Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

A Specification Language Based on Attribute Grammar for Compiler
Construction

Ji-Tzay Yang

Feng-Jian Wang

Department of Computer Science and Information Engineering
National Chiao-Tung University
Hsinchu, Taiwan, R.O.C.

Abstract

Attribute grammars (AGs)[2][8] are a useful formalism for
the specifications of compiler. Recently, success on compiler
construction systems based on AG[4][5] shows the feasibility to
use AG as the core of a compiler construction. In this paper, a
specification language AG++ is presented to help specify a
compiler in AGs. AG++ supports object orientation and helps
integration between compiling phases such as lexical
scanning, syntactic analysis, parsing tree construction, and
semantic analysis. In- addition, AG++ introduce several new
constructs for help with writing terse compiler specification. A
prototype of AG++ specification translator -- AG++/C is also
presented to transform these constructs into AG primitives and
generate compiler source files

Keywords: attribute grammars, compiler generation, -object
orientation, specification language

1. Introduction

Although the compiler structures are getting complicated, the
compiler technologies are getting mature to overcome the
complexity. It is common to apply compiler. generators such as
scanner generator, parser generator in several stages of compiler
construction. Traditional generators for compiler construction
were usually regarded as convenient but slow tools before. [3]
showed that a program generated scanner, whose source code is
automatically optimized by applying complicated analysis, gives
better = performance over hand-coded ones. Successful
experiences on producing commercial compiler product by
applying compiler generating tool were also reported. Thus, it is
feasible to construct an efficient compiler product with a
specification language based on AG theory and state-of-art
compiler generating tools.

We present an AG-based specification language AG++ which
introduces several new high-level AG constructs as well as

" facilitates the progress of compiler construction theory. In an AG
system using AG++, compiler desingers can use off-the-shelf
compiler generators and AG++ together to construct a complete

. compiler with the flexibility of AG++.

Features of AG++ also support software development
methodologies, such as modular decomposition and object-
orientation. The modular construct adopted in AG++ helps a
large and complicated compiler specification to be decomposed
into several smaller managable modules. For example, a C++

grammar[11] can be decomposed into the following modules:
keywords, expressions, , declarations, declarators, class
declaration, statements, pre-processor, templates, and exception
handling. The object-orientation in AG++ is characterize by its
class construct, inheritance and message passing mechnism, used
for descrlbmg parsing tree nodes. Consequetly, primitives used
in object-oriented design methodology such as class, inheritance,
message passing can be directly expressed by AG++. Reuse of
AG++ specifications can be also achieved by the modular and
object-orientation constructs of AG++.

By inspecting compiler specifications written in AGs such as
[7], we can extract several useful AGs computation patterns.
Examples include those for accessing non-local attributes and
duplicating code for nodes with similar behavior. These patterns
are abstracted in AG++ by means of higher-level constructs. The
abstraction can be implemented with the higher-level AG
constructs, as in section 4, to produce more concise compiler
specification.

In section 2, the attribute grammar and compiler constrniction

_ systems based on AG are introduced. The AG++ model and its

design decision are presented in section 3. In section 4 a set of
higher-level constructs and their examples are presented. Finally,
an implementation of AG++C and a complete AG++
specification are presented in section 5.

2. Attribute grammars

An attribute grammar is based on a context-free grammar
G=(N,T,P,2), where N is a finite set of nonterminals, T is a
set of terminals, P is the set of production rules, and Z is the
starting symbol. In an attribute grammar, each symbol XeNUT is
associated with a set of attributes A(X) which represents the
property of the symbol X. The attribute a, whlch is an element of-
A(X), isdenoted by X.a.

A set of of attribution rules R (p) which defines the value of
attributes is associated with a production rule p. Each attribute
should be defined by exactly one attribution rule r in R (p) of
the form: . '

r: X..o._ao(—f (X, -1, 00, Xm .ax), where
p is defined as Xo>X: X2 .. Xn,)
a; is the attribute associated with symbol Xm ,
0<m;<n, and 0<igk.

An evaluator for AG computes the attribute values defined by
the attribution rules according to the evaluation plan which can
be obtained by analyzing the non-circular data dependency graph
of attributes.

398

Several tools and systems based on AG have been developed
to help compiler constraction. Elif4] and Cocktail[5] dre famous
AG-based systems from which some significant compilers were
built, Many AG systems are associated with a structured
language to specify the attributes declaration and attribution
rules. LIDO is a specification language in Eli system, which
provides high-level AG constructs and inheritance. An extensive
survey for AG systems[10] has summarized the features appeared
in various AG-based compiler generating system.

3. The characteristics of AG++

3.1. AG++.model'

AG++ is a language mainly focused on semantic specification;
it also supports lexical and syntax specification. An AG++
compiler such as AG++/C reads the AG++ specification, and
then generates the compiler (source) code in traditional
programming language such as C or C+-+.

Figure 1 shows an AG++ environment based on C++ and one
external compiler generator. It depicts the components and the
relationships among them when building a compiler product. A
compiler designer can specify his compiler in AG++ for
constructing compiler front-end. When writing a specification in
AG++, the desinger can store the compiler specification
facilitated with AG++'s object-orientation for future reuse. The
specification can also be helped with existing AG++ library. The
C++ class library in the figure can be any “off-the-shelf” one.
Without loss of generality, for the rest context, we use lex and
yacc to replace the scanner and parser generators in the figure
respectively.

Here, we choose AG++/C as the role of AG++ compiler in
Figure 1. With respect to the AG++ users, AG++/C can be
regarded as a code generator which abstracts the analysis of AG
dependency and generation of evaluation sequence. In addition,
AG++/C translates our higher-level constructs in the AG++
specification into AG primitives. The AG evaluator swb

- performs the scheduled attribute evaluation rules at run time of
the compiler product.

As in Figure 2, AG++ compiler consists of the following basic
components:

‘® AG++ front-end, which parses the AG++
specification and constructs the partially-decorated
parse tree,

a8 Attribute analyzer, which analyzes and flattens the
attributes and attribute evaluation rules described in
the semantic class hierarchy. It also generates
auxiliary atiribute evaluation rules and dependency
to support the higher-level constructs of AG++.

2 Dependency analyzer, which computes the visit
sequences of the AG evaluator according to the
attribute dependency flattened by the aitribute
analyzer.

B8 Code generator, which outputs the code of lexical
analyzer, parser generator, and AG evaluator for an
AGH+ specification.

3.2, Design decisions for AG++ language

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The syntax and functionality of AG++ has experienced several
refinements over years{13]{14][15]{16]. During previous years,
AG++ was mainly improved by adding new features and lifting
the restriction of the langauge. Many de$ign decisions have been
made behind the revision of AG++:

Application domain with a specific paitern: AG++ is
a specification language for semantic. analysis- and
translation for compiler construction. When writing a
semantic specification for semantic analysis, the
compiler designer usually needs to access attributes of
remote nodes and collects attributes scattered in the
parsing tree nodes. Such programming patterns can be
supported directly by the AG++ language constructs.

scanner) scanner in C++

Figure1. External view: architecture of the AG++ system

() AGH-+ scanner spec :

AG++ syntax spec L)

)
code {—>
‘gen

6
R

(1) semantic node specification

(2) semantic nodes with faz attribute dependency
(3) semantic nodes with scheduled visit sequence
{4} scanner specification

(5) syniax specfication for parser generator

(6) evatuator in C4+

Figure 2. Internal view: basic components of the
AG++ compiler

Design guideline: Keep the language features as small

- as possible. A new feature is included into AG++ only
if no exsiting features to achieve the new feature
efficiently. Nevertheless, current version of AG++ is
inevitably larger than any other comtemporary AG
specification notation due to the rich language
constructs proposed by AG++,

399

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

. Object Abstraction: Although the goal of AG++ does
not become an object-oriented specification lanauge,
its underlying paradigm is much influenced by the
object-oriented concept. For instance, the inheritance,
aggregation, message passing " in object-oriented
paradigm are mapped into AG++ primitive INHERITS,
COMPONENT, and PROTOCOL Tespectively.

. Modularity: Modular constructs of an AG
specification language help the decomposition and
reusability of AG specification. [17] also discussed the
modularity and reusability of attribute grammars.
AG++ provides the primitives MODULE, IMPORT,
and EXPORT for this reason.

. Integration With Reuse: Some tasks in compiler
construction aré not suitable when applying generative
techniques * totally. AG++ is designed to support
compositional-reuse technique such that the reusable
software component' can be -integrated with AG++
seamlessly. _

. Attribute Evaluation In Target Language: Most AG
specification langauge request the users to write
attribute evaluation rules in a specialized langauge. In
contrast; AG++ is designed as extensions to the hybrid
of lex, yacc, C++, and our 'higheplevel' constructs,
users with lex, yacc, and C++ experience can easily
become acquainted with constructing compiler in
AG++.

4. Language constructs introduced in
AG++

Most works on AG system are concerned more with the
efficiency of the system (i.e. on the performance of the AG
evaluator). However, in designing AG++ system, we paid more
attention on providing higher-level constructs to reduce the
efforts for writing semantic analysis specification. The following
subsections give an overview the AG++ language constructs.
Appedix A lists part of the AG++ grammar in BNF.

4.1. Modularity

AG++ allows a compiler specification to contain multiple
AG++ (semantic) modules. The constructs EXPORT and
IMPORT define the scope of identifiers in semantic classes. The
following code fragment describes that the identifier SymA for
some semantic class in the module foo is globally accessible,
while the identifier SymB for some semantic class is imported
from the module bar.
MODULE foo

EXPORT SymA ;
FROM bar IMPORT SymB ;

Figure 3. An example of using modular construct

4.2. Lexical and syntactical specification

Constructs in Figure 4. demonstrates that users can specify the
lexical and syntactical specification in a similar way like lex and
yacc in AG++. The abstract, context, and terminal semantic

400

classes mentioned here are to be described in section 4.3.
The syntax of attribute specification for AG++ can be
described as follows. That a terminal semantic class itemis to
be returned can be described as @<item>, i.e., a special symbol
‘@’ followed by the term <item>. In addition, the string
recognized by the scanner must be stored in the pre-defined
attribute of item. @<> denotes that the ASCII value associated
with the scanned character is returned to the parser.
@@<abstract_S> defines the abstract semantic class of non-
terminal symbol S. @<one_item> and @<two_item> are the
context semantic classes assigned to the two production rules { S
— item}and {S — item item} respectively.
SLEXICON
%{

// place to include libraries for lexical
scanner

%}

White [\ \n\r\t]

A [a-2zA-Z]

%%

{Ay+ @<item>

{White} @{ cout << “skip\n”; @}
(.1 @<> ’

$SYNTAX

%{

// place to include libraries for parser
// generator

%}
%% .
S @@<abstract_S>
: item @<one_item>
| item ',’ item @<two_item>
’
Figure 4. Specifying lexical and syntactic

rules in AG++.

4.3. Semantic classes

Due. to object-orientation, the constructs mentioned in this
subsection can usually find their corresponding counterparts in
the C++ class constructs [17). A semantic class is a C++-like
class describing the behaviors and semantics of compiler objects:
such as terminal symbols, non-terminal symbols, and production
contexts. In AG++, terminal symbols, non-terminal symbols, and
production context are described by- terminal semantic classes,
abstract semantic classes, and context semantic classes
repectively. By distinguishing above semantic classes, AG++
compiler can choose proper manipulation for grammar objects
according to the their semantic classes. For example, if class A is
declared as a términal semantic’ class, AG++ compiler will
automatically assign the scanned string to the inherited variable
text of semantic class A’s instance. to help the integration of
scanning and parsing stages. ‘

A traditional C++ class consists of two parts to describe the
behavior of objects: (1) data member declaration, and (2)
function member declaration. A typical semantic class also
consists of the following subsections declaring either data or
function members of the semantic class:

® COMPONENT: The aggregation relationship of a
context semantic class is specified.
® ATTRIBUTE: The attributes for the semantic class are

declared. . .

® PRIVATE: Local attributes for a semantic: class is
declared.

® STATIC: Attribute evaluation rules are described.

® SITE: Reference paths to access remote attributes are
defined. .

® PROTOCOL: Message handlers for a semantic class
“are defined.

COMPONENT, ATTRIBUTE, and SITE subsections together
are analog to the data memebers part of a C++ class, while
STATIC and PROTOCOL subsections together are analog to the
member functions part of a C++ class. PROTOCOL and SITE
will be described further in section 4.4.

A primitive INHERITS is introduced to AG++ to support the
inheritance * hierarchy of semantic classes. In Figure 3,
binary_expr defined in $SEMANTIC section is an abstract
semantic class using INHERITS construct. It specifies the
behaviors of the nonterminal symbol binary_expr defined in
$SYNTAX section. In addition, add_expr and max_expr defined
in ¥SEMANTIC section are example use of context semantic
classes; they describe the béhayiors of the production rules
{binary_expr > expr + expr} and { binary_expr 2

‘max’ (' expr ',’ expr ‘)’ } respectively.
%SYNTAX ’
expr @@<expr>
: binary_expr @<....>
| uniary_expr @<....>
binary_expr @@<binary_expr>
1 exXpr ‘+' expr @<add_expr>
| ‘max’ ‘(' expr *,’ expr ‘)’ @<max_expr>
/]l
$SEMANTIC
#include <iostream.h>
const int OP_ADD = 1;
const int OP_SUB = 2;
#define max(a,b)

((a)>(b)?(a): (b))
// stuff for C++
%%
// abstract class for symbol expr
ABSTRACT CLASS expr
$ATTRIBUTE
@{ int @<result> @)}
$STATIC
@{ cout << “The result is” << @<result> <<
endl ; @)
$END
// abstract, for symbol binary_eéxpr

ABSTRACT cLAass binary_expr mmeriTs expr
$ATTRIBUTE
@{ int @<lhs>,
$STATIC
a{
swith(@<op>) {
case OP_ADD:
@@<result>
break;
case OP_MAX:
@@<result>
break;’
default:
cout << “Warn: Bad op_type” << endl ;

@<rhs>, @<op> @}

@<lhs> + @<rhs>;

= max(@<lhs> @<rhs>);

’

}
@}

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

$END

crass add_expr INHERITS binary expr
$COMPONENT el : expr(l), e2 : expr(3)
// alias expr(l) to el

/7 expr(3) to e2

$STATIC

@{ @@<lhs> = @<el.result> ; @}

@{ @@<rhs> = @<e2.result> ; . @}

@{ @G<op> = ADD_OP; @}

$END

CLASS MAX_EXPr INHERITS binary expr
$COMPONENT . el : expr(3), e2 : expr(5);
$STATIC .

@{ ee<lhs> = @<el.result> ; @}

@{ @@<rhs> = @<e2.result> H @}

@{ @e<op> = MAX OP; @}

SEND

Figure5. Using the semantic class inheritance construct.

4.4. Higher-level constructs

According to the definition of traditional AG, a paring tree
node can only access the attributes resides in the nodes the node
directly connects. Without the help of proper constructs, users of
AG. systems need introduce lots of auxiliary attributes
declaration and attribution rules additionally. The following
constructs in AG++ replaced those awkward auxiliary attributes
and attribution rules to help the users concentrate on. the
semantic analysis and produce terse AG specification.

44.1. Remote access

For each non-local attribute access, a set of temporary
attributes and auxiliary attribution rules should be defined along
the accessing path to pull in the non-local attribute. In Eli, the
specification language LIDO provides simple constructs
INCLUDING and CONSITUENT to describe part of above
remote access. AG++ adopts these constructs and provides a
more powerful expression of remote access -- size expression[12],
for this AG programming pattern.

The construct INCLUDING(X) is used to access the nearest
parsing tree node X along an straight up-warding path, while the
construct CONSTITUENTS(X) is used to collect a group of nodes
with symbol X in the subtree rooted at the accessing node. Both
constructs can only access the nodes along straight paths (i.e.,
the access path can either going upward or downward.) The site-
expression is a regular expression on the alphabet defined as the
set of labels for parsing tree. arcs. Site expression gives more
description power over INCLUDING and CONSTITUENTS in
terms of the set of attribute access paths described.

A remote access can be prefixed by a cardinality specifier such
as SINGULAR, AT_MOST_ONE, AT_LEAST_ONE, RANGE(NI,
N2) and EXACT(N) to restrict the number of nodes accessed by
the remote access expression. Those cardinality specifiers are
analog to the regular expression (pattern), (pattern)?, (pattern)+,
and (pattern){N1,N2}, and (pattern){N} respectively.

Figure 6 demonstrates the use of INCLUDING and
CONSTITUENT in AG++. The site expression remote_c
%INCLUDING(X) Up Downto_3rd_cChild specifies a
typical attribute access path which goes up to the nearest node
labeled X, goes up to X’s parents via the arc labeled Up, then

401

Proceedings of International: Confetence on Distributed
Systers, Sftware Engineering and Database Systems

goes down to the . third child via the arc labeled
Downto_3rd_Child.

// examples of simple Remote Access and
‘site-expression

| %COMPONENT

' fields = %AT_LEAST_ONE NameList
%CONSTITUENTS (Name)

// %AT LEAST ONE is cardinality test

// %POST_ORDER is the traverse order

%SITE

remote_a = %INCLUDING(X) ;

remote_b = %CONSTITUENTS (Y) ;

remote_c¢ = %INCLUDING(X) Up
Downto_3rd_Child H

remote_d = %AT_LEAST_ONE %POST_ORDER
% CONSTITUENTS (Y)

Figure 6. Using remote access and site expression
construct

4.4.2. PROTOCOL

A protocol defined inside a PROTOCOL section provides an
interface for foreign nodes to invoke a sequence of attribute
computations of the callee and returns the resulft to the protocol
caller. The PROTOCOL section defines which’ messages to be
accepted and how to handle these messages.

Figure 7. shows the application of PROTOCOL to compute
the difference between the maximum and minimum elements in a
set of attributes of two nodes. Instead of using remote access for
all the four attributes in foo from barl or bar2 to compute the
difference of the maximum and the minimum, a protocol
max_min_diff is defined in foo. The application of protocol can
(1) reduce the number of remote access channels and the
required auxiliary attributes, (2) reduce the coding efforts,
because the code in a protocol such as max_min_diff needn‘t be
duplicated into barl and bar2, and (3) hide the implementation
detail of foo’s max_min_diff from barl and bar2.
%SEMANTICS ' ’
%{

#include <LEDA/list.h>

// import the C++ class library LEDA
%}

// in semantic class’s protocol
// section CLASS foo
$ATTRIBUTE
@{ int @<al>, @<a2>,
%PROTOCOL
max min_diff: @{
int max_min_diff(int b){
list<int>1st;
lst.append(@<al>);
lst.append(@<a2>) ;
lst.append(@<a3>);
lst.append(@<ad>);
1st.append(b);
return lst.max() - lst.min{()
}
@}
// END OF PROTOCOL max_min_ diff

@<a3>, @<ad>; @}

/] mmmmm e e
CLASS barl
$ATTRIBUTE @{ int @<bl>; @}

L

402

$SITE se = (site expression to access £&50)
$STATICS
$ACTION @{
cout << “The max_min diff \
of node foo and me is:”
<< @@<ge.max iiin diff> (@<bl>)
<< endl ;
@}

J] memm e e e ccmmmeee e
CLASS bar2
$ATTRIBUTE @{ int @<b2>; @}
%SITE se = (site expression to access f£oo)
$STATICS
tag2:
e{
@<diff>=Q@R@<se.max min diff>(@<b2>) ;
@}

Figure7. Using PROTOCOL céﬁs’i'ruct

4.4.3. SEQUENCE and PARALLEL

The SEQUENCE and PARALLEL constructs inside a STATIC
section enclose the attribution rules as nestable blocks. Both
constructs describe the evaluation sequence of attribute
evaluation rules and indirectly introduce the inter-rule attribute
dependency which involves attribute dependency across attribute
evaluation rules, contrast to the intra-rule attribute dependency
due to a single attribute evaluation rule. The rules enclosed by a
SEQUENCE block must be evaluated sequentially; the rules
enclosed by a PARALLEL block can be evaluated in parallel.

The attribute evaluation rule following keyword ACTION
denotes that it has no DO (defined-occurrence) attributes.

Figure 8 is an example demonstrating the use of the constructs
to describe the dependencies between the attribute: evaluation
rules.

// a trivial example of sequence and
// parallel constructs to:
// 1l.construct a new list joined by
// two lists from RHS symbols el and e2,
// 2.£find the maximum and minimum elements
// 3.compute the difference of max and min
%SEQUENCE %{

tagl:

@@<elt_list> =

@<el.elt_list> + @<e2.elt_list>;
e}

%PARALLEL %{
tag2: @{
@@<max_elt> =
find_max_elt (@<elt_list>) -;
- @}
tag3: @{
‘@@<min_elt> =
find_min_elt(@<elt_list>)

~

@}
%}

tag4:
@<min_max_diff> =
@<max_elt> - @<min_elt> ;
e}
%}

Figure 8. Using SEQUENGE and
PARALLEL constructs

5. An AG++/C implementation and a
specification example

AG++/C is a language processor for AG++ specification
langauge. It should translate and integrate lexical, syntactic, and
semantic ' specifications written in AG++ to the source of
correspoding generators or evaluators. Currently, we choose lex,
yacc as the output for lexical and syntactic analysis respectively.
The output target is changeable when necessary, i.e., it is
possible to change the target from lex to more efficient one such
as RE2C[3]. The evaluator for AG++ is output as C++ coded
after the translation of higher-level constructs and analysis of
attribute dependency. :

5.1. Environment

A prototype for AG++/C is developmented under UNIX. The
user interface for the AG++/C is basically in command line
fashion with consideration for furthur integration into GUI such
as X-windows. The C++ class library LEDAJ[9] is-chosen as an
aid for our implementation due to the massive manipulation on
tree structure and data dependency analysis for attributes in
AG++/C.

The transformation algorithms for the higher-level constructs
of AG++ are developed and under implementation in AG++/C.
The tranformation of remote access construct described in
section 4.4.1. are generalized by the algorithm proposed by [12].
The transformation alogrithm for constructs described in section
4.4.2. and 4.4.3. can be found in [17].

The algorithms for attribute dependency analysis and
evaluator design can be found in [1]. We choose to implement
static attribute evaluator that accepts strongly non-circular AG
for AG++/C, which gives more efficiency over dynamic attribute
evaluator and accepts larger subset of AG according to the

- survey in [10].

52. An AG++ specification example

Figure 9 shows a simple but complete AG++ specification for
an arithmatic expression calculator. AG++/C translated the
specification and analyzed the attribute dependency to produce a
set of compiler source codes in lex, yacc, and C++.
$MODULE expr
// Input for the expression calculator:
1/ 100 + max (1, 2) + min{(3, 4)

/1l - 10 - max (1 , 2)
// Result:
// 93
$LEXICON
D{0-9]
W[\t\n\r}
%%
{D}+ @<NUMBER>
("max" | "min") @<OP_MINMAX>
[+-*/] ‘a<>
{Wi+ e{
cout << "Nothing to do.\n" ; @}

$SYNTAX

$start " ans
$left RS
%%

ans @@<ANS>

403

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

$STATIC

expr @<do_ans>

~ e

expr @@<expr_ctx>
: OP_MINMAX '(' expr ',' expr ')‘*
@<compare_expr>

expr '#4' expr @<add_expr>

|

| expr '-' expr @<sub_expr>

| NUMBER @<number_to_expr>
$SEMANTIC

#define GetMax(a, b) \
({a) > (b)) ? (a) : (b} ;

#define GetMin(a, b) \
((a) > (b)) ? (b) : (a) ;

%} .

%%

[/ === m -

ABSTRACT CLASS ANS

$ATTRIBUTE @{ int @<result>; @}

$END

[/ =—mmmmmm e -

CLASS do_ans INHERITS ANS

$COMPONENT expr ;

@{ @@<result> = @<expr.value>; @}
@{ cout << "The value is %d\n" <<
@<result> ; @}
$END
PR e Db Lt ettt -
ABSTRACT CLASS expr_ctx
$ATTRIBUTE @({
int @<value>;

CLASS compare_expr INHERITX
$COMPONENT - op_type : OP_MINMAX,

left : expr(3),
right : expr(5) ;

$STATIC
e{ .
string s = @<op_type.text>;
if (s == "max") {
@@<value> =
@<left.value>, @<right.value>);
} else if (s == "min")
@e<value> =
@<left.value>, @<right.value>);
}
@}
$END
F A e S e b LD Tt -
CLASS add_expr INHERITS expr_ctx b
$COMPONENT
left:expr(l), // alias expr{l) to left
right:expr(3); // alias expr(3) to right
$STATIC '
e{
@@<value> = @<left.value> +
@<right.value> ;
@}

CLASS sub_expr INHERITS expr_ctx
$COMPONENT
left : expr(l), right : expr(3) ;
$STATIC
@{ e@@<value> = @<left.value> -
@<right.value> ;

CLASS number_to_expr INHERITS expr_ctx

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

$COMPONENT =n : NUMBER ; Generated ~ Compiler,” ACM Transactions on
$STATIC
@{ @@<value> = atoi(@<n.text>) ; @} g’;?gn;rg;nmg Language and System, Sep, 1995, pp.
$END -
= e e e [11] - Stroustrup, B., The C++ Programming Langguage, 2™
$END _expr ed., Addison-Wesley, 1991.
Figure 9. A complete AG++ specification for [12] Wu, P.-C. and Wang, F.-J.: “A Generalized Model of
expression evaluation” Remote Access for Attrlbute Grammars,” Technical
report No. CSIE-93-1005, Department - of Computer
6. Conclusion and future work Science and Information Engineering, National Chiao-
: . Tung Unviersity, Taiwan, R.O.C., Oct 1993.

We present a semantic spegification language AG++ which (13] Wu, P.-C. and Wang, F.-J.: “A Semantics Specification
provides higher-level constructs which can avoid writing tedious Method for Compiler Construction,” Technical report No.
specification. A prototype implementation of AG++/C which CSIE-93-1004, Department of Computer Science and
accepts subset of AG++ specification is also presented. In Information Engineering, National Chiao-Tung
addition to make AG++/C to accept full set of AG++, future Unviersity, Taiwan, R.O.C., Oct 1993.
directions of the AG system include to provide more useful [14] Wu, P-C. and- Wang, FE.-J.. “An Object-Oriented
higher-level constructs as well as to integrate it with GUI Specification for Compiler,” ACM SIGPLAN Notices,
environment and other aided tools for a comfortable compiler , Vol. 27, No. 1, Jan: 1992, pp. 85—94.
construction environment. The efficiency of the AG++ system {15] Wu, P.-C. and Wang, F.-1.: “Applying Classification and
will be achieved by adopting proper compiler generating Inheritance into Compiling,”, ACM OOPS Messenger,
techniques into AG++ instead of inventing new ones. Vol. 4, No. 4, Oct. 1993, pp. 33—43. ,

. [16] Wu, P.-C., Young, K.-R, and Wang, F.-I., “Generating
Bibliography Compilers Based on an Object-Oriented Specification
[1] Alblas, H., “Attribute Evaluation Methods,” Attribute (COOCS)' b the P "’“‘;é‘g"?;z "fTI 992 ""e"";‘(‘)fl"“’

- Grammars, Applications, and Systems, Lecture Notes in lgi'ép uter Symposium (), Taiwan, PP -

Computer Science, No. 545, Springer-Verlag, 1991. .)

[2] Alblas, H., “Introduction to Attribute Grammars,” in (17] gang, ,"T"S Th: I?es1gn Land Implen;entahgn Qt:l a
Attribute Grammars, Applications, and Systems, Lecture cemantxc. ,? ‘;VICI 1cat1c')Ir;1 . ar];gu age 1or ¢ Compx er
Notes in Computer Science, No. 545, Springer-Verlag, onstruction,” Master Thesis, Department of Computer
1991, Science and Information Engineering, Natlonal Chiao

[31" Bumbulis, P. and Cowan D.D., "RE2C: A More Versatile Tung University, Taiwan, 1995.

Scanner Generator,” ACM Letters on Programming A s *
endix A. AG++ grammar

Language and Systems, Vol 2, Number 1—4, March— pp 1 A G+ gra ar exce_rptlon

December, 1993, pp. 70—84. /e e e e ool */

(41 Gray, RW,, Heuring, V.P., Levi, S.P., Sloane, A.-W. and 1y ONF of MG+ 4
Waite, W.M., “Eli: A Complet, Fexible Compiler A TTTTTTTTTTTTTmIITIIIT e /
Construction System,” Communications of the ACM, Vol : AG_modules
35, No. 2, Feb. 1992, pp.121—131. ac i aul

< : : _modules
[5] Grosch, JI., “GMD Toc?lbox for .Compller Cf)nstruct}on, : AG_modules AG_module
also known as Cocktail”, Compiler Generation Project,
GMD Forschungsstelle an der Universitaet Karlsiuhe, ;
1989. (via anonymous ftp:/ftp.gmd.de//gmd/cocktail/) AG_module
. & . :MODULE VAR

[6] Kastens, U. and Waite, WM., “Modularity and lexicon_section
Reusability in Attribute Grammais”, Acta Informatica, syntax_section
Vol. 31, 1994. . semantic_section

n Kastens, U., Hutt, B., and Zimmermann, E., “Appendix A: ; END_MODULE ~ opt_VAR
Attribute Grammar for PASCAL” GAG: A Pratical /* #### Note #### */

Compiler Generator, Lecture Notes in Computer Science, /* lexicaqn_t_:szct_ion anddsyn;ax_/section
.) are omitted in appendix *
No. 141, Sprmger Verl?g, 1982.) /* BEEE SEMANTICS #4#4 */

[8] Knuth, D.E, “Semantics of Context-Free Languages, semantic_section
Mathematical Systems Theory, Vol. 2, No. 2, 1968, pp. : SEMANTIC PP_SEPARATOR class_defs
127—145. . :

o) 1 _def

[91 Mehthom, K. and Naher, S., “LEDA: A Platform for S lass_defs class_def
Combinational and Geometric Computing,” .| class_def
Communications of the ACM, Vol. 38, No.1, 1995, pp. i
96—102 class_def

: . . : class_qualifier VAR

[10] Sloane, AM., “An Evaluation of an Automatically

404

inherit_clause
class_body
END_MODULE

i

class_gqualifier

: ABSTRACT CLASS

| cLass

| TERMINAL

inherit_clause
INHERITS bases

i

bases
: bases ',' VAR
| var

class_body
classrbody class_item
| class~item

;
class_item
attr_section
component_section
class_static
site_section
| private_section
| protocol_section

' . "
/* #### COMPONET #### */
component.. section
: COMPONENT component_lists ‘';*
i
component_lists
: component_lists ';' component_list
| component_list
component_list’
: component_list ',' component
| component .

component
<t VAR
| VvAR_MOU VAR
| VAR_MOU VAR * (‘' NUMBER ')’
| site

| /7% s#48 sTTE #448 */
site_section

SITE sites
sites
sites site ';°
| site ';°
site
¢ VAR_EQ cardinal travel site_alphabets
H
cardinal
: SINGULAR
AT_MOST_ONE

AT_LEAST_ONE
EXACT '(' NUMBER ')°*

travel
: PRE_ORDER

POST_ORDER

IN._.ORDER ' (' NUMBER ')'

REVERSE PRE_ORDER

REVERSE POST_ORDER

REVERSE IN_ORDER '(' NUMBER ')'

405

~ Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

site_alphabets
* site_alphabets site_alphabet
| site_alphabet

site_alphabet
: INCLUDING '(' VAR ')
| CONSTITUENTS '(' VAR ')*
| VAR

;
/* #### ATTR #### */
attr_section

: ATTRIBUTE ATTR_BLOCK

H
/* #### PRIVATE #### */
private_section
: ¢+ PRIVATE ATTR_BLOCK

/* #### PROTOCOL #### */
protocol_section
: PROTOCOL protocols

protocols
: protocols protocol
| protocol

’
protocol
T .opt_tag ATTR_BLOCK

’
/* #### STATIC #### */
class_static

.1 . STATIC static_list

’
static_list

: static_list static_item

| static_item

’
static_item

: static_compound

| static_simple
static_simple

: opt_tag ATTR_BLOCK .

| opt_tag FOREACH VAR OF ATTR_MARK

ATTR_BLOCK
| opt_tag ACTION ATTR_BLOCK

;
static_compound
: opt_tag PARALLEL LPBRACE static_list
RPBRACE
| opt_tag SEQUENCE LPBRACE static_list
RPBRACE
opt_tag
: VAR_MOU

!

/* &### End of Grammar #### */

