Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

OBRAD: An Object-Based Rapid Application Development
Method*

Wei.T. Huang, Jonathan Lee and Tai Lin Kuei

Institute of Computer Science and Information Engineering
National Central University
Chung-Li, Taiwan 32054

E-mail: wthuang@csie.ncu.edu.tw

Abstract ,

For almost every application, user’s needs are con-
stantly evolving. Thus, the system being constructed
is always at ‘a moving target [6]. This is primary
reason for that software fails to meet customer ez-
pectations. System development methods must take
into account that users, and their needs and envi-
ronment, change during the process. One of the best
ways is that software is constructed by using an evo-
lutionary paradigm, by which software maintenance
may take place in the specification and/or design
phases. We propose in this paper a software devel-
opment process based on object-oriented concept in a
rapid prototyping style. The development process con-
sists of: (1) statement of requirements; (2) specifi-
cation/design; (3) construction; and (4) validation.
This method 1s an integrated approach by using JSD,
VDM, Warnier/Orr diagram, automatic code genera-
tion technique, and visualizing software for validation.

Key words: Software engineering, Software life-
cycle, Object-orientation, Jackson System Develop-
ment (JSD), Vienna Development Method (VDM),
Warnier/Orr diagram, Rapid application develop-
memt (RAD), software visualization, CASE tool. -

1 Introduction

The concept of the traditional phased refinement
approach of software development (life cycle model)
perpetuates the failure to build an effective environ-
ment for the communication between end-user and
system analyst [15]. This is due to three reasons [9]:

o There is usually a significant culture gap between
the user and the developer and the way they com-
municate [5)]. :

o The user who is unfamiliar with information tech-
nology may have produced very vague require-
ments which could be interpreted arbitrarily by
the developer. .

" *This work was partially supported by National Science
Council, Republic of China, under Grant NSC85-2213-E-008-
005

The changes of requirement during development
is difficult to be truly reflected in the system spéc-
ification because of the communication gap be-
tween user and developer. As a result, a system
meets the requirements is a risky and error prone
activity. :

Unfortunately, even when a software developer uses
modern notations and techniques success is likely only
when the application is both well understood and sup-
ported by previous experience [4]. A software system
is constructed step-by-step through the phases of re-
quirements, specification, design and implementation.
People and developers can operate the system only
when the whole system is completed. Maintenance is
always done on the low level. The activity from re-
quirements to implementation should be repeated in
order to ensure the quality of modifications. Software
developement process is therefore accepted to be the
high cost of error correction, especially errors done in
requirements and specification phases. This kind of
?oﬂ];ware development approach is considered harmful
15].

In this paper, we propose an alternative develop-
ment process that a software system is defined at first

_in small, and a rapid prototype is evolutionary devel-

355

oped so that the user can interact with it and validate
or change the requirements if needed. By develop-
ing and delivering working prototypes of application,
the expectation gap between user and developer is re-
peatedly closed, so that the distance between what
is expected and what is delivered is negligible. This
way of development approach not only can manage
the changes of the requirements of poeple and envi-
ronment of the system, but also can prevent the prop-
agation of errors from specification. phase.

Figure 1 shows a process model of the evolution-
ary paradigm [19] that can promise the progress of
software development. As can be observed, the early
specification and design phases are unified and the
later coding and test phases' are eliminated from the
traditional software development process.

Requirements and specification, as the principal
activity in this paradigm, is very important for de-
veloping reliable, high quality and usable systems.
Developers can concentrate themselves on ’what’ in-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Analysis
*— 0Defining & Analyzing Realm of
the System (Data model)
" Specification/Design & ! .
Construction, V&T

08pecifying and Designing Abstract Data
0Constructing System

Maintenance Generating Code

— Executable Program

Figure 1: An Evolutionary Paradigm for Software De-
velopment. :

stead of ’how’ to do in the software development ac-
tivity. Maintenance is done on the highest level by
editing the specification. - Moreover, the executable
applications can then be built with incomplete speci-
fication (i.e., an evolutionary prototyping technique).
Another important issue is that, in the evolutionary
paradigm the reuse of system units is more abstract,
that is, the reuse of specification or design. This can
dramatically increase productivity and quality.

In this paper, we use the modeling technique of
JSD [11] to define and to analyze the (kernel) realm
of a system, and use abstract data type as the back-
bone of object-oriented software development. Soft-
ware functionalities are expressed by an extended
Warnier éOrr diagrams ; and system structures are de-
scribed by SoftVision graphical notations. The spec-
ifications of the entities which are identified by using
JSD" modeling technique are written by VDM nota-
tions. The Warnier/Orr diagram can be converted to
pseudo codes and then to any programming language.
It can also be directly transfered to the graphic lan-
guage, e.g., MicroSTEP [20], by which generating ap-

‘plications is incredibly simple.-

2 An Object-Based Software Develop-

ment Method .

We will describe in this section a software develop-
ment method which is on the basis of the data inher-
ent in an application. The whole development process
will be driven by the idea of object orientation:

1. Statement of requirements. The purpose of the
system is briefly stated. :

2. Entity analysis. The realm of the system is de-
fined by using JSD modeling technique. Entity
- and its basic operations are specified.

3. Specifying/designing the abstract data. Entity
and the basic operations are formally speci-
fied and designed by the Vienna Development
Method. S

4. Constructing the system. The software system
is constructed by reusing the basic operations

356

(by means of a CASE tool, e.g., MicroSTEP)

specified in step 3 by means of the extended
Warnier/Orr diagram.

9. Code generation. Pseudo codes are written and
converted to a programming language, or an ex-
ecutable program is automatically generated on
the basis of the system structure constructed in
step 3 by means of a CASE tool.

6. Visualizing software. Software system can be val-
idated by means of SoftVision notations. :

In order to explain this development process more in
detail, we borrow an example of a flight booking sys-
tem from [10].

2.1 The Statement of Requirements

A Flight Booking System: An airline company
schedules a number of flights between its Taipei base
and the main cities in Taiwan in one .type of com-
muter aircraft. The system will be operated by book-
ing staff. Customers may take a booking through
telephone or at an airport. The system will allow
a booking staff to do the following task:

¢ To book a flight for a particular passenger who
should provide his/her name, address, and flight
date. o

¢ To provide a listing of passengers who are cur-
rently booked on a flight. _—

e Tocancel a particular flight that has already been
booked for a particular customer. :

e To check whether there is an available seat for a
particular customer. :

The system must satisfy some constraints. For sim-
plicity, these constraints will not be explicitly reflected
in our system design. ‘ '

2.2 The Entity Analysis _

The first stage in the development method we pro-
pose in this paper is the identification of entities based
on the modeling technique of JSD. An entity is an ob-
Ject of interesting in an application which has associ-
ated with it a set of data and time ordered actions. An
action is an atomic event that operates on an entity
during a moment in time which cannot be decomposed
into any further actions. An-action must be relevant
and detectable. It will cause a response in the sys-
tem and eventually cause a database update or other
change in system state. There are two other concepts
which are also important: that of entity attributes and
action atiributes. The former are descriptions of an
entity; the latter are input data messages consumed
by actions. Entity attributes are created and updated
by an entity’s actions and are internal variables that
can be thought of as a kind of status record of an
entity, that is, entity attributes (or state vectors) de-
scribe the state of the entity. Since actions respond
to events in the real world, these events are communi-
cated to the system as data messages and are refered

to as the attibutes of an action.

Identification of Entities and Actions

1. Identifying entities. To identify the entities in
a system, there are three questions we should
ask [16]: what application problem is the sys-
tem to solve, what is the goal the system aims
to achieve, and what are the objects the system
responds to or manipulates? For example, in the
Flgiht Booking System, the application problem
that to be solved is to have a systemthat ad-
ministers the bookings of flights in Taipei base.
There are a number of goals: to allow a book-
ing staff to book a flight, to list passengers who
are currently booked on a flight, and to cancel
a particular flight. In the system, booking is the
entity that manipulates and customer is the en-
tity that responds to. Both entities carry out a
series of actions that are associated with action

attributes, and these actions either read or up-

" date the attributes of the entities.

. Identifying actions. There is a four-step process
that should be adopted to identify the actions in
a system [16]:

o Identify all the external events which hap-
pen in the real world.

¢ Find out how these events are communi-
cated to the system as input.

o Identify the system inputs, these will be ac-
tion attributes.

o Identify actions which are necessary to re-
~ spond to the messages contained within the
action attributes.

In order to describe this four-step process more
in details, consider again the Flight Booking Sys-
temn stated above. The external events that could
occur in such a system is as follows: the system
allows a booking staff to book a flight for a par-
ticular passenger over phone or at an airport, the
particular flight that has already been booked to
a particular customer could be canceled by the
booking staff, and the flight date and destina-
tion could be amended on customer’s request, the
system allows the booking staff to provide a list
with flight number and date of passengers who
are currently booked on a flight. In this exam-
ple, there are obviously four entities: a FLIGHT,
a SEAT, a CUSTOMER, and a BOOKING. Ty-
ing the actions and their attributes associted with
the entities together, we document the following
relationships partially:

Entities

e FLIGHT. Attributes: flight number, desti-
nation, date, time of departure.

e CUSTOMER. Attributes: customer name,
customer address, customer phone number.

357

Joint Conference of 1996 International Combuter Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

o BOOKING. Attributes: flight number,
date, customer name, customer address,
customer phone number.

e SEAT. Attributes: seat number.

Actlons
Entity CUSTOMER

e Create. Customer books a flight. At-
tributes: customer name, customer address
(with phone number).

o Amend. Customer changes his/her address.
Attributes: customer name, customer old
address, customer new address.

e Purge. Customer cancels a flight. At-
tributes: customer name, custorer address.

Entity BOOKING .

o Create. Booking staff books a flight. At-
tributes: flight number, date (including de-
parture time), destination, customer name,
customer address.

o Cancel. Booking staff cancels a particular
flight. Attributes: flight number, date, cus-
tomer name, customer address.

o Archive. Booking staff archives the book-
ing for customer. Attributes: flight number,
date, customer name, customer address.

3. Ordering actions in time. The next stage is to de-
scribe the entity life history (ELH) by ordering
actions in time. The Jackson’s graphical nota-
tion is used for this purpose. For our example,
the ELH of the flight and seat entities are not re-
quired since they do not carry out the creation,
deletion and amendment of the entity attributes.
The ELH of a CUSTOMER and that of a BOOK-
ING are shown in Figures 2 and 3.

4. Specifying basic operations. The final and impor-
tant step in entity analysis is to create a bridge
between entity analysis task and the process of
data design. In order to do this the low-level
basic operations should be identified. Basic op-
erations which are decorated with smaller, num-
bered boxes will be in some case in one-to-one
correspondence to the actions with which they
are associated. When an action is carried out
a number of basic operations are executed. The
basic operations of CUSTOMER and BOOKING
are also shown in Figures 2 and 3.

The basic operations will eventually be implemented
as subroutine calls on stored objects and provide input
into the design stage. In our Flight Booking System
the basic operations for the entity CUSTOMER, and
the entity BOOKING are listed as follows:

List of the Basic Operations

Entity CUSTOMER

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

CUSTOMER

Create Amendments | | Purge

0w

Amend

o

Figure 2: The Life History of a CUSTOMER with
Basic Operations.

BOOKING

Create Terminate

o

Cancel ° Archive

me =

Figure 3: The Life History of BOOKING with Basic
Operations.

1. createCust (custname, custaddr) creates a cus-

tomer with a name custname and address cus-
taddr.

2. checkCust (custname, custaddr) checks whether
a customer with a name custname and custaddr
is valid.

3. modifyCust (custname, oldaddr, newaddr)
amends a customer’s old address oldaddr to new
address newaddr with a name custname.

4. deleteCust (custname, custaddr) expunges the
customer with a name custname who has an ad-
dress custaddr from the system.

Entity BOOKING

1. checkSeat (fitno, fltdate, destination) checks
whether there is a seat available with flight num-
ber flino on flight date fltdate to destination.

2. bookSeat (fltno, fitdate, destination, custname,
custaddr) books a seat with fline on flitdate to
destination for the customer with a name cusi-
name and address custaddr.

3. checkBooking (fltno, flidate, custname) checks
that there is actually a booking made for the cus-
tomer with a name custname on the flight with
fitno on flidate.

4. deleteBooking (flino, fltdate, custname,; cus-
taddr) deletes the booking for the customer with
a name cusiname and custaddr on the flight on
date with flino.

5., archiveBooking (flino, fltdate, custname, cus-
taddr) archives the booking for customer with a
name custname and custaddr on the flight with
flino on fltdate.

2.3 Specifying Abstract Data

The next stage is to design abstract data type that
corresponds to the entities. An abstract data.type
(ADT)! is a collection of data and the operations on
that data. The specification of an ADT concentrates
on describing data by.the collection of operations that
operate on it. , .

The Vienna Development Method (VDM) origi-
nally used the Meta-IV notation as described by Jones
[12] and Bjorner & Jones [3] to describe a software sys-
tem in terms of abstract data types. In this way, soft-
ware is specified in purely logical terms without con-
sidering its actual machine representation. In VDM
a software system is characterized as a 'set of mod-
ules which each have an internal state consisting of a
co-existing set of variables. Variables may be typed
using primitive or ADT, which can be regarded as
the equivalence of a class in the concept of object-
orientation. The operator symbols are illustrated as
follows: ‘

Operations on sets

€ is a member of
n intersection
(@] union

Omperations on mappings

— maps to

U union

1 overwrite

\ restriction by
dom domain of

Logic noations

“not
< is equivalent.to
A and
\Y or

In this paper an ADT is the synonym of an object. Other

developement methods call it an abstract machine [1].

358

Some keywords:

ext external

rd read only

wr read/write

mk- funtion composite ADT instantiation
inv invariant

init intialization

An entity can be seen as an ADT or an object

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

operation ModifyCust (custname: Name, oldaddr: Address,
newaddr: Address)

ext = wr customer: Person
pre mk- Person(custname, oldaddr) € dom custorner
post customer = customer U

mk- Person{custnm, oldaddr) { mk-Person (custname,

newaddr)

operation deleteCust (custname: Name, custaddr: Address)

ext wr customer: Person

Class 1n. our a’ppr.oa(:h. We use t.'he VDM nOtatlonS pre mk- Penon(custna.mc, custaddr) € customer

to specify the entity and the basic operations as the —

f 110w1ng Speciﬁcation document 2 post customer = customer - mk- Person(custname, custaddr)
o .

Entity Definition

types
type declarations .
* declared variables types

state identifier of
state vectors
state definitions [inv invariant] (*optional*)

[init intialization] (*optional*)

Entity Definition end

operation operation definition list
ext variables information*
" rd identifier list: type
operation definitions . .
wr identifier list: type

pre expression

post expression

For example, the specification of the entity CUS-

TOMER is shown below:

CUSTOMER

types
maxbookings = 50
m

Seatallocations = Seatnumber —+ Person

Person:: name: Name

addr: Address

Seatnumber = b]
Name = String
Address = String

state CUSTOMER of
customer: Person

inv dom Seatallocations < maxbookings

operation createCust (custname: Name, custaddr: Address)

ext wr customer: Person
pre mk- Person(cusiname, custaddr) € dom customer
post customer = customer ‘U mk-Person(custname, custaddr)

operation checkCust (custname: Name, custaddr: Address) r: B
ext rd cust: Person

post Iy ¢> mk-cust {(custname, custaddr) € customer

2VDM can be applied not just to the specifications, but

The entity specified in this way can also be seen
as an absiract machine. The abstract machine is used
to draw attention to the fact that a specification of a
data type, together with the operations on that data
type, 1s rather like a specification of a machine. It is
something like a real machine in that it has bottoms
and knobs which can be used to trigger internal state
changes, and it has-a way of displaying information
about the internal state. For both real and abstract
machine, we should not be concerned with the exact
details of how they work, but only with what func-
tionality is provided by them. An abstract machine
can well represent any real-world object that is being.
modelled in the system. This is what object-oriented
design is about. Abstract machine can be operated
by a user via some sort of interface. In this paper, we
apply this concept to construct our software.

Given this kinds of specifications the various en-
tities can be implemented by the object-based or
object-oriented programming language such as Ada,
Modula-2, or C++, or eventually a business language
system: MicroSTEP [19].3

2.4 Specifying the Functionality

. The functional specification to be awvailable at a
later stage of software development has an effect that
few changes will impact on it. It is the principle
that object-oriented development allows the devel-
oper to delay considerations of detailed functionality
until late in software development, though an out-
line of functional specification may exist for cost-
ing estimation, and rough notes for anlysis purposes.
The notation we use to describe the specification is
Warnier/Orr diagram [14] because it is a popular and
compact graphical notation which describes the sys-
tem construction. In this paper, we use an extended
Warnier/Orr diagram to construct the system by the
basic operations specified and designed in step 1 and
step 2. : .)

The Warnier/Orr diagram enables the designer to
represent the software structure hierarchically in a
compact manner, and can be easily translated into
pseudo program. The main tool in a Warnier/Orr
diagram is the brace ’{’, also called universal which

3MicroSTEP is a trademark of SYSCORP International,

also to the design and implementation. For the syntax of VDM Inc. It is an executable specification language system, by which

laguage specification, readers may refer to [13] or [1}. software specification is specified by graphs.

359

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

shows decomposition of the system it depicts. Items
that do not decompose further are called elements. If
a data structure is represented by a Warnier/Orr dia-
gram, the elements are data elements; and if a process
of a system is expressed, then its elements are basic
operations. Various data and process structure can be
expressed by Warnier/Orr diagrams. The following is
the extended Warnier/Orr notations used in this pa-

per:
1. Sequence.

Begin
[entityl.Joperationl

program { [entity2.]Joperation2
[entity3.Joperation3
En

2. Selection.

Begin
operationl

program<{ @
operation?
End

3. Repetition:

Begin
program{ operation(n, m)
End

4. CASE structure.

Begin { get case value
case_vall : operationl

program { case value { case_val2: operation2
: ®
case_val3 : otherwise
End

5. Input/Output.

Syntax: operation (in: argument-1,...,argument-
n: out: argument; inout: argument), where ’in’
represents that the argument is the input, ’out’
the argument the output, and ’inout’ represents
that the argument palys the role of input as well
as output. Arguments are separated by comma.

6. (¥ comment *)

Here is an example to show the structure of
the execBookingCommand modules by applying the
extended Warnier/Orr notations. The other ex-
amples including Flight Booking System, execCan-
cellingCommand, execAmendingCommand, execList-
ingCommand, and execFinishingCommand are con-
structed in the same way:

Example: execBookingCommand (xBC)

e The Warnier/Orr Diagram

{
extractParameter { Out:custname,...

Begin In:fltdate
checkDate
Out:checked date

Begin
CUSTOMER.createCust {
@ 1

CUSTOMER‘createCust{ Qut: »
End

Qut: ..
checked date

In:fltdate,destination

xBC (1,n) ﬁ

FLIGHT.getFlightNo R
Out:fltno,flight status

Begin)
BOOKING.checkSeat{ In:...{ “
flight status @
BOOKING cheekSeat { Out: ’
End
In:custna,me,...{ .-

BOOKING.bookSeat
Out: 'Booked Seat’{ .

End

3 Code Generation Using CASE Tool

An alternative tool used to implement the software
system may be the CASE tool called MicroSTEP. Mi-
croSTEP promises the evolutionary software develop-
ment paradigm. Systems specified by the tool is well
modulized and highly modifiable. The principal op-
eration of MicsroSTEP is to create system specifica-
tion which can be directly transformed to executable
programs. The operation consists of the following ac-
tivities:

o Create the form of flow diagram which is con-
structed by data objects, process and links.

¢ Define the fields in each data object.
¢ Define the formats of reports and screens.

o Define the way to process input data objects to
produce output data objects.

These activities are supported by a graphic based
specification editors, namely, data structure builder,
format builder, activity builder, and flow control
builder. Moreover, the tool provides for the user
the facility of reuse. When one wants to invoke an-
other specification or database from current diagram,
he/she can create a call to the existing specification
or'a copy to the existing database. Once the spec-
ification is created, MicroSTEP builds the working
application through the following steps:

o Check specification for completeness and consis-
tency.

o Generate code in C++.
e Compile and link the code.

o Install the application for specific working envi-
ronment.

360

CHECK_COMMARD

f L v
BOOKING_STAFF DECODE_COMMAND*,
\
\

\
\ execQuitCommand
A\
Yy o o
O
[]
QUuIT-

Figure 4: The Flow Diagram for Flight Booking Sys-
tem using MicroSTEP.

Readers may refer to [20] [18] for the detailed de-
scription of the tool. The Warnier/Orr diagram
we specified in section 2 can be used as the ’con-
crete’specifications of the system for MircroSTEP.
Figure 4 shows the flow diagram for the top-level of
the Flight Booking System.

4 Visualizing Software

Here we introduce a graphical notations [2] called
-SoftVision which can be used to visualize software
structure. It is a fully integrated approach that shows
all the software development aspects at once. The
user and developer are then easily ”see software with
mind’s eye”. SoftVision contains all of the parts of
process, data, data flow, control flow, decision, paral-
lel operation, and their interaction in one kind of dia-
gram. The semantics of SoftVision is to put dataflow
diagaram, state transition diagram, structure chart,
flow chart and their interaction all together to help
developer ‘and user to analyze, design, and discuss
software system. ‘

The notation has the following advantages:

o It is simple, understandable, programmable and
easy-to-learn.

It facilitates mental simulation of software,

It is able to aggregate pieces of software together
on one diagram,

It is an effetive communication tool for user and
developer.

[]

It is able to express parallel process, and

It can be tailored to specific kinds of software
develpment method.

*

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Process

7~
up this : back out Data flow
e Stub I thisstab
Parallel operation .~~~
(path entry) .~
,k‘ﬂ,{> o PR >
VN 1l
\ \
o C /
\ AN Process |. /
i \ / P
\ \ = / :
Y \ i / /
\ N S
- .. Meration —

Figure 5: SoftVision Notations.

Note: #1 booking
#2 cancelling

Figure 6: SoftVision Graph for Flight Booking Sys-
tem.

Some of these advantages, of course, are shared by
other notations. Figure 5 shows the SoftVision no-
tations in an ”all-in-one” manner. Figures 6 visual-
izes the structure of the Flight Booking System. This
graph can be used to facilitate mental simulation of
the software.

5~ Conclusion

An object-oriented system requires three major
components [8] - abstraction, encapsulation, and poly-
morphism/inheritance. An object-oriented analysis
and design must demonstrate these three components.
We have demonstrated in this paper the concepts of
abstraction and encapsulation except that of poly-
morphism /inheritance. The mechanism of polymor-
phism/inheritance will be required in the near furture.

- The software development progression as shown in
Figure 1 is a kind of “middle-out” approach. It is

361

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

something like making snowball”. The phases to de-
velop the system are: (1) requirements definition, (2)
specification/design, (3) construction, and (4) valida-
tion. The advantages of this development paradigm
are: :

o The techniques we used are traditional, including
JSD (modeling phase), Warnier/Orr Diagram,
pseudo code, and CASE tool for code generation.
They are integrated together to construct the sys-
tem. These techniques are well established and
well known by any software developer.

e VDM notations are used to formalize the specifi-
cations of the entities and their associated basic
operations so that the specfications are defined
unambiguously.

e The system can be automatically implemented by
a CASE tool. In this way the development time
can be dramatically shortened and a prototype
of the system can be rapidly created for review.

e SoftVision is a kind of graphical tool that can be
used to facilitate the mental simulation of soft-
ware. We can use this tool to validate whether
we have developed the right software. Though
SoftVision is not a method, it can be tailored to
specific kinds of software development method,
such as we developed in this paper.

However, a complex large scale system is still to
be developed in order to validate the evolutionary
paradigm for the software development method. An
inheritance mechanism is still needed to be estab-
lished.

References
[1] Andrews, D. and D. Ince, Practical Formal
Methods with VDM, McGraw-Hill, London,

1991.

[2] Bennet, W.S., Visualizing Software - A
Graphical Notation for Analysis, Design, and
Discussion, Marcel Dekker, Inc., New York,
1992.

(3] Bjgrner, D. and C.B. Jones, Foramal Speci-
fication and Software Development, Prentice
Hall, Englewood Cliffs, N.J., 1982.

[4] Blum, B.I. and R.C. Houghton, ”Rapid Pro-
totyping of Information Management Sys-
tems,” ACM SIGSOFT Software Engineering
Notes, Vol.7, No.5, 1982, pp.35-38.

[5] Christensen, K. and K. Kreplin, ” Prototyp-
ing of User Interface,” in Approach to Proto-
typing {edited by R. Budde, K. Kuhlenkamp,
L. Mathiasen and H. Zullinghoven), Spring-
Verlag, Berlin, 1984, pp.58-67.

[6] Davis, A.H., E.H.Bersoft and E.R.Comer,
”A - Strategy for Comparing Alternative
Software Development Life Cycle Models,”

- 362

IEEE Transactions on Software Engineering,
Vol.14, No.10, Oct. 1988, pp.1453-1461.

[7] Fertuck, Len, Systems Analysis and Design,
Wm. C. Brown Publishers, 1992.

8] Henderson—Sellefs, B. A Book of Object-
Oriented Knowledge, Prentice-Hall, Engle-
wood Cliffs, NJ, 1991.

[9] Huang, W.T., ”Rapid Software Prototyping
Using Z and CASE Tool,”"in Proc. of NCS’93,
Chiayi, Taiwan, 1993.

[10] Ince, D., Object-Oriented Software Develop-
ment with C++, McGrgw—Hill, London, 1991.

[11] Jackson, M.A.,.Systems Development, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1983.

[12] Jones, C.B., Software Development: A Rig-
orous Approach, Prentice Hall International,
Englewood Cliffs, N.J., 1980. "

[13] Jones, C.B., Systematic Software Develop-
ment using VDM, 2nd Edition, Prentice Hall,
New Jersey, 1990.

[14] Martin, James and Carma McClure, Struc-
tured Techniques for Computing, Prentice
Hall, Englewood Cliffs, NJ, 1985. .

[15] McCracken, D:D. and M.A. Jackson, ”Life
Cycle Concept Considered Harmful,” ACM
SIGSOFT Software Engineering Notes, Vol.7,
No.2, 1982, pp.29-32.

[16] Sutcliffe, Alistair, Jackson System. Develop-
ment, Prentice Hall, New York, 1988.

[17]) Warnier, J.D., Logical Construction of Pro-
grams, Van Nostrand Reinhold, 1974

[18] SYSCORP International, MicroSTEP Refer-
ence Manual, Version 1.6, SYSCORPT Inter-
national, Inc., Austin, TX, 1992.

[19] Yeh, R.T., ”An Alternative Paradigm for
Software Evolution,” in Modern Software En-
gineering: Foundation and Current Perspec-
tive (edited by P.A. Ng and R.T. Yeh), Van
ll\Iostrand Reinhold, New York, 1990, Chapter

[20] Yeh, R.T., ”MicroSTEP: A Business Defini-
tion Language System,” in Modern Software
Engineering: Foundation and Current Per-
spective (edited by P.A. Ng and R.T. Yeh),
Van Nostrand Reinhold, New York, 1990,
Chapter 17.

