Joint Conference of 1996 International Computer Symposnum
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Unifying Framework for Undoing Code Transformations

Chyi-Ren Dow
crdow@iecs.fcu.edu.tw
Department of Information Engineering
Feng-Chia University
Taichung, Taiwan 407
R.O.C.

Abstract

A transformation applied to optimize or parallelize a pro-
gram may be found to be ineffective, or may be made
invalid by code changes. In this paper, we present a uni-
Jying framework to remove such transformations. The
technique employs inverse primitive actions, making it
transformation independent. The order of undoing the
transformations is independent of the application order.
The technique uses post conditions of a transformation to
determine whether the transformation can be immediately
removed. An undo, algorithm and the analysis for
correctness of the algorzthm are presented An. undo

Jacility has been implemented and experimental results,

Jor applicable transformations and-enabled transforma-
tions are reported.

1. Introductmn

A transformauon applied to optimize or parallelize

a program may be found to be ineffective, or may be
made invalid by edits to the code. Although numerous
parallelizing compilers and parallelization systems have
been designed and implemented [2, 8, 11}, no undo facil-
ity, a very important facility in interactive environments,
is supported in these systems.

In an approach to incremental reoptimization of
programs, a scheme has been developed to remove tradi-
tional optimizations when a program is modified by edits
[10]. It works on intermediate-level program representa-
tions, namely a control flow graph and dag representation,
with history. information of optimizations placed on dag
nodes. - Problems in extending this scheme for paralleliz-
ing transformations include (1) the need of a representa-
tion that can support the application of scalar and parallel-
izing transformations to code elements in different levels
such as loops, statements, and operand expressions, (2)
the need for. different information stored not only for
eliminated; relocated, and replaced statements but also for
restructured loop structures and duplicated statements,
and (3) the desire of a transformation independent tech-

Mary Lou Soffa and Shi-Kuo Chang

soffa@cs.pitt.edu and chang@cs.pitt.edu

Department of Computer Scjence
University of Pittsburgh
Pittsburgh, PA 15260
U.S A

* nique since new transformations may be developed and

incorporated into the system.

This research approaches these problems by the
development of a unifying framework for undoing code
transformations. The techniques employ inverse primi-
tive actions to undo transformations, making the tech-
niques transformation independent. Pre and post condi-
tions of transformations are utilized to determine whether
an applied transformation remains safe and whether it is
immediately reversible. Due to. transformation interac- -
tions, a transformation may enable the application of a
transformation or disable a transformation. Therefore to
remove a transformation, it may be necessary to first
remove affecting transformations that were applied after
the transformation. After a transformation has been
removed, disabled transformations would have to be
removed also.

The remainder of this paper is organized as follows.
In Section 2, we discuss a scheme ‘developed to apply
code transformations and information to be stored in

~ order to allow the reversal of transformations. Section 3

describes the interactions of code transformations, the pre
and post conditions of transformations and an ndo algo-
rithm. The analysis of the undo algorithm is presented in
Section 4. The implementation of transformation applica-
tion and undo facilities and experimental studies of appli-
cable ‘and enabled transformations are described in Sec-
tion 5. Finally, we discuss incremental transformations
when a program is modified by edlts and conclusions are
drawn in Secuon 6.

2. Applymg Code Transformations

Traditional optimizations are generally applied on
intermediate scalar code and rely on data-flow informa-
tion. Parallelizing transformations, which are applied to
source code to exploit parallelism, involve the transfor-
mation of loops and rely on data dependence information.
In what follows, we describe the 7 representative transfor-
mations, including traditional and parallelizing transfor-
mations, that are used as the test set in this paper.

347

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Dead Code Elimination (DCE) [1,3]: deletes a state-
ment that defines a variable that is never used.

Constant Propagation (CTP) [1]: propagates a constant
to a single use. ,

Invariant Code Motion (ICM) {1, 3]: moves 1oop invari-
ant code outside of the loop.

Loop Unrolling (LUR) [3]: unrolls- the body of a loop at
least once.

Strip Mining (SMI) [9, 14]: transforms a single nested
loop into a doubly nested one.

Loop Fusion (FUS) [3]: converts two adjacent loops into
one loop.

Loop Interchanging (INX) [4,14]: mterchanges two
tightly nested loops. .

Our approach to performing transformations and
undoing transformations is by using primitive actions [6].
The actions of applying transformations can be described
by a sequence of primitive operations. The five primitive
operations are listed below. These operations are over-
loaded in that they can apply to different types of code
elements such - as - loops, statements, nested loops,
operands, etc. In the following descriptions, a, b and ¢
refer to any type of code element. The five actions are:

Delete (a): delete a. ‘

Copy (a, b, ¢): copy a, name it ¢, and place it following b.
Move (a, b): remove a from its original position and place
it following b.

Add (a, Element_description, b):
described by Element_description, call it b, and place it
following a. ’ '

‘Modify (Operand(S,i), New_operand): modnfy Operand i
of statement S to be New_operand.

In order to allow the reversal of transformations in
any order, sufficient information must be recorded to keep
a history of all existing transformations. Information is
required to ensure correct detection of invalidated
transformations and the removal of invalid transforma-
tions. Our approach is to store information about code
patterns before and after the application of a transforma-
tion as well as a sequence .of primitive actions that accom-
plishes the transformation. The history of applied
transformations is maintained on the program representa-
tion given by transformation independent annotations. A
pre_pattern notation is used to determine whether the
transformation is applicable and a post_pattern is used to
determine whether the transformation is immediately
reversible as discussed in the following sections. For
example, the pre_pattern for DCE is a pointer to the state-
ment to be deleted, the primitive action is a Delete opera-
tion, and the post_pattern is a pointer to the deleted code
and a pointer to the original location of the dead code
which is saved for possible later restoration. It should be

add an. element

noted that the information of the pre_pattern and primi-
tive actions of a transformation can be obtained automati-
cally if the approach taken in the development of a code
transformation is to specify the transformation using
primitive transformations and let the transformation gen-
erator automatically generate the transformation from the
specification. Intuitively, the post pattern can be obtained
automatically given the pre_pattern and primitive actions
of a transformation since the. post_pattern results from
applying the primitive actions on the pre_pattern.

@_g@"‘* Q@ o &

K- :. “

2 2s Q
K &l

o, O™
md‘

Figure 1. Annotations based on primitive actions.

In order to maintain a complete snapshot of existing
transformations, adequate to determine when a transfor-
mation becomes unsafe or whether it is. immediately
reversible, appropriate transformation history is annotated
on our program representation, Our two-level representa-
tion integrates two program representations, a high level
one - an Augmented PDG (APDG) and a low-level one
Augmented DAG (ADAG) to allow ‘the application of
both parallelizing transformations and traditional optimi-
zations. Since it is desirable to have transformation
independent annotations, our arinotations of a transforma-
tion on the representations are based on the primitive:
actions and an order stamp (t) associated with the
transformation. - The order stamp is used to link the primi-
tive action with the transformation that caused it and is
used to ‘determine whether a- transformation may be

‘affected -when undoing a transformation in an indepen-

dent order. Figure 1 shows the transformation annota-
tions for the transformations applied in which md, mv, cp,
and del are abbreviation of modify, move, copy, and
delete.

Figure 2 shows a mnsformatién-application algo-

rithm. The transformation history of code pattems before

348

and after the application of the transformation, applied
primitive actions, and the transformation independent

annotations are stored to enable the removal of transfor-
mation in an order independent of application order.

1 Procedure APPLY(t;)
2 BEGIN '
3 Set up data structures for code elements of t;;
4 match_suc := search for the code patterns of t;;
5 while(match_suc)

6 THEN BEGIN

7 pre_suc := verify data dependences of t;;

8

9

if(pre_suc)
THEN BEGIN
10 Store the pre-pattern of t;
11 For each primitive action a;; of t;
12 DO BEGIN :
13 Store a;;;
14 Store transformation annotations on the representation;
15 Perform the primitive action a;5;
16 END {DO}
17 Store the post-pattern of ;

18 Return(l);

19 END {THEN}

20 match_suc := Search for the code patterns of t;;
21 END {WHILE}

22 Return(0);

23 END

Figure 2. A transformation application algorithm.

3. Undoing Code Transforinations

Due to the complexity of transformation interac-
tions (transformation enabling and disabling), the reversal
of transformations in an order independent of their appli-
cation order may not be possible or safe by directly per-
forming the inverse actions of the transformations.
Therefore to remove a transformation, it may be neces-
sary to first remove affecting transformations. After a
transformation has been removed, disabled transforma-
tions would have to be removed also. This section
describes the interactions of code transformations, the pre
and post conditions of transformations and our undo algo-
rithm.

3.1. Interactions of Code Transformations

Interactions of code transformations may occur by
one transformation enabling the application of another
transformation that previously could not be applied, or
one transformation disabling conditions that exist for
another transformation [10,12]. If conditions of a
transformation t; are enabled or disabled by another
transformation t;, t; is defined to be an affecting transfor-
mation to tj and t; is defined as an affected transformation
by t;. Enabling interactions among transformations occur
when performing a transformation enables conditions for
other transformations to become applicable. Since depen-

_ dencies -established by chains of enabling interactions
yield similar chains of disabling interactions when a
transformation is destroyed, rippling effects are caused in

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

that removing a transformation destroys the safety of
other transformations that must also be removed.

Table 1 shows the enabling interactions of a set of
code transformations, which include traditional optimiza-

tions and parallelizing transformations. A "x" entry in a

. particular row and column denotes that the transformation

in that row enables the transformation in that column.
Since enabling interactions are perform-create dependen-
cies and dependencies established by chains of creations
yield similar chains of destruction when a transformation
is destroyed, the reverse-destroy dependencies exactly
replicate the perform-create dependencies [10]. Thus, the
reverse-destroy table can be used in a heuristic to reverse
code transformations, When a transformation is reversed,
only transformations with a mark "x" in the reverse-
destroy table need to be considered as possibly affected
transformations. :

3.2. Pre and Post Conditions of Transforma-
tions ‘

Pre-conditions of a transformation are conditions
that must exist before the application of the transforma-
tion. The satisfaction of pre-conditions determines
whether the transformation is safe to apply. The existence
of safety disabling conditions determines whether the
transformation remains safe. Post conditions are condi-
tions that result from applying the transformation. Post
conditions of a transformation can be altered by applying
and removing -transformations. Two kinds of transforma-
tion conditions are discussed in this section. One is the
safety condition that is used to determine whether an
applied transformation remains safe. The other is the
reversibility condition that considers whether a transfor-
mation is immediately reversible by directly performing
its inverse actions.

(1) Safety: A transformation is safe if it preserves the
meaning of a source program. The safety conditions of a
transformation t; can be altered when a transformation t;,
applied before t;, is reversed. Removing a transformation
may destroy the safety of another transformation but per-
forming a transformation can never destroy the safety of:
already applied transformations because a transformation
is never. performed on. the premise that another transfor-
mation will be reversed to make it safe [10]. Therefore,
given a sequence of transformations, T = {u, t, .., ta },
the safety of transformation t; can be disabled by the
reversal of a preceding transformation j, where 1 <=j <.
As shown in Table 2, which gives pre-conditions, safety-
disabling conditions, and reversibility-disabling condi-
tions for a set of transformations, the safety-disabling
conditions of a transformation are determined by negating
the pre-condition of a transformation,

349

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

CPP

Pre-condition:

by Si. .
e Move a statement S; on the path so that §;

DCE | CSE | CTP CFO | ICM | LUR | SMI | FUS | INX

DCE X - X - X - - X X

CTP X - - X X - X X X

ICM X - - - X - - X X

LUR X X X X X X X X -

SMI - - - - - - - X -

FUS - - - - - - - X

INX - - - - X - - X

Table 1. Perform-create (reverse-destroy) interactions.

Transformation Disabling Conditions of Safety Disabling Conditions of Reversibility
Dead DEREICTENE 1) The original location of S; cannot be
Code e Add a statement S, that uses value computed by | determined: .
Elimination Si. e Delete context of the location. (e.g.,
(DCE) e Modify a statement S, that uses value computed | delete the loop it belongs to)

o Copy context of the location. (e.g., copy
_the loop it belongs to by LUR)

Pre-condition:

3 type(L.initial) ==
‘const A
type(L.final)- ==
const A .L.final -
L.initial > 0.

3 S AJ S >(S; 8- | reaches. T

Sy).

Loop 1)4 DO loop, L: 1)4 the unrolled loop: -
Unrolling e Remove loop L. e Delete L

(LUR) 2) the loop expression changed:

e Modify(loop_exp(L)) (e.g., by LUR,
INX, or SMI)

~3)7 unrolled statement.

e Delete S;.

Loop
Interchanging
(INX)

Pre-condition:

3 tight loops (Li,
LA

ASwe ;23 Sp€
L, > (Sp 8<> Sm)

A NOT (L,.head 8-
L,.head)

1) 4 two nested DO loops:

e Insert a statement between the two loops.

e Delete a loop.

2) 3 two statements, Sp and Sy, such that there is a

{<,>) dependence vector:

eInsert S,.

s Insert Sp.

e Remove a definition so that the dependence
holds.

o Create a path between Sy and Sp,.

3) Loop headers vary with respect to each other:

o Modify one of the headers.

1)J tight loops (L2, L1):

e Delete L; or Ls.)

e Move a loop (e.g., by INX).

e Move a statement between the two
loops (e.g., by ICM).

e Add/Copy a statement between the two
loops (e.g., by FUS)

2) the loop expression changed:

e Modify(loop_exp(L, or L)) (e.g., by
LUR, INX, or SMI)

Table 2. Disabling conditions of safety and reversibility.

Safety-disabling actions that possibly disable the
safety condition of a transformation- are also given in
Table 2 for each disabling condition. The following
explanation describes how the safety-disabling condi-
tions/ actions for DCE that are given in Table 2 are deter-
mined. - The disabling condition to the pre-condition "3
Si" 'A S;," is ignored since the deletion of S; does not
affect the optimized code. The disabling condition, " §;
> (8; § S)),"is obtained by negating the pre-condition "4
Si12 (S; 6 S))." DCE could be disabled by the insertion of
a use S;. The insertion of S; can be accomplished by
adding a new statement, by modifying an existing state-

ment, or by moving a statement onto a path. Since a legal
optimization that preserves the semantics of the original
program cannot interfere or sever definition-use chains or
alter the-order in which data is input or output by /O dev-
ices [12], actions that violate the rule for legal transforma-
tions are due to changes to the program code by edits and
are denoted by T in Table 2. For the DCE example, the
movement of S; on the path so that S; reaches is due to
edits but not the reversal of a legal transformation since
the application of a transformation by moving S) off the
path would never occur (it would sever the def-use
chain).

350

(2) Reversibility: In our approach to performing and
removing a transformation by primitive actions, a
transformation, t, is reversible if the inverse actions of
can be immediately performed. The stored history infor-
mation, post_pattern, is used to-determine whether the
inverse actions can be performed. If the post_pattern of a
transformation, t;, is invalidated, there exist subsequent
transformations of t; that changed t;’s post_pattern and
made it irreversible. These transformations are affecting
transformations that disables the reversibility conditions
of ti. Therefore, given a sequence of transformations, T =
{ti, ta, ..., ty }, the reversibility conditions of transforma-
tion t; can be disabled by its posterior transformations, t;,
where i < j <= n. Primitive actions that disable the condi-
tions of reversibility are identified in Table 2. The fol-
lowing explanation describes how the reversibility-
disabling actions for DCE are determined. The primitive
action for the application of DCE is Delete(S;) and its
inverse-action is Add(S;, orig_loc). If the post-pattern is
validated, the inverse action of DCE can be correctly per-
formed. We know the deleted statement S; can be
recovered since. it is saved for restoration. If the original
location can not be determined, there must be some
actions.caused by affecting transformations that make the
original location of S; undeterminable. For example, if
the context of the original location is deleted or copied by
subsequent transformations of DCE, the inverse action,
Add(S;, orig_loc) can not be correctly performed. There-
fore, the affecting transformations should be reversed first
in order to make DCE reversible.

3.3. Undo Algorithm

This section presents an undo algorithm by which
the undo command can be issued to any transformation
and only invalidating and invalidated transformations
need to be undone.. When undoing a transformation,
affecting transformations that disable the reversibility of
the transformation are reversed first, followed by the
reversal of the tansformation. Then, the affected
transformations are reversed. The interactions of transfor-
mations are used as a heuristic to reduce the redundant
analysis. '

Figure 3 shows an algorithm for undoing transfor-
mations in an independent order. The first step in the
algorithm (lines 4-14) is to detect and reverse affecting
transformations. If the removed transformation is tlie last
transformation applied (t,), t, is undone by applying its
primitive actions (line 15). If the removed transformation
is in any order, the post_pattern of transformation t; is
examined to see whether it is invalidated. If the
post_pattern of t; is invalidated, there must exist some
transformations after t; that change the post_pattern of

Joint Conference of 1996 Internationél Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

1 Procedure UNDO(Y)

2 /*undo = { &y, ay, ..., a3y}, where a; are primitive actions, from
T={t),1, ..., t;}, a sequence of applied transformations */ -

3 BEGIN i

4 if(i<n)

5 - THEN BEGIN

6 while(post_pattern(y;) is invalidated)

7 THEN BEGIN

8 /* Undoing affecting transformations */

9 Determine a disabling condition of reversibility for t;;

10 Determine a primitive acfion that causes the condition;

11 Determine the transformation, tj, that causes the action;

12 UNDO(t);

13 END {WHILE}

14 END {THEN}

15 Perform inverse actions of t;;

16 Dependence_and_data_flow_update;

17 /* Undoing affected transformations */

18 if(i<n)
19 THEN BEGIN
20 Determine affected regions;

21 For any transformation ty in the affected region
22 DO BEGIN :
23 IF (k>i)/*only subsequent transformations may be affected*/

24 THEN BEGIN

25 IF ([t;,tx] is marked "x" in the reverse-destroy table)

26 THEN BEGIN :

27 Determine safety conditions of ty, given the events of .
inverse actions of t;; .

28 IF !safety(ty)

29 THEN BEGIN

30 UNDO(ty);

31 END {THEN}

32 END {THEN}

33 END {THEN}

34 END {DO}
35 END {THEN}
36 END

Figure 3. An undo transformation algorithm.

and create a condition (as listed in Table 2) that disables
the reversibility of ; (line 9). Annotations of applied
actions on the program representation are used to deter-
mine which actions cause .the condition (line 10). The
order stamp associated with each primitive action is used
to determine the applied transformation (line-11) and. the
affecting transformation is then reversed to make t; rever-
sible (line 12). After the reversal of affecting transforma-
tions, transformation t; is reversed by performing its
inverse primitive actions (line 15). Next, data flow and
data dependence analyses are performed (line 16). Then,
the affected transformations are detected and reversed
(lines 18-35). Transformations in the affected region due
to code changes, data flow changes, and data/control
dependence changes are considered as possibly affected
transformations (line 20). Line 23 shows that only
transformations after (k>i) may be affected. The
interactions of transformations are used as a heuristic to
reduce the redundant analysis. For each entry "x" of the
reverse-destroy row in Table 1, detection of those condi-
tions that cause rippling effects is included in line 25.
The disabling conditions of safety are checked for the

351

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

determination of affected transformations (line 28). If t¢
is not safe due to the removal of t;, ty must also be undone
(line 30).

4. Analysis of the Undo Transformation
Algorithm

In this section, the correctness of the undo transfor-
mation algorithm is considered. In order to show that the
undo algorithm in Figure 3 is correct, we show that the
functional equivalence between the code before and after
the removal of transformations is preserved.

1. Claim; Functional equivalence between the code before
and after the removal of transformations is preserved.
Proof: Assume that functional equivalence is not
preserved. This implies that a transformation has become
unsafe and should be reversed, but the undo transforma-
tion algorithm does not detect the change in safety. A
transformation can become unsafe due to transformation
reversal. Thus, it is possible that a transformation
becomes unsafe, then safe again, and subsequently unsafe
during the removal of a transformation in an independent
order. Consider the last time that the transformation
becomes unsafe during the rippling of transformation
reversal.

Assume that the analysis for affected transforma-
tions (line 28 in the algorithm) incorrectly finds the
transformation to be safe, so the transformation remains
unsafely in the final code. This implies one of the follow-
ing: (1) The transformation is safe at this point and
remains safe until the end of the undo process. This is a
contradiction. (2) The transformation is safe during this
safety analysis and a later transformation removal causes
the transformation to become unsafe. This is a contradic-
tion to the assumption that this is the last time that the
transformation becomes unsafe. (3) The transformation is
not found to be unsafe because it was already reversed
and no longer exists. This implies that an earlier transfor-
mation removal caused it to become unsafe, detected its
unsafety and reversed it. This is a contradiction to the
unsafe transformation still being in effect at the end of the
algorithm.

Thus, the analysis for the unsafe transfonmation
must find the transformation to be unsafe and reverse it.
This is a contradiction to the assumption that functional
equivalence is not preserved. [

5. Implementation and Experiments

This section describes the implementation - of
transformation application and undo facilities and
discusses the experimental design and results of the
experimentation. Our primitive functions use most of the

352

Standard Edit Functions (SEF).for the PDG provided by a
PDG C Compiler (PDGCC) [5]. The transformation
application and undo facilities are implemented . in our
program parallelization and visualization tool, PIVOT [7].

The PIVOT user interface is implemented on Sund,

SPARC machines under the X Window environment.
The X window tools and libraries used for the implemen-
tation of PIVOT prototype include TAE+ (a user interface
builder), Tcl/tk, and the Open Software Foundation’s
Motif Toolkit.

The experimentation examined programs in the
HOMPACK test suite and pdgccbenches for applicable
transformations and enabled transformations. Source
code was obtained for HOMPACK from netlib@ornl.gov.
HOMPACK is a suite of FORTRAN 77 subroutines for
solving non-linear systems of equations by the homotopy
methods. The C language is used for the front end of the
PDGCC system. Therefore, the FORTRAN programs
from HOMPACK were translated into C by using a pro-
gram, f2c, obtained from netlib@att.com that converts
Fortran 77 into C. Another set of test programs are ftp
from ftp.edel.edu:/pub/people/pollock. This directory
contains some programs that are accepted by pdgcc. The
directory contains programs from the Livermore loops,
the Stanford benches and some other C programs. Some.
modifications have been made to the C code so that it
could be accepted by pdgcc.

Similar to the experimental studies performed in
[13], seven transformations listed in Table 3 were chosen
to be a representation sample. Table 3 displays the names
and sizes of the programs involved in the experimenta-
tion. The table shows the comparison of program sizes
using C and the PDG. 'The number of loops existing in
each program is also shown in the table. Numbers in
other columns represent number of applicable transforma-
tions. Enabled transformations are denoted with com-
ments of enabling transformations.

Some of the interesting results obtained for the
HOMPACK test suite are discussed below. (1) Constant
propagation (CTP) is applicable for four programs in
Table 3. After we examined the applicable points in these
programs, we found they do have constant definitions like
"one = (float)1.0" that can be propagated to uses of that
constant. (2) Copy propagation (CPP) is a transformation
that can be frequently applied in the programs. Similar to
FUS, an additional statement of the final value of a for
loop statement is introduced. This implies that after the
application of CPP, some transformations like FUS or
INX may be enabled. As shown in Table 3, those pro-
grams with a comment (cpp) in the columns of INX and
FUS are applicable for transformations INX and FUS
after the application of CPP. (3) Loop Interchanging

Joint Conference of 1996 International Computer Symposium
" December 19~21, Kaohsiung, Taiwan, R.0.C.

#loops | CTP

_CPP

Source | #stmts | #nodes DCE | ICM INX FUS LUR
. dcpose 13 125 7T [1
fode 94 154 12, 11 1 1(cpp)
glunp | 32 57 . 5 4 1(cpp) 1
gmfads 123 204 10 7 1(cpp)
.hfunlp 67 80 2. 2 1(cpp)
initp 167 226 14 10 2 1
otputp 34 64 6 4 1 2
. polsys. | . 114 161 7 4 1(cpp) . 3
polyp 166 | 260 60 12 2 1 4(cpp) 7
: ’ . 1(icm)
qrfagf 61 85 4 1 3 1 3
rhojac 31 40 2 2
rootnf 84 138 8 1 7 1 1
rootns 72 106 3 1 2 1 1
sclgnp 179 295 28 24 1 2(cpp) 1
. . : 1(icm).
sintip 89 144 8 7
stepns 189 252 5 3 1 1
tanggf 76 96 5 3 5 1
bubble | 55 148 1 1
clinpack 163 591 11 1 2 2(inx)
hanoi ‘59 - 147 3
heapsort || 93 247 3] 4 .
" intmun 50 142 5 14 2 5(ctp)
loopl 33 81 2. | 3 . 2
loop7 35 117 3 2 1(lur) 3
loop8 48 282 ER Y 3 5
. loopl0 43 159 3. , 1 3
nsieve 111 281 6 -4 "2 1
perm 47 118 3 ' 2
puzzle 275 | 1186 44 28 26
queens 66 216 1 1

Table 3. Applicable transformations in the HOMPACK and pdgccbenches programs.

(INX) is applicable for three programs, gfunp, polyp, and
sclgnp. Also due to the introduction of a separate state-
ment by f2¢ for the definition of the loop final value, two
tightly nested loops are not tightly nested- anymore -after
the insertion of a statement between them. Therefore,
INX may be enabled by applying .CPP (e.g., program
sclgnp). (4) Loop Unrolling (LUR) is applicable for eight
programs in Table 3. These programs applicable for LUR
bave constant loop final values. For other programs, LUR
may be enabled after the application of constant pxopa
tion to the loop initial or the loop final v'ﬂue '

. Some of the interesting results obtamed for the
pdgccbenches are discussed below. (1) CTP is applicable
for 9 programs in Table 3. For program intinm, CTP
enables five FUS transformations. (2) INX is applic’able
for five programs. For program clinpack, two FUS
transformations ‘can be enabled by applying - INX (3)
Three FUS transformations are applicable in two pro-
grams, clinpack and loop7 and these transformations are
enabled by transformations such as INX and LUR. .(4)

LUR is applicable for 9 programs in Table 3; No data
dependences need to be verified for LUR and LUR will
copy. the-body of a loop that is executed at least once.

6. Discussions

This paper describes a unifying frameéwork to undo
code transformations. The technique employs inverse
primitive actions and the program dependence graph as
the intermediate representation, making it transformation
and language independent.. Pre and post conditions of
transformations are utilized to determine whether an
applied transformation rémains safe and whether it is
immediately reversible. Affecting transformations that

* disable the reversibility of the transformation are reversed

first. Then, the affected- transformations “determined by
checking “the “safety conditions of transformations are
reversed. With the undo facility supported, the. user can

try different altematives and undo unpromising transfor-

353

mations. .

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

O; (affecting opt)
ldisables reversibility(O;) .

undo_reciuest(Oj) edits
O; (undo) € unsafe(Qj)¢— " O; € affected opts
O; € affecting opts

disables safety(Ox)
Oy (affected opt)

Figure 4. Transformations to be reversed.

When a program is modified by edits, the safety
conditions of a transformation can be altered such that the
transformation is no longer valid without possibly affect-
ing the program semantics. Since all actions in Table 2
may result from changes to the program code by edits, the
reversal of a transformation can be viewed as restricted
forms of edits. If a transformation is not safe due to edits,
it is then reversed by using our undo algorithm.

Figure 4 shows the summary of transformations to
be reversed in an independent order. A transformation,
O;, needs to be reversed if it is under the user’s uyndo~
request, if it is unsafe due to the modification bxi,g,dZB or
the transformation rippling (affected by reversin preced-
ing transformations), or if it is an affecting transfogéation
that disables the reversibility of another transformation.
Figure 4 also shows the sequence of reversing transforma-
tions. Affecting transformations are reversed first, then
the transformation to be undone, and then affected
transformations due to the transformation rippling
(reverse-destroy). ' ‘

The results in this work are encouraging and this
research will continue. Soine preliminary results for
incremental transformations have been developed, and
further investigation is needed for various primitive edit
functions. The next step in this research will be to
develop techniques for incrementally parallelizing pro-
grams by edits. Experiments should be conducted to
obtain performance results for a sequence of transforma-
tions in different application points after the full imple-
mentation of data dependence update. ‘Also, experiments
could be conducted to compare the results of undoing
transformations in any order with the effort required for
total recompilation and reanalysis of transformations
when starting all over again. Another step will be to.
investigate techniques to automatically generate code for
the detection of the disabling actions of the safety and
reversibility - conditions of transformations from the
transformation specifications.

- 354

References

L

10.

it.

12.

13.

.14,

A: Aho, R. Sethi, and J. Ullman, in Compilers Principles,
Techniques, and Tools, Addison-Wesley Publishing Co. ,
Reading, MA, 1986.

F. Allen, M. Burke, P. Charles, R. Cytron, and J. Fer-
rante, ‘‘An Overview of the PTRAN Analysis System for
Multiprocessing,” Journal of Parallel and Distributed
Computing, vol. 5, pp. 617-640, 1988. :

F. E. Allen and J. Cocke, ‘‘A Catalogue of Optimizing
Transformations,”’ in Design and Optimization of Com-
pilers, Edited by Randall Rustin, pp. 1-30, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey 07632, March 1971.
R. Allen and K. Kennedy, ‘‘Automatic Loop Inter-
change,”” in Proceedings of the ACM SIGPLAN 84 Sym-
posium on Compiler Construction , pp. 233-246, 1984.
D. Berson, R. Bodik, C. N. Fiechter, and P. A. Kamp,
“PDG C Compiler User Manuals,’’ Department of Com-
puter Science, University of Pittsburgh, 1993.

C. R. Dow, M. L. Soffa, and S. K. Chang, ‘‘An Efficient
Technique to Undo Code Transformations,”’ in Proceed-
ings of 1994 International Conference on Parallel and

 Distributed . Systems, pp. 392-397, Hsinchu, ‘Taiwan,

December, 1994. ‘) .
C. R. Dow, S. K. Chang, and M. L. Soffa, “‘PIVOT: A
Program Parallelization and Visualization Environment,”
in 1994 International Computér Symposium, pp. 671-676,
Hsinchu, Taiwan, December 1994. - '

K. Kennedy, K. McKinley, and C.-W. Tseng, ‘‘Interac-

" "ltive Parallel Programming Using the ParaScope Editor,”

IEEE Trans. on Parallel and Distributed Systems, vol. 2,
no. 3, pp. 329-341, July 1991. .

D. B. Loveman, ‘‘Program Improvement by Source-to-
Source Transformation,”” JACM, vol. 24, no. 1, pp. 121-
145, January 1977. o

L. L. Pollock and M. L. Soffa, ‘‘Incremental Global
Reoptimization of Programs,’’ ACM Trans. on Program-
ming Languages and Systems, vol. 14, no. 2, pp. 173-200,
April 1992.

C. D. Polychronopoulos, M. Girkar, M. Haghighat, C.
Lee, B. Leung, and D. Schouten, ‘‘Parafrase-2: An
Environment for Parallelizing, Partitioning, Synchroniz-
ing, and Scheduling Programs -on Multiprocessors,’’ in
Proceedings of 1989 International Conference on Paral-
lel Processing, pp. 39-48, St. Charles, Illinois, 1989.

D. Whitfield and M. L. Soffa, ‘‘An Approach to Ordering
Optimizing Transformations,”” in Proceedings -of the
Second ACM SIGPLAN Symposium on Principles &
‘Practices of Parallel Programming, pp. 137-146, March
1990. ‘ S :
D. Whitfield, ‘A Unifying Framework for Optimizing
Transformations,’”” Ph.D.. Thesis, University of Pitts-
burgh, Technical Report 91-24 ,1991.

M. Wolfe, “‘Software Optimization for Supercomput-
ers,” Supercomputers, Class VI Systems, Hareware and
Software, Edited by S. Fernbach, pp. 221-238, Elsevier
Science Publishers B. V. (North-Holland), 1986.

