Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Constructing Flow-Based Editors with a Model-View-Shape Architecture’

Chung-Hua Hu

Feng-Jian Wang

- Institute of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Abstract

During the software design phase, different graphics
applications such as flowcharts or data-flow diagrams
may be used to depict the software structures and their
contents. Although the functions provided by these
graphics applications are different, the drawing facilities
may be similar and the diagrams produced, in general,
are flow-based. This paper presents a model-view-shape
architecture, an extension of the model-view-controller
architecture; to the construction of a general flow-based
editor. On the basis of the model-view-shape architecture,
we used Visual C++ to develop a sample application,
called the flow-based program editor, and the associated
class hierarchy on the Windows environment. The flow-
based program editor is intended to provide a flow-based
editing environment for the user to visualize and
construct a program with the control-flow graph(s). To
demonstrate the practicability of the architecture, we also
constructed another programming tool, called the syntax-
directed text editor, by extending the class hierarchy of
the flow-based program editor.

Keywords: visual programming, flow-based editor,

syntax-directed editor, model-view-controller architecture,
control-flow graph

1. Introduction

It is commonly accepted that software visualization
facilitates the comprehension and maintenance of the

* This research has been supported in part by the National
Science Council, under contract number
NSC 86-2213-E-009-019.

391

existing software [1]. During the software design phase,

~ different graphics applications such as flowcharts or data-

flow -diagrams may be used to depict the software
structures and their contents. Although the functions
provided by these graphics applications are different, the
drawing - facilities may be similar and the diagrams
produced, in general, are flow-based.

A flow-based diagram, mostly used to describe the
information such as a control signal, an event, or a data
item flowing from one entity to another, usually. contains
two kinds of primitive graphical notations: node and link.
A node represents an entity such as a software element. A
link, associating two nodes, describes the relationships
such as control-flow or data-flow relationships between
these nodes. Fig. 1 shows two typical flow-based diagrams
applied " in structured programming. For example, a
hierarchical function-call graph is used to describe the
calling relationships between functions, while a control-
flow graph is used to describe the execution sequence of
statements within a function.

In this paper, the model-view-shape- architecture,
which is adapted from the model-view-controller [2][3]
and document-view [4] architectures, is proposed to
constructing general flow-based editors. In terms of the
functionality of the model-view-shape architecture, a
flow-based editor is decomposed into three main modules
with a layered structure. The top-layered module,
implemented with a set of model objects, is responsible
for managing the application’s data structure and state.
The middle-layered module, implemented with a set of
view objects, is responsible for managing the application’s
presentation. The bottom-layered module, implemented
with a set of shape objects, is responsible for drawing

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

graphical primitives and handling input events. For each
editing action performed by "the user, these objects
communicate with each other via message passing to
complete the graphics display and application-dependent
analysis.

On the basis of the model-view-shape architecture, a
flow-based program editor and the associated class
hierarchy have been constructed. The flow-based program
editor, running like a syntax-directed editor [5][6],
provides several useful editing facilities for the user to
visualize and construct a program effectively with the
control-flow graph(s). To demonstrate the practicability of
the architecture, we also constructed another programming
tool, called the syntax-directed text editor, by extending
the class hierarchy of the flow-based program editor.

/(rﬁ;r& ' lvoid ComputeMax(int array[ArrayLength])l
,A/ ! : : = X
ONOYNG, [max= o]
12-1/<2-2\—
@D (D
A hierarchical

function-call graph

True
Falsa—
True
O

interaction. By treating the three modules as independent
components, it is helpful for realizing encapsulation and
software reusability. , :

_In this paper, a modified object-oriented approach
to the implementation of the three modules, called the
model-view-shape ~ architecture, is presented. The:
association relationship between the three modules and
the model-view-shape triad is shown in Fig, 2. That is, the
application, user-interface, and graphics-handling modules
correspond to the three groups of model, view, and shape
objects, respectively. For each module, the functionality is
handled by objects of the same group. These objects are
cooperative, i.e., they communicate with each other via
message passing in order to handle each editing action.
Communications between -different modules, such as
sending a command. from one module to another, are also
implemented via message passing between objects of
different groups. The functionality and design issues of
the - model-view-shape architecture are discussed ~as
follows. ' :

- Application Module

{management of application's state

Model objects

and behavior)
Application ui Application Ui
command command command command
L~ v v

User-interface Module
(management of application's

View objects
display and event interaction) ’

ul Drawing ul Drawing
command command command command
v X v
Graphics-handling Modu ‘Shape objects

{handling of graphics drawing)

Input event

Feedback Feedback

Input event

User User

A control-flow graph

Fig. 1. Two typical flow-based diagram applied in
structured programming.

2. The model-view-shape architecture

To construct an interactive and flow-based editor with the
capability of presenting and manipulating graphics, we
decompose a flow-based editor into three modules: the
application module, the user-interface module, and the
graphics-handling module. As shown in the left side of
Fig. 2, the application module is responsible for managing
and manipulating the application’s data structure. The
user-interface module is responsible for managing the
_ application’s display and directing the interaction. The
graphics-handling module, which interacts with the user
directly, is responsible for drawing the graphical
primitives and handling the details of the actual

Fig. 2: The model-view-shape architecture.

AThbe shape objects

As mentioned in Section 1, a flow-based diagram
usually contains two kinds of primitive graphical
components: node and link. From the viewpoint of object-
orientation, all nodes and links are treated as shape
objects (or say graphical objects) such that each kind of
graphical components ¢an be defined with a class. In
general, attributes contained in a shape class are used to
store the graphical layout and, the relevant information
such as the dimension and coordinates of a graphical
component. Methods contained in a shape class are
classified into the following two types: _
® Graphics-handling methods. ‘For example, there

should be methods to draw the graphical layout at

the specific location.
® Event-handling methods. For example, there should
be methods to detect and interpret the user-input

392

event. . .

The main design issues concerned with shape
classes involve: 1) How many kinds of graphical
components need to be constriucted to shape classes? 2)
How can a new graphical component be easily added to
the existing component library, i.e., the shape class
hierarchy? 3) How can a graphical component be general
enough so that it can be reused for the construction of
other flow-based editors? - In addition, a graphical
component may represent different semantic meaning in
different kinds of flow-based diagrams, application (or
diagram) semantics should be involved in elsewhere
rather than in graphical components.

The model and view objects
Since the model and view objects are responsible
for managing the application’s behavior and presentation,
they may be viewed as application-dependent objects.
That is, for different flow-based applications such as
control-flow or state-transition diagrams, different model
and view classes may need to be identified and
constructed. Application semantics, usually specified via
attributes associated with the handling methods, should be
placed on the model and view classes.
In a model class, attributes are used to - store
application-dépendent - information such as ‘the
application’s data structure and state information, while
methods are responsible for managing the -application’s
state and behavior. For each model object, it is usually
associated with a (default) view object, which is
responsible for managing the visual presentation. Thus,
when a model class is constructed, the construction of the
associated view class should be examined subsequently.
A view class has an aggregation relationship with
one or more shape classes. That is, a view object consists
of a or a set of shape objects, which are responsible for
actual presentation. Attributes contained in a view class
are used to store the higher-level presentation information
such as the view dimension. Methods contained in a view
class are classified into the following two types:
® View-management methods. For example, there
should be methods to calculate and retrieve the
view’s dimension. '

® View-presentation methods. For example,
should be methods to present the view’s layout.

The main design issues concerned with model and
view classes involve: 1) How many kinds of model and
view classes need to be identified and constructed? 2)
Which methodology (or guideline) should be employed to
classify these model and view classes into the class
hierarchies in a systematic and effective manner?-

there

393

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3. A sample application: the flow-based
program editor and its implementation

On the basis of the model-view-shape architecture, ‘we
used Visual C++ to develop a sample application, called a
flow-based program editor (FBPE for short), on the
Windows environment. The FBPE is intended to_provide
a flow-based editing environment for the user to construct
a program by drawing the associated control-flow graph.
This section beings with an overall description of the user
interface, including program editing and presentation,
whéreas the design and implementation issues of the
FBPE will be described later on.

3.1 Graphical representations for language constructs

To facilitate the user to visually and rapidly depict a
control-flow graph, it’s desirable for the FBPE to provide
‘graphical representations (i.e., graphical templates) for
high-level
language constructs supported . in various kinds of
imperative programming languages, we designed a set of
graphical templates for some well-known language
constructs with the syntax employed in the C language
subset. Fig. 3 shows several sample graphical templates
for structured - statements.
which are the building blocks for program construction,
can be regarded as the graphical extensions (or visual
expressions) to a conventional - text-based prog,rammmg
language

- Falser)
-True TruFals ¢
<Statement> ’

language constructs. After studying the

These ' graphical templates,

<Statement>

If-Then statement template

True

<Statement>

While statement template

If-Then-Else statement template

<Statement>

-

False

Do statement template

resslon>

- Case-| Llsbl
(Statement)

For statement template Switch staternent template

Fig.-3: Example graphical templates for associated
language constructs. ’

<Expresslon>

True

<Statement>

<Assignment-Stmnt>

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

3.2 Editing and display activities in the FBPE

Language-based editing model for program
construction

The editing model supported by.the FPBE is
basically syntax-directed. That is, the FBPE directs the
user to insert a predefined graphical template into the
placeholder of another template. The above insertion
operation, regarded as a language command [5], is
performed when the user selects a valid (i.e., syntactically-
correct) template from a template-transformation menu.
The locations of the graphical templates, including
coordinates and dimensions, are calculated automatically
by the FBPE. Fig. 4 shows the control-flow graph of the
ComputerMax function before and after the user inserts
an if-then statement template into a statement
placeholder.

WEE (D Bash e o Conin a1 EMiciog A AV A MBI EE: R Flow Basci Lanoruoid ConpatéMaxintAcray A RS 5 B
— -~ — . X 24
{vold ComputeManint array{ArrayLengthl] [vokd ComputeMas(int arrayfArrayLength]
max o arrayd)|

£ 7 ki) b e . o
Fig. 4: An example of menu-driven template selection.

When a placeholder represents a simple language
construct such as an expression or an assignment
statement, the FBPE provides the visual and on-line
editing facility for the user to input program texis on the
placeholder directly. Fig 5 shows the animation layout of
a control-flow graph while the user is modifying the
content of an expression. In summary, the basic
editing model for program construction proceeds in top-
down fashion by inserting templates or program texts into
the existing placeholder at the current editing position.

Fig. 5: n ekle via the visual and on-line ed‘
facility.

Variable declaration

Since a control-flow graph is used to depict the
conirol-flow information of a program, an auxiliary dialog
box is provided (by the FBPE) for the user to examine and
edit the declaration information of variables in the
program. For example, as shown in Fig. 6, while the user
edits an assignment statement,“i = 0”, one can
issue a language command called “Edit Variable
Declaration” to examine all (local) declared variables in a
given function.

Y Tiow Asca TIr woil ComplisMAan b Uareav A, BRI EN

i

Fig. 6 An example of variable declaratio.

Comment editing
I’'s ‘commonly accepted that . program
documentation such as comments is helpful for

understanding existing programs. To maintain the
relationships between the source codes and the
accompanying comments effectively, for each language
construct (e.g., a statement or a function) our FBPE
allows the user to edit the comment (in a dialog box) by
issuing a language command called “Edit Comment” on
the language construct. Fig. 7 shows an example of
comment editing to illustrate how the user examines and
organizes the comment for an if-then statement.
The input comment is then bound to the corresponding
language construct, and will be shown along with the
language construct. When the language construct is
moved to the other place, the accompanying comment will
be moved, too.

Fig. 7: An example of coent eiting.

394

The template-based editing facilities

A structured program usually can be viewed as a
hierarchical tree structure of nested blocks. A block in the
FBPE corresponds to a (graphical) template which may
represent a structured statement or a function. The congept
of the template-based editing model entails that the user
interacts with the FBPE in terms of high-level and well-
defined language constructs, rather than low-level and ill-
defthed symbol (or character) sequences. Thus, the
template-based editing model introduces the following
two main advantages. First, a program can be constructed
more effectively through the composition- and
manipulation of the constituent templates. Second, the
structural correctness of a program is ensured since the
constituent templates are well-defined, i.e., syntactically
correct.

The current FBPE provides three kinds of template-
based editing facilities: 1) the cut/paste, 2) the zooming,
and 3) the expansion/reduction facilities. The cut/paste
facilities are described as follows, while the zooming and
expansion/reduction facilities are left to be discussed in
[71.

The cut/paste editing facilities

The cut/paste editing facilities are more and more
popular and can be viewed as the basic editing operations
for the modern text editors. By utilizing the facilities, the
user can issue a cut command for ordering the FBPE to
move a piece of selected texts into a temporary storage
buffer, called the clipboard, and then retrieve the cut texts
back by issuing a paste command. From the viewpoint of
the FBPE, the piece of selected texts to be cut or pasted
always corresponds to a high-level and well-defined (i.e.,
syntactically-correct) language construct. For example, as
shown in Fig. 8, while the user selects the graphical
template of an if-then statement and issues a cut
command, the source code and comment of the i f-then
statement will be moved to the clipboard and the
original placeholder reappears.

3.3 A class hierarchy based on the model-
view-shape architecture

For a flow-based program editor applying the
functionality discussed in the preceding sections, a class
hierarchy based on the model-view-shape architecture was
designed for the construction of our FBPE. As shown in
Fig. 9, the CModel, CView, and CShape class
hierarchies correspbnd to model, view, and shape classes,
respectively. The CShape class hierarchy consists of two
subclass hierarchies; one for node classes and the other for
link classes. For these nodes and links, common attributes
and generic drawing/interaction methods are defined in
classes Cilode and CLink. On the basis of the CShape

395

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

class hierarchy, a new graphical component can be
constructed as a customized subclass, which is able to
inherit (i.e., reuse) attributes and methods defined in the
superg es).

B Haw BASEd EUor ol CoNpuTMAint ar s BRTRIES

Lzt
s

Nold Computehaxint arraylArrayLength)

it €
{aLocal vartables "1” W “max are tsed (o store Uie Index of
[oTay” and aray”

CShape

P —
-{ CStraightlink |

 CSideToToplink

'
 CSideToSidellnk ¢

(s

I :
-|~ CAssignmentStmnt H CFuncCalStmntView
CFuncCaliStmnt

e
 CStruchredStmptView ©
TSt~
-] ClThenElseStmntView
SRS
HCWnie
reFerSiwe

T :concrete class
71 : Abstract class

Fig. 9: A class hierarchy for the FBPE.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

The construction methodology for the model classes
is summarized as follows:

1. For each type of language constructs in a target
language, a corresponding model class is identified.
A model class usually contains 1) attributes for

-storing language-dependent information such as
source code, comment, and semantic attributes, and
2) methods for performing both syntactic and
semantic analyses as well as language-dependent
functions.

2. The identified model classes are then classified into
a hierarchy - according to the functionality of
language constructs. For example, both if-then-
else and switch statements are the selection

statements, each of which is also a kind of structured’

statements. Thus, classes representing different types
of language constructs can be easily classxﬁed into a
hierarchy shown in Fig. 9.

The construction methodology for the view classes is

summarized as follows: -

1. For each model class, it is associated with a (default)
view class. A view class usually contains 1)
attributes for storing visual-dependent information
such as the template-transformanon menu, the view’s
dimension, and the shape objects for actual
presentation, and 2) methods for managing visual-
dependent information.

2. The view classes are classified.into a hierarchy on
the basis of the following two factors: 1) the
structure of the model class hierarchy, and 2) the
granularity of a view object. The term “granularity”
is applied to characterize whether a view object is a
unit view, i.e., a view containing a single node, or a
composite view, i.e., a view containing a set of nodes
and associated links. Example unit and composite
views shown in Fig. 9 are the view objects
instantiated from the CSimpleStatementView
and CStructuredStmntView class hierarchies,
respectively.

While the user edits (or modifies) a program, a
program tree, an internal representation of the program, is
constructed and maintained by the FBPE. Each node in
the program tree represents a specific kind of language
constructs such as a statement or an expression.
During the construction of a program tree, a tree node is
represented by a model object associated with a view
object. Fig. 10 shows an example program: tree
representing an if-then-else statement and
illustrates the relationships between model, view, and
shape objects.

396

: Object

: Display dimension
of a view object

I Object reference

Fig. 10: Relationships between model, view, and shape
objects.

4. The second sample application: the syntax-
directed text editor and its implementation

Visual programming [8][9][10] is intended to make the
programming process easier and efficient, and make a
program more readable and maintainable by displaying
the program in the form of diagrams. The FPBE, rooted at
the technique of visual programming, is expected to meet
the above goals. From the user’s viewpoint, the visnal
programming model is more attractive than the traditional
programming model, i.e., text-based editing. In terms of
the display capability of a program, the textual layout
usually takes less screen space than the graphical layout.
To enhance the practlcablhty of the FBPE, the syntax-
directed text editor' (SDTE for short) was constructed as
an alternative tool for programming. The right side of Fig.
8 shows the textual layout of the ComputeMax function
in the SDTE. By implanting knowledge such as language-
dependent information in the SDTE, the editor has the
capability of displaying a program, including source codes
and comments, in the pretty-printed textual layout.
Compared with the FBPE, the SDTE is also a
(control) flow-based program editor. The control-flow
information of a program is represented implicitly via a
sequence of control statements such as selection and
iteration statements. The only difference between the two
editors is that the SDTE is of no need to draw graphics
such as nodes and links. Apart from the graphics-handling
facilities, the SDTE performs the same functions as
provided by the FBPE. That is, all language and editing

' In our previous work [11], we had implemented a
syntax-directed text editor, called the language-based
editor, on the Smalltalk environment.

commands supported by the FBPE are also supported by
the SDTE. Thus, the SDTE can be viewed as a simplified
version of the FBPE.

To customize the SDTE, the class hierarchy for the

FBPE is reexamined. On the basis of the model-view-

shape architecture, the class hierarchy is extended as

follows:

® The CModel class hierarchy. Since the model
classes are responsible for managing language-

dependent information, all attributes- and . methods -

contained in these classes are reused.

® The Cview class hierarchy. Although the - user
interfaces of the two editors look different; one is
graphics-based and the other is text-based, the view-
management methods such as
CalculateViewDimension and
GetViewDimension can be reused. In terms of
the view-presentation methods such as PlaceView,
Reducevlew and ExpandView, they need to be
refined.

® The CShape class hierarchy. The CLink subclass
hierarchy is of no use for the SDTE. In terms of the
CNode subclass hierarchy, the = event-handling
methods such as PtInNode- are reused, and the
graphics-handling methods such as DrawNode need
to be refined.
From the above procedures of customlzmg the

SDTE, it can be seen that, instead of being reconstructed

or performed a major modification, the existing class

hierarchy is extended through the refinement of attributes -

and methods contained in the existing classes. Moreover,
new attributes and methods may be added to the existing
class hierarchy if necessary.

5. Conclusion

In this paper, a model-view-shape architecture is proposed
to the construction of flow-based editors. For an
application designer who wants to construct such a flow-
based editor, the functionality and design issues (of the
architecture) discussed-in the paper provide useful design
guidelines. By following. the - model-view-shape
architecture,- we constructed a sample application, called
the flow-based program- editor, on the Windows
environment. The flow-based program editor provides
several useful editing and display facilities for the user to
visualize and construct a program effectively with the
control-flow graph(s). Although these editing and display
facilities are specified for the customized editor, the
conceptual editing models such as comment editing,
template-based editing facilities are also applicable for
other flow-based editors.

During the construction of the flow-based program

397

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

editor, the associated class hierarchy was implemented in
C++. To demonstrate the class hierarchy of good
extensibility, we constructed the second sample
application, called the syntax-directed ‘text editor, by
refining the class hierarchy. The refinement process shows
that, with the object-oriented techniques such as
inheritance and polymorphism, the class hierarchy is
extended only through the refinément of attributes and -
methods contained in the existing classes.

Reference

[1] Linos, P. K. et al, “Visualizing. program
dependencies: an experimental study,” Sofiware -
Practice and Experience, Vol. 24, No. 4, April 1994,
pp- 387-403.

[2] Lalonde, W. R. and Pugh, J. R., Inside Smalltalk, Vol. -
2, Prentice-Hall International, 1990.

[3] Goldberg, A., Smalltalk-80: The Interactive
Programming Environment, Addlson-Wesley, 1983.

[4] Class Library Reference. - for .the Microsoft
Foundation Class Library, Mlcrosoft 1996. ,

[5] Medina-Mora, R. and Feiler, P. H., “An’ incremental
programming environment,” IEEE Transactions on
Software Engineering, Vol. 7, No. 5, Sep. 1981, pp.
472-481.

[6] Teitelbaum, T. and Reps, T., “The cornell program
synthesizer: a - syntax-directed programming
environment,” Communications of the ACM, Vol. 24,
No. 9, Sep. 1981.

[7]1 Hu, C. H. and Wang, F. J., “Implementing multi-

"~ layered editing facilities in a flow-based editor,”
Proceedings of the 7" Workshop on Object-Oriented
Technology and Applications, Taiwan, pp. 388-396.

[8] Ambler, A. and Burnett, M., “Influence of visual
technology on the * evolution of langunage
environments,” JEEE Computer, Oct. 1989, pp. 9-22.

[9] Burnett, M., Goldberg, A., and Lewis, T., Visual
Object-Oriented Programming, 1995.

[10]Shu, N. C., Visual Programming, 1992,

[11]Hu, C. H., Wang, F. J, and Wang, J. C,
“Constructing a language-based editor . with object-
oriented techniques,” Journal of Information Science
and Engineering, Nov. 1995, pp. 1-25.

