘1’ in a DZ expression cor-
respond to lower and upper half regions, re-
spectively, for each binary division along the
y-axis. When a space is divided on the z-axis,
‘0’ indicates the left half, and ‘1’ indicates
right half sub-area.

2. The leftmost bit corresponds to the first bi-
nary division, and the n’th bit corresponds to
the n’th binary division of the area made by
the (n-1)th division.

Figure 1 shows an example of these regions, and
the DZ expression of the dark area is ‘0010*’, be-
cause the area corresponds to “the lower half of
the right half of the lower half of the left half” of
the entire space [15]. Here, we convert the bucket
numbers from binary to decimal form. The legend
alongside in Figure 1 shows the equivalent binary
representations of the bucket numbers appearing
on the grid itself in a decimal form.

Based on this bucket-numbering scheme, we
observe that the uptrend of bucket number is in-
creased from southwest to northeast, as shown in

Y

0101*

0111%

1101*

1111%*

0100*

0110*

1100*

1110*

0001*

0011*
7

1001*

1011*

0000*

1000*

1010*

0 - 0000*
1-0001*
2 - 0010%*
3-0011*
4 - 0100%*
5-0101%*
G- 0110%*
7-0111%
8 - 1000*
9 - 1001*
10 - 1010%*
11 -1011%*
12 - 1100%*
13 - 1101*
14 -1110%
15-1111*

0010%*

X

Figure 1: Space decomposition and DZ expression

Figure 2. Here, Figure 2-(b) shows the direction
of the increasing order of bucket numbers in Fig-
ure 2-(a), which is called a N-order Peano curve
[11]. This observation has motivated us to de-
sign a new data structure for spatial indexing.
First, we use two points, L(X;, ;) and U (X, Y3),
to record the region of a spatial object. Next,
we calculate the corresponding bucket number of
L(X;,Ys) and U(X,,Y;), respectively. The result-
ing pair of bucket number is noted as spatial num-
ber. That is, we can use the spatial number to
record an object. For convenience, we use O(l,u)
to denote the spatial number, where [is the bucket
number of L(X;,Y,) and u is the bucket number
of U(X,,Y;). For example, in Figure 3, the spa-
tial number of object O is (12, 26). Moreover, we
use a variable, Maz_bucket, to record the max-
imal bucket number (in a decimal form) of this
area. In Figure 1, the maximal bucket number is

15 (1111). That is, Maz bucket = 15.

2.2 Data Structure

Generally, tree structures handling multidi-
mensional data are constructed with two types
of nodes: internal nodes and leaf nodes. In our
method, an internal node can have nine children,
three children, or even just one. Since a leaf has
no children, leaves are terminal nodes. Data can
only be stored in a leaf, not in an internal node
(unless it has only one child).

A NA-tree is a structure based on data clas-
sification by the bucket numbers. First, we de-
compose the whole spatial region into four re-
gions. We let region I be the bucket numbers
between 0 to 2(Maz_bucket+1)—1, region II be
the bucket numbers between 1(Maz bucket + 1)
to 1(Maz_bucket + 1) — 1, region III be the
bucket numbers between 2(Maz_bucket + 1) to
3(Maz_bucket + 1) — 1, and region IV be the
bucket numbers between 2 (Maz_buckei + 1) to
Maz_bucket, as shown in Figure 4-(a).

Based on this decomposition, we find that
when an object is lying on the space, only nine

A-109

: : |
1 1]

5 17 13 115
it r=-~"~"r-~"="-rr~~--
[} [} I
1] .]

4 16 12 |14
r—=-- F--"r====F=-===-
]] 1
1 1 t

1 13 19 11
r—=-- r~==" === =-==-
1] t
H i |

0 12 18 10
(a)
(b)

Figure 2: The bucket-numbering scheme: (a)
bucket numbering; (b) N-order Peano Curve.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 S 57 59

16 18 24 48 50 56 58
5 7 13 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

Figure 3: An example of the bucket numbering
scheme, O(1, u) = (12, 26)

Region 11 Region IV

Region I Region II1

(a)

Root

it Bl Oncild sheld Shid Ghotdd Thehd Sthohld Sbehdd

(b

Figure 4: The basic structure of a NA-tree: (a)
four regions; (b) nine cases.

cases are possible (as shown i Figure 4-(b)).
Thus, an index (internal) node p in a NA-tree may
have the following nine children:

(1) for an object O(1,u), I and u € region I, O
is the first child of node p.

(2) for an object O(l,u), I and u € region II,
O is the second child of node p.

(3) for an object O(l,u), I and u € region III,
O is the third child of node p.

(4) for an object O(l,u), ! and u € region IV,
O is the fourth child of node p. -

(5) for an object O(l,u), | € region I and u €
region II, O is the fifth child of node p.

(6) for an object O(l,u), | € region I and u €
region III, O is the sixth child of node p.

(7) for an object O(l,u), | € region III and u
€ region IV, O is the seventh child of node p.

(8) for an object O(1,u), | € region I and u € -
region IV, O is the eighth child of node p.

(9) for an object O(l,u), | € region I and u €
region IV, O is the ninth child of node p.

For the above nine children, they have three
kinds of data structures. The data structures of
1st_child, 2nd_child, 3rd_child, and 4th_child are
as follows:
struct nine_children
{ struct nine_children *1st_child;
struct nine_children *2nd_child;
struct nine_children *3rd_child;

A-110

struct nine_children *4th_child;

struct three_children *5th_child;
struct three_children *6th_child;
struct three_children *7th_child;
struct three_children *8th_child;
struct one_list *9¢h_child;}

The data structures of 5th_child and 7th_child
are as follows: '
struct three_children
{ struct three_children *5th_child;
struct three_children *7th_child;
struct one_list *9th_child;} .

The data structures of 6th_child and 8th_child
are as follows:
struct three_children
{ struct three_children *6th_child;
struct three_children *8th_child;
struct one.list *9th_child; }

The data structure of 9th_child is as follows:
struct one_list

{ data.object [1..bucket_capacity];

struct one_list *next_ptr;}

Leaf nodes in a NA-tree contain index object
entries of the form
(entry_number, data[l..bucket_capacity)),
where entry_number refers to the number of ob-
jects in this leaf node, data[bucket_capacity] is an
array to store object data, and bucket_capacity de-
notes the maximum number of entries which could
be stored in the leaf node. Figure 5 shows an ex-
ample of a NA-tree structure. Note that we do not
split the spatial space; we just classify the spatial
data objects by some rules.
2.3 Algorithms

This section describes our algorithms for data
insertion, deletion and answering exact match
queries. The Insertion algorithm is shown in Fig-
ure 6. Function Assign and procedure Split which
are used in the Insertion algorithm are shown in’
Figures 7 and 8, respectively. Basically, inserting
a new rectangle in a NA-tree is done by search-
ing the tree according to data classification and
adding the rectangle in the leaf node. Finally, the
overflowing node is split and the split may propa-
gated to the children node, if it occurs.

In the Insertion algorithm as shown in Figure
6, the first step in inserting an object, O(L,U),
is to compute its spatial number. The function
Assign is called with the coordinates of the point
(71, T2) and the number of bits b, where we as-
sume that the number of bits in the binary form of
bucket number is b. The function Assign returns
the bucket number, | and u, of points L(X;,Y3)
and U(X,,Y;), respectively. Therefore, the spa-
tial number of this object is (I,u). The Assign
function shown in Figure 7 is used to compute the

D

D7

D

il
H!T!ﬁ
2]

B

D

\Q
H
w

(@)

Roo

DI/ |(D2)/ | D3|/ || D4|/ | (DS]/ | |D6}/ | DT}/ |1DB|/ ||DY

Iocid hechl ddld dbould Shehd Ghohdd Thehd Bhohidd Shehid

(bl

Figure 5: An example: (a) the data; (b) the cor-

* responding NA-tree structure (bucket_capacity =

2).

procedure Insertion(O(L,U));
begin
1 := Assign(Xy, Vs, b);
u := Assign(X,, Yz, b);
/* Calculate L’s and U’s bucket numbers, (1,u), re-
spectively */
p := Root;
Tepeat
if (1 € I) and (u € I) then p := p” 1lst_child;
if (1 € I1) and (u € II) then p := p” 2nd _child;
if (1 € I1I) and (u € II) then p := p” 3rd_child;
if 1 € IV) and (u € IV) then p := p” 4th_child;
if (1 € I) and (u € II) then p := p” Sth_child;
if (1€ T) and (u € I1I) then p := p" 6th_child;
if (1 € 1II) and (u € IV) then p := p” Tth_child;
if (1 € I1) and (u € 1V) then p := p” 8th_child;
if (1 € 1) and (u € IV) then p := p” 9th_child;
until p is a leaf node;
Add O into node p;
if node p is full then Split(p);
end;

Figure 6: The Insertion procedure

A-111

Function Assign(zi, 2, b);
/* compute an initial bucket number */

begin
P=«» /* null string */
fork:=1t0b
begin
i:=k mod 2;
if (m: < (I + hi)/2) then
begin
concatenate “0” to P;
hi = (li + hi)/Z);
end
else
begin
concatenate “1” to P;
L= (L + hi)/2);
end;
end;
change binary number (P) to decimal;
return(P);
end;

Figure 7: The Assign function

procedure Split(p);
begin
q:=p;
Let p be the index node; ‘
if p € {1st_child, 2nd_child, 3rd_child,
and 4th_child of p~ parent} then
Create all 9 children of p
else
begin
if p € {5th_child and 7th_child of p" parent}
then
Create 5th_child, 7th_child, and 9th_child of P;
if p € {6th_child and 8th_child of p~ parent}
then
Create 6th_child, 8th_child, and 9th_child of p;
end;
Re-Insert all objects in q;
for each child of p do
if (child) is full then Split(child);
end;

Figure 8 The Split procedure

procedure Deletion(O(L,U));
begin
1:= Assign(X;, V3);
u = Assign(X,, ¥;);
/* Calculate L’s and U’s bucket numbers, (1,u), re-
spectively */
P := Root;
repeat
if (1 €1) and (u € 1) then p := p~ 1st_child;
if (1 € II) and (u € II) then p := p~ 2nd_child;
if (1 € IIT) and (u € III) then p := p~ 3rd_child;
if (1€ 1V) and (u € IV) then p := p~ 4th_child;
if (1€ 1) and (u € II) then p := p~ 5th_child;
if (1 € I) and (u € III) then p := p~ 6th_child;
if (1 € III) and (u € IV) then p := p~ 7Tth_child;
if (1 € 1) and (u € IV) then p := p" 8th_child;
if 1 €I) and (u € IV) then p := p~ 9ih_child;
until p is a leaf;
if O is not in p then show an error message
else delete O from p;
if p is empty then Merge(p);
end;

Figure 9: The Deletion procedure

DZ expression and return a decimal bucket num-
ber.

Next, according to the spatial number, we
search the tree and find which leaf node is this
object belong to. Finally, we insert this object
into this leaf node and checking whether this leaf
node is overflow. If this leaf node is overflow, then
we execute the procedure SPLIT.

Deletion of a rectangle from a NA-tree is done
by first locating the rectangle that must be deleted
and then removing it from the leaf node. Finally,
we will check whether this leaf node is empty or
not, where empty means that there is no other
objects in this leaf node. Figure 9 shows the
Deletion algorithm. When an empty leaf node
occurs, this empty node may merge with other
sibling leaves. The Merge algorithm is shown in
Figure 10.

The algorithm to process exact match query,
as shown in Figure 11, is similar to the Deletion
algorithm. To process exact match queries in a
NA-tree, we search the tree according to data clas-
sification, and then check all data objects in the
leaf node.

2.4 Difficult Cases in R*-Trees

The R*-tree allows the fast computation of
search operators. However, the insertion and dele-
tion of data objects may be much more compli-
cated in turn [8]. First, the insertion of an ob-
Ject O or its data interval Iy may require the en-
largement of several sibling intervals (i.e. inter-
vals corresponding to sibling nodes). This is espe-
cially (but not exchusively) the case if I overlaps
several sibling intervals. In Figure 12-(a), Iy has -

A-112

procedure Merge(p);

begin
q := p~ parent;
release p;

calculate entries of q;
/¥ the entries is the number of objects in all
children of q */
if (entries < bucket_capacity) then
begin
create a new leaf node, n;
move objects from q’s children to n;
n” parent := q" parent ;
release q;
end;
end;

Figure 10: The Merge procedure

procedure Exact.match_query(O(L,T));
begin

1 := Assign(X), Y3);

u := Assign(X-, ¥i);

/* Calculate L’s and U’s bucket numbers, (},u), re-
spectively */

p := Root;

repeat

if (1 € 1) and (u € I) then p := p~ Ist_child;

if (1 € T1) and (u € II) then p := p~ 2nd_child;,

if (1 € I11) and (u € 1I1) then p := p" 3rd_child;
if (1 € IV) and (u € IV) then p := p~ 4th.child;
if (1 € 1) and (u € II) then p := p" 5th_child;
if 1 € 1) and (u € III) then p := p~ 6th_child;
if (1 € ITT) and (u € IV) then p := p” Tth.child;
if (1 € IT) and (u € IV) then p := p” 8th_child;
if (1 € 1) and (u € IV) then p := p” 9th_child;

until p is a leaf; .

if O is not in p then show an error message

else output O from p;

end;

Figure 11: The Ezact_match_query procedure

Ist@®) <1,
20d(l): I]
I, 3rd(l) : empty
Ath(I) : empty
0 5th(I) : empty
I, 6th(I) : empty
Th{): 1,
8th(I) : empty
9t : 1,

I

@

AN [elF A o[-

()

Figure 12: Case 1 in a NA-tree

to be inserted into both corresponding subtrees.
I, and I have to be enlarge in such a way that
I ¢ I U I, (without I overlapping ;). Each
of these enlargements may require a considerable
effort because it is always necessary to test for pos-
sible overlaps with sibling intervals. Iy is imserted
into all corresponding subtrees; the insertion may
therefore cause the creation of several leaf entries.
For this case, the NA-tree approach will create a
new leaf node (or perhaps this leaf node has al-
ready existed), and then insert the data interval
I, into the leaf node (as shown in Figure 12-(b)).

Second, there are situations where the enlarge-
ment step inevitebly leads to overlaps (as shown
in Figure 13-(a)). In this case, it is not possible to
enlarge the sibling intervals I1...I4 in such a way
that Iy C I, U...UI; without creating overlaps. It
is therefore necessary to split one of the intervals,
say I, into two subintervals I, and I,” before the
enlargement can take place [8]. For this case, the
NA-tree approach can create a new leaf node (or
perhaps this leaf node has already existed), and
then insert the data interval Iy into the leaf node
(as shown in Figure 13-(b)).

3 Performance

In this Section, we compare the performance
of R-trees, Rt-trees, R-files, and NA-trees.

All databases used in this performance evalu-
ation are randomly generated sets of rectangles.
Each rectangle was displaced at random within

A-113

1| Ist(l): empty
i Ii l 1 | 2nd(D):empry
3rd(l) : empty

4th(T) : empty

m N i) -1 5
4 6th(@) : 15
L u (1
811,

90):1,

@

9

7

7)1\

EdnEanE:

[

®)

Figure 13: Case 2 in a NA-tree

the given two-dimensional data space; ie. the
data are uniform distribution.

There are two major parameters that charac-
terize such a geometric database; the number N
of data objects (the database size) and their aver-
age size, avg_size, measured in percent of the size
of the data space, i.e.,

Zfil area;/N
The whole data space x 100%.

avg_size =

We took measurements for six different databases
containing 500, 1000, 2000, 3000, 4000,
and 5000 rectangles of average size 0.0625%.
Bucket_capacity have been tested for 10, where
the Bucket_capacity is the maximum number of
data containable in a leaf node. Hereafter, we rep-
resent the bucket capacity as P. Here, the search
cost means the number of nodes visited and the
insertion (deletion) cost means the number of in-
ternal nodes visited.

Now, we show some indicative results of the
search performance of R-trees, R*-trees, R-files,
and NA-trees. For R-trees, we have implemented
the originally published split algorithm (as de-
scribed i [9]), the linear algorithm. The name,
linear, for the split algorithm indicates their time
complexity is in relation to the number of entries
stored in the R-tree node which is to be split.

First, we make a comparison of the average
search cost. For each spatial data file, we create
50 rectangles randomly to do exact match queries,
and then calculate the average search cost of them.
Figure 14 shows the results for the average size

NA-tree
R-file
R-
Re-tree

Xae+

15

Search Cost ()
10

—_—— 4
/A————_—A

/A x x/)(ol

5’————0———4/'__*

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of data (avg_size = 0.0625%)

5

Figure 14: A comparison of search cost for pro-
cessing an exact match query

Tree structure ! R-file | R-tree l RT_tree | NA-tree l
|_Storage utilization (%) | 70E8 | 60E6 | 60E6 | B5E5 |

Table 1: A comparison of storage utilization

0.0625%. From this figure, we observe that our
NA-tree has the lowest search cost among these
four strategies.

Next, we make a comparison of storage utiliza-
tion, as shown in Table 1. From these results, we
observe that the storage utilization in R-files is
about (70 + 5)%, R-trees is about (60 +5)%, R+-
trees is about (60 + 5)%, and NA-trees is about
(85 £ 10)%. Obviously, NA trees decrease the
search cost at the cost of decreasing storage uti-
lization.

For the insertion cost, let’s concern the cases
of the average cost of inserting 500, 1000, 2000,
3000, 4000, and 5000 rectangles based on a uni-
form distribution. From the result as shown in
Figure 15, we observe that NA-trees have lower
insertion cost than others.

For the deletion cost, let’s concern the cases of
average cost of deleting 50 rectangles in 500, 1000,
2000, 3000, 4000, and 5000 rectangles based on a
uniform distribution. From the result as shown in

20

bOX+
o
=)

l}%—v.ree
et
NA-tree

R

-

@%ﬁ
s

- /A

A/

15

10

Insertivn cost

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of data

Figure 15: A comparison of insertion cost

A-114

0

BOX+

ZeEp

ot
q
[i4

15

/
M

A’//A__—_g—_

Delelion cost
10

5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of data

Figure 16: A comparison of deletion cost

Figure 16, we observe that NA-trees have lower
deletion cost than others.

4 Conclusion

In this paper, we have proposed an efficient
spatial index strategy, called a NA-tree, which is
designed for paged secondary memory and it is
dynamic; i.e., it can support arbitrary insertions
and deletions of objects without any global reor-
ganizations and without any loss of performance.
Moreover, it is efficient to support exact match
queries. How to process the partial match queries
and best match queries is the future research work,
where a partial match query means to report all
data objects which are located in a specific line
and a best match query means to find the nearest
neighbor of the specific data object.

This research was supported by National Sci-
ence Council of the Republic of China, NCS-88-
0408-E-110-004.

References
[1] Jon L. Bentley, “Multidimensional Binary Search
Trees Used for Associative Searching,” Commu-
nications of the ACM, Vol. 18, No. 9, pp. 509-517,

Sept. 1975.

[2) J.L. Bentley and J.H. Friedman, “Data Struc-
ture for Range Search,” ACM Computing Sur-
veys, Vol. 11, No. 4, pp. 397-409, Dec. 1979.

[3] Elisa Bertino and Beng Chin Ooi, “The Indis-
pensability of Dispensable Indexes,” IEEFE Trans.
on Knowledge and Data Eng., Vol. 11, No 1, pp.
17-27, Jan./Feb. 1999.

[4] Henk Blanken, Alle Ubema, Paul Meek, and
Bert van den Akker, “The Generalized Grid File:
Description and Performance Aspects,” Proc. of
IEEF Int. Conf. on Data Eng., pp. 380-388, 1990.

[5] Sivarama P. Dandamudi and Paul G. Sorenson,
“Algorithms for BD Trees,” Software-Practice
and Ezperience, Vol. 16, No. 12, pp. 1077-1096,
Dec. 1986.

{6] Volker Gaede and Oliver Gunther, “Multidimen-
sional Access Methods,” ACM Computing Sur-
veys., Vol. 30, No 2, pp. 170-231, June 1998.

[7] Irene Gargntini, “An Effective Way to Represent
Quadtrees,” Communications of the ACM, Vol
25, No. 12, pp. 905-910, Dec. 1982.

[8] Oliver Gunther and Jeff Bilmes, “Tree-Based Ac-
cess Methods for Spatial Databases: Implementa-
tion and Performance Evaluation,” IFFE Trans.
on Knowledge and Date Eng., Vol. 3, No 3, pp.
342-356, Sept. 1991.

Antonin Guttman, “R-trees: A Dynamic Index
Structure for Spatial Searching,” Proc. of ACM
SIGMOD, pp. 47-57, 1984.

[10] Andreas Hutflesz, Hans-Werner Six, and Peter
Widmayer, “The R-File: An Efficient Access
Structure for Proximity Queries,” Proc. of IEFE
Int. Conf. on Data Eng., pp. 372-379, 1990.

[11] K.J. Li and Laurini Robert, “The Spatial Local-
ity and a Spatial Indexing Method by Dynamic
Clustering in Hypermap Systems,” Proc. of IEEE
Int. Conf. on Data Fng., pp. 207-223, 1992.

[12] Akhil Kumar, “G-Tree: A New Data Structure
for Organizing Multidimensional Data,” IEEEF
Trans. on Knowledge and Date Eng., Vol. 6, No.
2, pp- 341-347, April 1994.

[13] David B. Lomet and Betty Salzberg, “The hB-
Tree: A Multiattribute Indexing Method with
Good Guaranteed Performance,” ACM Trans. on
Database Systems, Vol. 15, No. 4, pp. 625-658,
Dec. 1990.

[14] Yasuaki Nakamura, Shigeru Abe, Yutaka Oh-
sawa, and Masao Sakauchi, “A Balanced Hierar-
chical Data Structure for Multidimensional Data
with Highly Efficient Dynamic Characteristics,”
IEEE Trans. on Knowledge and Data Fng., Vol.
5, No. 4, pp. 682-694, Aug. 1993.

[15) Yutaka Ohsawa and Masao Sakauchi, “A New
Tree Type Data Structure with Homogeneous
Nodes Suitable for a Very Large Spatial
Database,” Proc. of IEEE Ini. Conf. on Data
Eng., pp. 296-303, 1990.

[16) John T. Robinson, “The K-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic
Indexes,” Proc. of ACM SIGMOD, pp. 10-18,
1981.

[17] Timos Sellis, Nick Roussopoulos and Christos
Faloutsos, “The R*-tree: A Dynamic Index for
Multi-dimensional Objects,” Proceedings of the
'18th VLDB Conf., pp. 507-518, Brightonn 1987.

[18] Shashi Shekhar, Sanjay Chawla, Siva Ravada,
Andrew Fetterer, Xuan Lin, and Chang-Tien Lu,
“Spatial Databases—Accomplishments and Re-
search Needs,” IFFE Trans. on Knowledge and
Data Eng., Vol. 11, No. 1, pp. 45-55, Jan./Feb.
1999

[19] Ching-Der Tung, Wen-Chi Hou, and Jiang-Hsing
Chu, “Multi-Priority Tree: An Index Structure

for Spatial Data,” Proceedings of International
Computer Symposium, pp- 1285-1290, 1994,

[9

—_—

A-115

