i RE/ -/ ERER R

Establis a Common Software Service Center by Using Functional
Integration Technique

Sheng-Chin Lee (£854%)' Jim-MinLin (#%40)' HewijinC. Jiau (B &%)’
Chi-Tai Lee (8t %)
asuka@ultra2.iecs. fcu.edu.tw, jimmy@fcu.edu.tw, jiauhjc @ee.ncku.edu.tw,

cltee @plum.iecs.fcu.edu.tw

! Department of Information Engineering, Feng Chia University, Taichung City, Taiwan

? Department of Electrica Engineering, National Cheng Kung University, Tainan City,

Taiwan

Abstract
Providing a high quality and low cost software service is an
important term of computerizing. This demand will
increase when there’re more groups or customers trying to
computerize their systems. This paperoffers a feasible
approach named Functional IntegrationTechnique (FIT) to
establish a Common Software Service Center (CSSC). Any
client could acquire software service from CSSC when they
need. This way is especially suitable for the workgroups or

communities.

Key words. Software Service, Function Integration, COTS,

Software Component, CORBA.

1. Intreduction

Modern software product playsa more important role in the
computer world. It not only helps the end users to manage
their computer hardware resources but also with some
specific problems. Nowadays, software designers tend to
design more complex and more powerful software product.
As a result, a high quality software service is an essential
term in a modern computer system. Always people need to
spend a considerable cost to achieve this for iwo reasons.
One is that since users’ needs have been increasing,
software products will be more complex. This results in the

cost of software development and maintenance growing

exponentiall . The other is that the end users must pay
more cash to buy these software products, and spend more
time to learn and manage them. This is a big burden for the
customers.

In this paper, a new approach to cope with this problem
is proposed . Here, we collect several practical COTS
software applications and retrieve their original functions to
construct reusable software components. By integrating
these software components, new applications will be built
down soon. Finally, a Common Software Service Center
(CSSC) will manage these software components and
provide the mechanism for the customers to request it for
software service. This will benefit people working in a
wqugroup or living in a communit . They can acquire
software service from CSSC and need not to buy the
software ‘products individually. Moreover, this a pproach
will help people who are unfamiliar with operating
computers to derive software service from CSSC.

The rest of this paper is organized as follow. In next
section, the telated work of our systemsuch as FIT,
CORBA software component will be overviewed. Section 3
describes the detailed architecture and specification of
CSSC, and expounds how to build a CSSC. In section 4,
we’ll discuss the advantages and confronted problems of
our approach, and its influence for software development.

The final section is the conclusion and future works.

A-131

2. Related Work
In this section, we will illustrate the related techniques and

terminologies of CSSC particularl

2.1 Functional Integration Technique (FIT)
The basic concept of FIT is that retrieving each
independent application’s function as a library or methods
of an object. By sending command streams from a control
program to the application, the application will execute
those functions that the client needs (Fig.1). The way of
doing this is wrapping this application with a small
program named wrapper. It is in charge, of the interception
and redirection of the application’s I/O for towing the data

streams to the appropriate destination. As a result, what we
are interested in are those functions provided by this
application and the format of its acceptable commands [5].
An example named parking management system could be

found in literature [15].

Control Program

—
Command stream

Data stream

Software 1 Software 2 Software 3

Figure 1. FIT semantic figure

2.2 Software Component

Software components are binary units of independent
production, acquisition, and deployment that interact to
form a functioning system [2]. In programming disciplines,
a component is an identifiable part of a larger program or
construction. Usually, a component provides a particular
function or group of related functions. In programming
design, a system is divided into components that in turn are
made up of modules [14]). In this paper, software
components play the same role as illustrate above. The only

difference here is the implementation. In the CSSC system,

a software component is a unit consists of a COTS software
application and a wrapper (Fig.2). The wrapper sends
command streams to the wrapped application to achieve its
function and gets itsoutput results as the software
component’s output. Any program or sub-routine can
invoke the software component with the API provided by

the wrapper.

|_Software Component Server |
p———

Software Control Commands (by
sending keyboard message)

Wrapped
Application N

Results (by Clipboard o temporal ile))
Keyboard Devices VX

Figure 2. The software component in C3SC

|

=

Distributed
Platform

L
‘ORBA or DCOW
Daemon

2.3 Wrapper

Here we give a formal definition for the wrapper in our
domain. A wrapper is a program substituting for the user
programs to oi;erate the wrapped application [14]. Wrapper
also has the ability to solve some problems that mayb
occur when it wraps the application, and it provides
standard API so that any program or sub -routine could
invoke it easily. The detailed specification of the wrapper
literatures

could be found inour previous research

[5,7,9,10,11,15].

3. Common Software Service Center

Common Software Service Center is an open system and
designed for people in a workgro up or communit to
acquire sofiware services (Fig.3). The main essence of
CSSC is to provide software services from those practical
applications for the customers automaticall . Here, we only
define the framework of CSSC but regulated the detailed
implementation specification. Anyone can establish his
own product in his style; compiling the CSSC architecture
is the only requirement. In this section, we will introduce
the architecture of CSSC and one method we proposed to

establish the CSSC.

A-132

Commoo Software Service Central

Cuordinste
Program

2 =
CSSC Sesver 1 FIT

Software
Componcot 1

J

Software
Component 2

!

i
2
3 Software

o Componeot N

Figure 3. The semantic structure of the Common Software

Service Center

3.1 CSSC Architecture
The CSS contains five parts (Fig. 4). We commentate
them oneby one and illustrate the interaction among these

parts as follow.

@ CSSC kernel. CSSC kernel is the core of the whole
system and decides how to serve the customers’
requests. It will find out th ose appropriate software
components and integrates them into new
applications to satisfy the customers’ software
requirement. In short, it is inchar ge of the
management and operation of CSSC.

@ Software Component Services. Software
components are responsible to provide the software
services. Fach component has its unique function.
They are stored in the CSSC library. When needed,
the CSSC kernel willin tegrate them with the
integration mechanism.

@ Integration Mechanism. It is necessary for the
CSSC kernel to have a mechanism to integrate the
software components. In our system, we use FIT as
the integration mechanism.

@ ORB. Those software components and CS C kernel
itself may work on heterogeneous platform.‘ The
CSSC needs an ORB to deal with the underlying

network communication and information interchange

issues. In our system, we use the CORBA ORB to

take this job.
® Requirement Description. The requirement
description provides the mechanism for the
customers to describe their requirements formally. It
may be implemenied in various forms. For example,

a formal scripting langnage will be one choice.

Reguirement Description

| Integration Mechanism |
=5 <> <X =

Software Component Services

Figure 4. The CSSC architecture

The operation flow of CSSC is shown in figure 5. It
follows the steps below.
Step 1: The customer sends his request to the CSSC kernel.
Step 2: The CSSC kernel analyzes the customer’s request
and classifies them into two types. One is provisional
request, and the other is long-term service. If the
customer’s request would be executed only a few times,
such as provisional calculation, data query, or on-line
shopping...etc., it will be classified as the provisional
request. On the other hand, the requirement wo uld be
invoked many times, suchas dail accounting, CAl or
multimedia applications...etc., will be classified as the
long-term service.
Step 3: The CSSC kermnel implements provisional request
as a temporal service object, which provides the functions
to deal with the requests.
Step 4: The CSSC kernel implements long-term service as
an isolated application, which will achieve the software
services.

Step 5: The service object or the application will execute to

A-133

achieve its services.

Step 6: After the service object or application executed,
CSSC kernel will return the final results to the customers.
Step 7: If the service is a service object, it will be released
after it finishes the task.

Step 8: If the service is an application, the CSSC kernel
will store this application into its library afier it had
finished its task. When the customers request for service
next time, itcould serve the requests by invoking this
application again.

Provisional
Request

21 Service Object f=n

Application

Customers’ m_y
Requests

Release the Service
Object

Execution

Save 1o the Library
(6)

Execution Results

Figure 5. CSSC system operation flow

3.2 Establish the CSSC

We hav notified that the CSSC is an open system. As long
as the designer follows the architecture of CSSC, anyon
can build up the CSSC in his own style. Depending on the
need, the designer can replace any part of the CSSC. Here,

we will introduce one method to establish the CSSC.

3.2.1 Construct Software Component Services
Software componenis provide the actual functions for
software services. The reader can find the definition of
software component of the CSSC system in section 2.2. By
using FIT, we construct these software components by
wrapping COTS software applications as the following

steps.

Step 1. Identify the software component, such as its
function or interface.
Step 2: Find out an appropriate COTS software application

that provides the actual functions the component needs.

Step 3: Analyze this application to induce its correct
command stream to wrap it.

Step 4: Design the corresponding wrapper program.

Step 5: Combine the wrapper and the wrapped application

into the software component.

The detailed implementation could be found in our

previous papers [7,9,11,15].

3.2.2 The Integration Mechanism and ORB
Synthesizing our pre-definition above, we use CORBA as
the underlying component communication mechanism. As
a result, each component is regarded as a CORBA object.
The CSSC kemel will creates a coordination program as
the CORBA object container to integrate these CORBA
with the FIT policy. Then it will achieve its task.

3.2.3 Requirement Description

Requirement description is the mecha nism providing the
customers a formal method to describe their requirements.

For better and easier design, it will be divided into two

parts named customers’ user interface and description
mechanism.

Customers can only interact withthe CSSC by
customers’ user interface, so it is important to design a
user-friendly interface. The web browser is used to take this
job since its ease and common. From customers’ view, the
CSSC kemel is like a web server. It provides some web
pages that contain Java applets to communicate with the
coordination program. Java applets on the web page can
communicate with other CORB objects, such as
coordination program, with the OrbixWeb ORB. As a result,
the customers can send their requests to the CSSC kernel

with the web browser easil (Fig.6).

A-134

Coordipation
Program

Figure 6. Requirement description semantic

Description mechanism defines the specification of the
description. The customers have to write down their
requirements with the formal description rules. The CSSC
specification doesn’t formulate the standard content of

description mechanism, but we suggest the designers using

a formal script technique such as a simple script language -

as its implementation.

In our example, we define a Component Integration
Language (CIL) to be the requirements script language.
CIL is a simple script language; It defines an instruction set
and related syntax to glue the software components into
new applications. As we mentioned before, the customers’
requests could be classified into two types named
provisional request and longterm service. In CIL, it also
provides instructions to support this classification.
Currently, we have finished the prototype of CIL, and the
full edition will be our future work.

The operation flow of the custome rs writing their
requests in CIL is shown in figure 7. The process goes as
the following.

Step 1: The customers write down their requests in CIL.
Step 2: The CIL compiler compiles the CIL program. If the
CIL program is correct, the CIL compiler will produce the
CIL command code and send it to the CSSC kernel.

Step 3: After the CSSC kernel gets the CIL command code;
it will execute it with the CIL VM. The CIL command cod
will invoke some software components to achieve its
functions.

Step 4: Final, the CSS kernel passes the execution result

to the customers.

(]

<L)
CIL cn
LA~ Em =] =¥y
CSSC Server
2 o
[} ? @
Resvlls
i

Figure 7. The operation flow of the customers writing their

requests in CIL

3.2.4 The CSSC kernel

By deﬁnit}on, the CSSC kemel is in charge of the
management and the operation of the CSSC. It is hard to
describe in every detail what the CSSC kernel will be
because there’s no completely adequaie definition of the
CSSC kernel. But roughly we can define here is that all of
the management policy and physical service routine are
brought together into asystem, and that is the CSSC kernel
Here, one example is provided to illustrate how to define
and establish the CSSC kernel. The structure of the CSSC

kernel is shown in figure 8. '

CSSC Kernel

(u]%

Software
Cogﬂaend Componcat

Manager

Request

+| Scheduler System

Executor Database

{ 1 I
Kernel Administrator I——

Figure 8. The structure of the CSSC kernel

DB Bruker

@ Kernel Administrator Kernel administrator is the
console of the CSSC kemel It is in charge of
managing and coordinating other routines of the
CSSC kernel accordin to its management policy. If
there is a customer asking for service, it will dispaich
a suitable service routine to serve the request. For
example, if a CIL command code is sent to CSSC
kernel, kernel administrator will informn the CIL
command code executor which invokes the CIL VM
to interpret the CIL command code.

® Request Scheduler. Request scheduler schedules
requests from the customers. Customers request
CSSC with CIL command code. To identify each

request from different customer in different time,

A-135

CIL compiler adds a tag to each CIL command code.
The tag is encoded with customer’s identification
and the request time. The encoding polic guarantees
the uniqueness of the tags. Réquest scheduler will
acknowledge kernel administrator of the scheduling
result after completing the task.

o CIL Command Code Executor. The CIL comman
code executor invokes the CIL VM to interpret CIL
command code and pass execution results to the
place assigned by kernel administrator.

@ Software ~ Component Manager. Software
component manager maintains the information of
each software component inthe system database.
When kernel administrator or other programs need to
invoke the software components, it serves the
requests.

® DB Broker. DB broker is the only one can
communicate with the system database directly. It
provides a set of functions for other routines to
access the system databasq Also, it is in charge of
maintaining the system database

® System Database. System database is a
bcomprehensive database. It contains wrappers,
information of the software components, records of
the customers, system daily 1 s, and others.

@ Web Server. As customers view the CSSC as a web

server, the CSSC kernel has to provide a web server

in the front end. The web server is the same with the

other web servers, but controlled by the CSSC kernel.

In our system, we use the Microsoft IIS set up the

web server on the Windows NT platform.

The designers can regard CSSC kernel as the operating
system of the CSSC system. Any resource, operation
management policy, and corresponding physical service
routines can be added into the C SSC kernel. Moreover,

designers can add other elements for necessar .

4. Discussion

CSSC indeed brings some advantages for designers to
develop their software services. Comparativel , the
designers will gonfront some problems when they develop
their own software services by using this approach. We’ll

discuss these possible issues in this section.

4.1 Reducing the development cost

Traditionall , the designérs need to develop their software
products from scratch. The development process includes
drawing up the software specification; designing the
detailed algorithms and codes; implementing the software
products, and testing and maintenance. Each phase will
consume lots of manpower, recourse, money, and time.
When the requirement becomes more complex, the
development cost will increase exponentiall . The major
reason causes this problem is that the designers have to take
care ever detail of the development process such as how to
design the user interface, how many object need to be
created inthe program...etc. All of these issues will
increase the designers’ burden.

On the contrary in the CSSC system, the designers just
only need to collect some practical applications and wrap
them into software component services. When a customer
request for software service, the CSSC service mechanism
will find out the appropriate software components to serve
the request automatically. Besides thephysical software
services supported by the software components, other
elements in CSSC such as web server or ORB are all
standard services that can be set up by using COTS tools,
like IS or Orbix. As a result, instead of developing
everything themselves, the designers can finish most of the
development tasks by reusing off-the-shelf software
products. Then the development cost will be reduced

substantiall .

4.2 Increasing the software service reliability

The designers can develop most of the software services of

A-136

CSSC by using off-the-shelf software products. The most
obvious advantage of doing this is increas ing the reliability.
Because those off-the-shelf software prc;ducts are verified
in the market, software service reliabilityAis better than

software developed from scratch.

4.3 Ease for use and maintenance

For customers, as long as they describe their requirement
based on the requirement description rules, they can get the
services conveniently. If the customer is unfamiliar with
operating sofiware application, he can ask the CSSC for

software service and doesn’thave to operate this

application himself. Moreover, it is not neces sary for the:

customers to organize and manage those software
applications. The CSSC system will handle the rest and get
the work done.

For CSSC administrators, tHe most important thing is to
maintain the CSSC kemnel to make sure the CSSC system
works correctly. These tasks include manage the system
database, update the web server, add new sofiware
component services, and manage the customers’ records,
etc. They don’t have to maintain and debug the source code

of the software components exactly.

4.4 Applicability

The CSSC system is designed for acquiring low cost and
high quality software services. For sharingrecourse, the

customers can add their own software components on the
CSSC and let other customers to access them. The

maximum benefit of doing this is that the customers need
not to pay much cash tobuy all of the software applications
they need, and they don’t have to concern the organization

and management of these various applications. The CSSC
system will help the customers to deal with this probl em.
We suggest that people work in a workgroup or live in a

communit can build up their own CSSC to share the

software services.

4.5 Concurrence for multiple requests

CSSC system works in a multitasking and distributed
environment. It means there will be multiple transactions
requesting for services. In CSSC system, the designér
invokes the COTS software applications as the software
component services. Nevertheless, most of these COTS
software applications are designed for single-user so that
they can’t be shared. Then the critical section and
synchronization problem will occur. Sometimes it also
involves the license and IP (ntellectual Property) problems.
A mechanism must be provided to handle these problems.
In our previous paper [10], we had proposed one scheme to
deal with it. The designer can add a mature synchronization
scheme such as timestamp -based protocols into the wrapper.
1t will cope with this issue when the customers request the

software component services.

4.6 Efficiency

Efficiency is one key evaluation of a software service, and
we are dissatisfied with this issue in the CSSC system. The
reason is that only a few parts or functions of a COTS
software application will be used for the software
component services. To retrieve these functions, the
software component has to involve the entire application. It
will increase the CPU loading, and waste memory space.
As a result, the efficiency of the software coimponent
services becomes not ideal. This situation will be worse

when we add many components to CSSC system.

5. Conclusion And Future Work

In this paper, we propose the CSSC system for sdftware
designers to develop software services rapidly. Not only be
beneficial to designers, but also decrease the heav burdens
of customers. Our design philosophy is utiiizing the
off-the-shelf software products and techniques to establish
new software services. Reducing the development and

management cost is the principal goal. We believe this is a

.feasiblc approach of developing software system for

A-137

software designers.

There are still some open topics of the CSSC. First, we
have to improve the efficiency and the stability of CSSC.
Second, to generate the wrapper automatically. Final,
although the requirement mechanism is formal, it is not
pure user-friend]l since ituses a script language as its
description. To switch it into a graphics user-interface and
tries to build up an expert system for the customers to

query it for software services is need.

Acknowledgement

This research was supported by National S cience
Council, Taiwan under Grant NSC88-2213-E-035-
005.

Reference

{1] Charles Petzold, “Programming Windows 95,”
Microsoft Press, 1996

{2] Clemens Szyperski, “Component Software,”
Addsion-Wesley Publishing Company, 1998.

[31Her Gen, Liu Tin., Lai M.J, “Software
Revolution Beyond the Millennium the 2™
Edition,” Inforist Press Corp., 1996.

[4]IONA Technologies, Orbix Advanced
Programmer ‘s Guide. 1994,

[5] Jim-Min Lin, “Cross-Platform Software Reuse
by Functional Integration ~ Approach,”
Proceedings of COMPSAC 97, pp.402 408,
Washington, D.C., USA, Aug.ll-l.S, 1997.

[6]Lan Sommerville, “Software Engineering,”
Addison-Wesley Publishing Company, 1995.

[71R.C. Lin, C.T. Lee, and Jim-Min Lin,

MS-Windows

“Reengineering Software

Applications into CORBA Services”,
Proceedings of 1998 Workshop on Distributed
System Technologies & Applications,
pp.201-208, Tainan, Taiwan, May 1998.

[8] Robert Orfali, Dan Harkey and Jeri Edwards,

“Instant CORBA,” John Wiley & Sons, Inc.,
1997.

[9] Sheng-Chin Lee, Jim-Min Lin, Hewi Jin Jiau,
and Winston Lo, “Reengineering MS-Windows
Applications into Reusable Software
Components with DLL Format,” Proceedings of
the 4™ Workshop on Multimedia Technology
and Applications Symposium (MTAS ‘99), Apr.
1999.

[10] Sheng-Chin Lee, Jim-Min Lin, and Hewi Jin
Jian, . “Reengineering
Single-User/Single-Tasking Applications into
Shareable Software Components Under a
Distributed Environment,” Proceedings of 1999
Workshop on Distributed System Technologies
& Applications, Tainan, Taiwan, May 1999,

[11] Ta-Hsin Wu, Jim-Min Lin, and Hewi Jin Jiau,
“Reusing UNIX Software Applications Under
CORBA Environment by Using Wrapper
Technique,” Proceedings of the 9% Workshop
on Object-Oriented ~ Technology and
Applications, pp.1-6, Sep. 1998.

[12] Wen-Zhi Chen,
Techniques,” Kifon Corp., Dec. 1997.

“Microsoft IIS Web

[13] Whatis.com, The Definition of Wrapper,
URL:http:/www.whatis.con/, 1998.

[14] Whatis.com, The Definition of Component,
URL:hitp://www.whatis.com/, 1998.

[15] Yee-Chong Pan, Jim-Min Lin, and
Win-Tsung Lo, “Wrapping Existing Software
Tools as CORBA Objects,” Proceedings of the
g Workshop on Object-Oriented Technology

and Applications, pp.187-193, Sep. 1997.

A-138

