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Abstract

In this paper, we consider the problem of path-based
multicasting on wormhole-routed hypercubes. A minimum
set of routing restrictions based on the strategy proposed
by Li [4] is used for both unicast and multicast. To cor-
rectly perform multicast operations, we proposed the
natural list approach to order the destination nodes. The
proposed approach can be proved to be deadlock-free for
both one-port and multi-port systems. Furthermore, it
creates only one worm for each multicast operation, and
provides adaptive shortest paths between each pair of
nodes in the multicast path. The potential adaptivity pro-
vided by the proposed approach is superior to previous
works. Between each pair of nodes in the multicast path
with distance k, on the average, there are at least
(k+1)1/2F paths. Unicast and broadcast can be treated as
degenerated cases and use the same routing algorithm.
Therefore, the proposed algorithm offers a comprehen-
sive routing solution for communication on hypercubes.

1. Introduction

Multicast is a collective communication service in
which the same message is delivered from a source node
to an arbitrary number of destination nodes on a parallel
computer. Both unicast, which involves a single destina-
tion, and broadcast, which involves all nodes in the net-
work, are special cases of multicast. Multicast communi-
cation has several uses in large-scale multiprocessors,
including direct use in various parallel algorithms,
implementation of data parallel programming operations,
such as replication and barrier synchronization [13], and
support of shared-data invalidation and updating in sys-
tems using a distributed shared-memory paradigm [5].
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Wormbhole routing has been widely adopted recently
due to its effectiveness in inter-processor communication
[1], [9]. With wormhole routing, each message is divided
into a number of flits. The header flit(s) carries the ad-
dress information and governs the route while the re-
maining flits of the message follow in a pipeline fashion.
The pipelined nature provides two attractions. First, in the
absence of channel contention, the network latency is
relatively insensitive to the path length [9]. Second, only
small flit buffers are required for each router [9].

To support multicast communication, different ap-
proaches had been considered in previous researches.
Some of them used the unicast-based strategy to imple-
ment the multicast communication [8], [12]. In this strat-
egy, if there are k£ destination nodes, then & unicasts will
be generated to send the message. However, this strategy
raises a problem that the increased traffic load resulted
from those unicasts may hinder the system performance.

In order to minimize the amount of nctwork traffic,
some researches considered the path-based multicast rout-
ing. In this approach, a multicast path consists of a set of
consecutive channels, starting from the source node and
traversing each destination in the set. However, there are
possible deadlocks due to dependencies on consumption
channels in a path-based wormhole-routed network. Bop-
pana et al. [2] showed how such a deadlock might happen
and proposed the column-path routing algorithm to elimi-
nate the problem for two dimensional (2D) meshes. For
k-ary n-cubes, Panda er al. [10], [11] proposed a novel
framework of a base-routing-conformed- path (BRCP)
model. In these two algorithms, there may be scveral
worms required for a multicast, and a multi-port model is
necessary to perform these worms concurrently.

For multicasting on hypercubes, Lin [6] proposed the
UD-path method to overcome the disadvantages of the
BRCP model. The UD-path method is an extension of the
deterministic path-based method [7] and creates only one
worm for each multicast operation. Based on a node la-
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beling method, the author defined up path (U-path), down
path (D-path), and up-down path (UD-path). For a uni-
cast, all the UD-paths between the source and destination
nodes can be used to send the message. For a multicast,
the destination nodes are carefully ordered so that there is
at least one multicast path, which is an UD-path and can
be used to send the message. However, from a node to the
next destination node in the multicast path, there are only
U-paths or D-paths that can be used. Therefore, the rout-
ing algorithms for sending message between two nodes
arc different for unicast and multicast. Moreover, this
approach required at least two input ports (consumption
channels) to prevent deadlock.

In this paper, we proposed an adaptive multicast rout-
ing algorithm for wormhole-routed hypercubes. The pro-
posed method is based on the adaptive unicast routing
proposed by Li [4]. For each multicast operation, the pro-
posed approach creates only one worm and provides
adaptive shortest paths between each pair of nodes in the
multicast path. All the multicasts, including unicasts and
broadcasts, follow the same rules for routing. Therefore,
the proposed algorithm offers a comprehensive routing
solution for communication on hypercubes. It is proved
that the proposed approach is deadlock-free and can be
applied on either one-port or multi-port architecture. In
performance analysis, the potential adaptivity of the pro-
posed algorithm is compared with that of the UD-path
algorithm. The result clearly shows the significant per-
formance improvement provided by the proposed ap-
proach.

The rest of this paper is organized as follows. Section 2
introduces some background information. The new ap-
proach is described in section 3. In Section 4, the per-
formance analysis is presented. Finally, conclusions are
given in Section 5.

2. Background

Although the readers are assumed to be familiar with
hypercube networks, it is still necessary to clarify the
definitions and terminologies in order to have a
well-defined model. The detail is specified in subsection

2.1. In subsection 2.2, we show the concept of the
path-based routing. In subsection 2.3, the possible dead-
locks in a path-based wormhole-routed network are in-
troduced. Finally, in subsection 2.4, we show the adaptive
unicast routing proposed by Li [4], which is the base
routing algorithm of the proposed approach.

2.1 The wormhole-routed hypercube networks

An n-dimensional hypercube is a directed graph which
contains N = 2" nodes and #x2" channels. Each node x
corresponds to an #-bit binary number, where x(i) denotes
the ith bit of x, 0<i<n-1. If there are k different bits be-
tween the binary strings of two node x and y, then £ is
said to be the distance of these two node. Two nodes are
connected with a pair of channels, one for each direction,
if and only if their distance is 1. If a channel is from node
x to x' and x(k) # x'(k), then it is said to be at dimension &

and denoted by cﬁ)x, . In case x(k)=0, then the channel is

called positive and denoted by ¢**

x,x'>

otherwise it is nega-

tive and denoted by cfi;, . The superscripts and subscripts

may be omitted when they are irrelevant to the context.

In a wormhole-routed hypercube computer, communi-
cations are handled by routers, one for each node as
shown in Fig. 1. The external channels connect the router
to neighboring routers, and the internal channels connect
to its local processor. The internal input channels are also
known as consumption channels. The port model refers to
the number of internal channels in each node. If each
node possesses exactly one pair of internal input/output
channels, the system is called a one-port architecture. In a
one-port architecture, a local processor must transmit
messages sequentially, and messages that are destined to
the same node have to be received sequentially. If each
node possesses more than one pair of internal input/output
channels, the system is called a multi-port architecture.
An all-port system is a special case of a multi-port system,
in which every external channel has a corresponding in-
ternal channel. We shall use c,-INO) and c,-OUTO) to denote
the jth internal input and output channel of node i, re-
spectively. If the one-port model is used, the number ;j will
be omitted.

2.2 Path-based routing

Lin et al. [7] have developed an approach to hard-
ware-supported multicast, called path-based routing. In
this approach, a multicast path for a source and a set of
destinations consists of a set of consecutive channels,
starting from the source node and traversing each destina-
tion in the set. The message sent by the source node may



Fig. 2. A possible multicast path for <1: 3, 6, 4>.

be replicated at intermediate destination nodes and for-
warded along the multicast path to the next destination
node.

A multicast operation can be denoted as (s, { dy, d,
d, ..., d.1 }), where s is the source node and {d,, di,
d,, ..., d,.1} is the set of destination nodes. A multicast list
for a multicast operation is an ordered list, which indi-
cates the order of the destination nodes in the multicast
path. We shall use <s: d', d", d>, ..., d’.,> to denote a
multicast list for (s, {do, d\, d>, ..., d.1}), where (d', d'y,
dh, ..., d'.1) is a permutation of (dy, di, d>. ..., d,1). Fig. 2
shows a possible multicast path for the multicast list <1: 3,
6, 4> on a 3D hypercube.

2.3 Deadlocks

Deadlock occurs when a message waits for an event
that cannot happen. For example, a message may wait for
a channel to be released by another message, which in
turns is waiting for the first message to release some
channel. When performing a multicast operation, if the
header flit of the message arrives an intermediate destina-
tion node, the router will first reserve an internal input
channel and then reserve an external output channel for
the message. Therefore, in a path-based wormhole-routed
network, all the internal and external channels could be
involved in deadlocks. Fig. 3 shows two deadlock exam-
ples. The first one contains both external and internal
input channels in the circular wait condition, while the
other one contains only external channels. The one-port
model is assumed in Fig. 3(a), and two multicast messages
are waiting each other for internal input channels. One of
these two multicast messages is from P, to P, and P;, and
the other one is from P, to P; and P;. The chan-
nel-waiting graph for these two messages is shown in Fig.
3(b). The deadlock condition can be seen from the cycle
in the graph. In Fig. 3(c), there are four multicast opera-
tions and the corresponding multicast lists are <0: 3, 7>,
<2: 1, 5>, <3: 0, 4>, and <I: 2, 6>. Fig. 3(d) shows the
cycle in the channel-waiting graph for these four multi-

casts. The channels of the nodes P4, Ps, Ps, and P, are
omitted in Fig. 3(d). It can be observed that the

channels involved in the circular wait condition are all
external channels. The following lemma gives an impor-
tant property in a channel-waiting cycle.

Lemma 1: Given an arbitrary circle in a hypercube, there
must be an equal number of positive channels and nega-
tive channels of the same dimension in the circle [4].

P ’_?,G ﬁ_‘ Ps

(a) Deadlock in a one-port system.
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Fig. 3. Two deadlock examples.



2.4 The MIN routing strategy for unicast

The strategy proposed by Li [4] presents a minimum
set of deadlock-free routing restrictions for unicasts on
hypercubes. The routing restrictions mean the rules that
specify which channels ending at a node can forward
messages to certain channels, called legal channels, start-
ing from the node. Every routing algorithm implies a set
of restrictions. For example, the e-cube routing allows a
channel to forward messages to only those channels that
are at higher dimensions. It establishes only one shortest
path between each pair of source-destination nodes. In
order to take the advantage of the flexibility provided by
hypercubes, various adaptive unicast routing algorithms
have also been proposed [3], [9]. The following set of re-
strictions is the minimum set presented in [4].

1

Ly 0

Restriction 1. Messages can be forwarded from c¢

cy . on the node y if and only if one or both of the fol-

lowing conditions are true:
(1) m > 1, and (2) ¢" is positive.

That is, messages can be forwarded from a lower di-
mensional channel to a higher dimensional channel (con-
dition 1), or from a higher dimensional channel to a lower
dimensional channel if the latter is positive (condition 2).
The following theorems show that Restriction I is a
minimum set of restrictions and the unicast routing algo-
rithms under Restriction 1 are deadlock-free.

Theorem 1: The unicast routing algorithms under Re-
striction 1 are deadlock-free [4].

Theorem 2: Any relaxation to Restriction 1 will result in
deadlock in the hypercube [4].

3. The Multicast Routing Strategy

The most fundamental requirement for an efficient
path-based multicast routing algorithm is to avoid dead-
lock. Next, it is expected that the degenerate cases such as
unicast and broadcast also use the same algorithm,
thereby offering a comprehensive routing solution. Third,
the multicast algorithm should always follow a shortest
path between each pair of nodes in the multicast path.
Thus, a unicast message routed according to the algo-
rithm will always follow a shortest path. Finally, the mul-
ticast algorithm should take the flexibility of hypercubes
to provide more paths between each pair of nodes in the
multicast path.

Upon developing an efficient path-based multicast
routing algorithm, two issues have to be considered to
achieve the above requirements.

1. How to order the destination nodes, i.c. how to de-

cide the multicast list for the multicast operation?

2. How to route the multicast message corresponding

to the specified multicast list?

In this section, we will first propose the routing restric-
tions for both unicast and multicast. Then, we will show
the method to construct a multicast list for each multicast
operation so that no deadlock may be incurred.

3.1 Routing restrictions

In this subsection, we shall show an equivalent set of
restrictions to Restriction 1, and take it as the base adap-
tive routing algorithm in the proposed multicast routing
strategy.

Restriction 2. Messages can be forwarded from cfc)y to

cy, on the node y if and only if one or both of the fol-

lowing conditions are true:
(1) m <, and (2) ¢" is positive.

The only difference between Restriction 1 and Restric-
tion 2 is that, in Restriction 2, messages cannot be for-
warded from a lower dimensional channel to a negative
higher dimensional channel; while, in Restriction 1,
messages cannot be forwarded from a higher dimensional
channel to a negative lower dimensional channel. The
routing algorithms under Restriction 2 can also be proved
to be deadlock-free for unicasts similarly.

Theorem 3: The routing algorithms under Restriction 2
are deadlock-free [4].

The following example shows the paths for two uni-
casts. Some of the paths are marked to be unavailable
under Restriction 2. Note that, from Restriction 2, if the
required channel at the highest dimension is negative
then it has to be selected to forward the message first.
Otherwise, the message will be blocked forever due to no
legal channel exists. This can be verified in Example 1(b).
From node 10 to node 4, the required channels are at di-
mensions Dy, D,, and D;, and the one at Dj is negative. It
can be observed that only the paths passing D; first are
legal under Restriction 2.

Example 1. (a) Paths from node 2 to node 9.
200010) —2% 3(0011) &: 1(0001) D3, 9(1001)
\ 11(1011)—»9(1001)
0(0000) 0, 1(0001) 3, 9(1001)
D3 8(1000) —>9(1001)

10(1010)L0> 111011)¥2 91001y
81000y —2%> 9(1001)



(b) Paths from node 10 to node 4.

12(1100) X2 4(0100)

10(1010—2L>  8(1000)

D2 DI 00000) —22 40100)
14(1110R 12(1100))@»4(0100)

N 6(0110) —»4(0100)
20010y =21 00000y —22> 4(0100)

60110) —21> 4(0100)

3.2 The multicast list

For a multicast operation, if the number of destination
nodes is 7, then there are »! multicast lists. However, not
every multicast list can be performed correctly under the
base routing algorithm because the corresponding multi-
cast path may not exist. Fig. 4 shows such an example
based on e-cube routing. The multicast list is <0: 7, 6>
We can see that, following the order, the message is first
sent from P, to P; through the path (cq1, ¢13, ¢37). Then,
when trying to forward the message from P to Pg, there is
no legal channel because c;; is at dimension 2 while ¢ 6
is at dimension 0, and the messages can not be forwarded
from c;; to ¢;6 under e-cube routing. A multicast list is
said to be /egal if there exists at least one legal channel to
forward the message at any time; otherwise it is illegal.

In this subsection, we shall give a method to construct
a legal multicast list for every multicast operation, and
show the proposed approach will not incur deadlock.
Consider the multicast operation (s, {do, di, d>, ..., d.1}).
The set of destination nodes {d,, d,, d>, ..., d.,} can be
sorted increasingly so that we can obtain a permutation
(d’ , d’l, d’z, s d’r-l) of {do, d], dz, s dr-l}; where
d'<d';; and 0<i<r. A multicast list can be constructed to
be <s: d’o, d’l, ’2, ey d’r_1> for (S, {do, dl, dz, ey dr—l})~
Such a multicast list is called the natural list. Before
showing that the natural list is a legal multicast list under
Restriction 2, let’s see the example illustrated in Fig. 5. In
Fig. 5, the multicast (0, {3, 6, 7}) is performed by using
the natural list under Restriction 2. Between the source
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Fig. 4. An illegal multicast list <0: 7, 6>
under e-cube routing.

node P, and the first destination node P;, there are two
available paths, (CO,I; 01)3) and (00)2, 02)3). If (Co)l, 01)3) is
selected to send the message, then there are two available
paths, (¢32, c26) and (cs7, ¢;6), for forwarding the mes-
sage from P; to Ps. On the other hand, if (co», ¢23) is se-
lected to send the message, then there is only one avail-
able path, (¢s7, ¢76). The reason is that ¢,5 and c3, are
both at dimension 0, and c5, is negative. Therefore, it is
not allowed to forward the message from ¢35 to ¢;,. The
last channel in the multicast path is cs;. Since cg; is a
positive channel, it is always legal for forwarding the
message from P to P;. In the following theorems, we will
show that the natural list is legal under Restriction 2, and
that the natural list approach is deadlock-free.

Theorem 4: The natural list for (s, {do, di, &>, ..., d,1}) is
a legal multicast list under Restriction 2.

Proof: Suppose <s: d'y, d', d’., ..., d',1> is the natural list

for (s, {do. d\, d>, ..., d..1}). For the following two reasons,

there exists at least one legal channel under Restriction 2

to forward the message at any time

(1) The multicast message can be sent from s to d'y under
Restriction 2 as an unicast. Therefore, there exists at
least one legal channel to forward the message from s
to d'y at any time.

(2) Consider any (d';, d'is1), 0<i<r-1, in the natural list.
Because d';< d';1,, the highest dimensional channel of
d'; that can be selected to forward the message to d';q
must be positive. Let the channel be denoted by c”.
When the multicast message arrives d';, no matter
which channel it comes from, ¢" can be selected to
forward the message. Hence, there is at least one legal
channel that can be selected as the first channel to
forward the message from d'; to d';., under Restriction
2. After the first channel is selected, Restriction 2 can
be used continually so that the message can be sent to
d'i1 correctly. Therefore, there exists at least one legal
channel to forward the message from d'; to d';; at any
time.
From the above reasons, The natural list for (s, {do. di,

d>, ..., d,1}) 1s a legal multicast list under Restriction 2.

—_—
Ps A‘ P,
P4 P5
P2 / P3
—__/
PO P1

Fig. 5. The paths for the natural list <0: 3,
6, 7> under Restriction 2.



Lemma 2: In the channel-waiting graph of the natural list
approach, there is no external channel waiting for a nega-
tive channel in the same or a higher dimension.

Proof: From Theorem 4, the natural list for a multicast is
a legal multicast list under Restriction 2. Hence, all the
channels in the multicast paths for the natural list con-
form to Restriction 2. Suppose ¢’ and ¢™ are two channels
in the multicast paths. If ¢/ waits for ¢” and /<m, then ¢”
must be positive. Therefore, in the channel-waiting graph
of the natural list approach, there is no external channel
waiting for a negative channel in the same or a higher
dimension.

Theorem 5: The natural list approach for multicast is
deadlock-free under Restriction 2.

Proof: In the following proof, we assume that the target

system is a one-port system. Since a multi-port system

provides more internal channels than the one-port system,
it can be directly derived that the following proof is also
true for a multi-port system.

Let the external channels of the n-dimensional hyper-
cubes be grouped into » subsets, " 0<h<n, where C"
contains all the channels in dimension /. The proof is by
induction on /4 to show that there is no channel in C” in-
volved in a deadlock.

(1) Consider /#=n-1. If there is any channel in C™' in-
volved in a deadlock, a cycle can be found in the chan-
nel-waiting graph. From Lemma 1, there must exists a
negative channel ¢”'- involved in the chan-
nel-waiting cycle. For the following reasons, such a
cycle does not exist. Hence, there is no channel in C"'
involved in a deadlock.

(a) From Restriction 2 and Lemma 2, there is no
channel ¢, /< n-1, waiting for "V Therefore,
there is no external channel waiting for ¢,

(b) Because of the natural list approach, the address of
the next destination must be larger than that of the
current node. Hence, there is no ¢ required for
forwarding the message. Therefore, there is no in-
ternal input channel waiting for ¢!

Since no channel will wait for ¢, ¢V must
not be involved in any cycle. Thus, no channel in
C™! is involved in a deadlock.

(2) Suppose there is no channel in C*, k<h<n-1, involved
in a deadlock.

(3) We shall prove that there is no channel in C*, h=k-1,
involved in a deadlock. Suppose there is a deadlock,
from (1) and (2), all the channels in the chan-
nel-waiting cycle corresponding to the deadlock are in
the dimensions less than &£. From Lemma 1, if there is
any channel in C* involved, there must exists a nega-
tive channel ¢*"" involved in the channel-waiting cy-

cle. From the same reason shown in (1)(a), there is no
channel ¢, I< k-1, waiting for ¢ Thus, the only
possible condition is that some internal input channel
¢/ waiting for ¢ in the cycle. Because of the natu-
ral list approach, the address of the next destination
must be larger than that of the current node. Therefore,
if ¢/ waits for ¢*", there must exist a positive chan-
nel ¢"*, h’z k, that could be used to forward the mes-
sage. Since ¢ is not involved in any deadlock, the
message can be forwarded through ¢"* eventually, and
cj[N can stop waiting for ¢*'". For this reason, no
channel will wait for ¢ forever, and no cycle con-
taining ¢ will cause deadlock.
From the above discussion, it can be proved that the
natural list approach for multicast operation is dead-
lock-free under Restriction 2.

4. Performance Analysis

In order to show the advantage of the proposed ap-
proach, we analyze its potential adaptivity and compare
the result with that of the UD-path method [6]. The po-
tential adaptivity is measured by the average numbers of
paths from the source node to the first destination node,
and from a destination node to the next destination node.
The average number of paths from the source node to the
first destination node is equivalent to the average number
of paths for all unicasts. That will be discussed in subsec-
tion 4.1. In subsection 4.2, we analyze the number of
paths from a destination node to the next destination node
in a natural list.

4.1 The average number of paths for unicasts

Suppose, in a unicast (s, d), the distance between s and

d is k. To compute the average number of paths between s
and d, we may assume that (s, d) is a pair of antipodal
nodes in a k-dimensional hypercube. The number of paths
for each pair (s, d) is depends on the addresses of them.
There are 2* possible combinations of addresses for s and
d. The set of all these combinations can be denoted by

Sp={(s, d)| (s, d) is a pair of antipodal nodes in a

k-dimensional hypercube}.

Sy can be divided into two subsets ;" and Sy by the sign
of the highest dimensional channel ¢ required for send-
ing message from s to d, i.e.,

S = {(s. d)| (5. d)O S, and ¢! is positive}, and

Sy= {(s. d)| (s.d)O S, and ¢! is negative}.
Corresponding to S, S;, and Sy, three sets of paths are
defined as follows.

P={all the paths for all (s, d)[IS;},

P,'= {all the paths for all (s, )0S; '}, and

Py={all the paths for all (s, )0S; }.



Let #, be the cardinality of P, t, be the cardinality of P;",
and t,” be the cardinality of P;. Obviously, . =t + ;.
For each path in P,", since ¢ is positive, it is a legal

channel and can be sclected at any time. Therefore, we
can derive that #,” = kxt,;. For each path in Py, since ¢!
is negative, it must be the first channel to be passed.
Hence, 1, = t;.;. From the above reasons,

L=t +ti=kXty +tha =) Xty and 4, =2.0

tp = (k+1)!. .1

Therefore, the average number, e;, of paths from s to d
with distance % is as follows.

(k+1) .

er =
2k

4.2

4.2 Paths from a destination node to the next
destination node

Let <s: d', d1, d’, ..., d',,;> be the natural list for (s,
{do, d, d>, ..., d.1}). Now we shall measure the average
number of paths from a destination node d’; to the next
destination node d';; in the natural list. The number of
paths from d’; to d’;; not only depends on the addresses of
them but also on the external input channel ¢¢ of d';,
which the message is forwarded through to arrive d's.
Without considering the impact of ¢’, the number of paths
from d'; to d';;; can be analyzed as in the above subsection.
Suppose the distance between d'; and d';;, is k. Similarly,
we may assume that (d';, d';1) is a pair of antipodal nodes
in a k-dimensional hypercube. Note that the highest di-
mensional channel required for sending message from d’;
to d';;; must be positive because d'; < d';; in the natural
list approach. Hence, there are 2° possible combinations
for d'; and d';1;. Let

'=A{d, d'i)| (', d'sy) is a pair of antipodal nodes
in a k-dimensional hypercube and d'; < d';1},
"= {all the paths for all (d';, d'.,1) O S%}, and
t, =the cardinality of P
We can derive that
' =kxt O ', = kXk! “4.3)
Therefore, the average number, e, of paths from d’; to

d';1 with distance ¥ must be less than or equal to t2E
iec.,

kxk!

' 1kl
ekak/z = 2k—1 .

“44

The impact of ¢® will be discussed in the following
paragraphs. First, consider the P; defined in subsection
4.1. P, can be divided into two subsets P’ and Py by the
sign of the first channel of each path in P, i.c.,

P/= {p| pOP; and the first channel of p is positive},
and
PMN= {p| pOP, and the first channel of p is negative}.
Let 1 be the cardinality of PL and £ be the cardinality
of P/, then

te=t"+ 15 4.5)
Since P=P, 0P,=P 0P, we can derive

PY= PN nPHOPNNPy), and

(PPN N PO))=@ (4.6)

From the definitions of P;, Py, and P;", it can be derived
that Py O PJ, and the cardinality of (P¢ nP;) is
(k-1)xt,.,". Therefore, from (4.1) and (4.6),

0= (k1Y% 17 = (k=1)%t30 ™+ g = (k-1)Xt30"+ k!

and N =1. 0

tN=(k+1)1/2. 4.7
Similar to the definitions of P and PkN, we defined P'F
and P~ as follows.

P'F={p| pOP", and the first channel of p is positive},

and

P'N={p| pOP'; and the first channel of p is negative}.
Let ¢, be the cardinality of P'Fand ¢/ be the cardinality
of P~. Then

o=ty + 1 (4.8)
From the definitions of P’ and (4.7), it can be derived
that

Y = (k-Dxt, N O £ = (k-Dk!/2. 4.9)
Therefore, from (4.3), (4.8) and (4.9),
PE = -t = kxk) - (e-DKY2 = (kD12 (4.10)

No matter which ¢’ is, all the path in P is available
because the first channel of each path in P’ is positive.
Therefore, the average number, e, of paths from d’; to
d'i1 with distance & must be larger than or equal to
t’kP/zk'l, i.e.,

Q’k 2 t’kP/zk'l = M .

% @.11)

Table 1. Average number of paths between nodes.

Distance 1 2 3 4 5 6 7 8 9 10

UD-Path 1.00] 1.00] 1.50] 3.00f 7.50] 2250 7875 315.00f 1417.50] 7087.50
Natural List (Lower Bound) | 1.00] 1.50| 3.00] 7.50| 2250 78.75| 315.00| 1417.50| 7087.50 [ 38981.25
Natural List (Upper Bound) | 1.00| 2.00| 4.50| 12.00] 37.50| 135.00 | 551.25| 2520.00| 12757.50| 70875.00




From (4.2), (4.4), and (4.11), the average number of
paths, £, between two nodes with distance & is bounded
by the following formula.

!
(k;; 1) << k2 :lf
This result is compared with that of the UD-path
method, and shown in Table 1. The first row of Table 1
gives the distance between two nodes. The average num-
bers of paths for the UD-path method is given in the sec-
ond row. In the third and fourth rows, the analysis result
for the proposed approach is presented. It can be observed
from the table that the average number of paths for the
proposed approach is at least (k+1)/2 times than that of
the UD-path method. It is of great improvement on the
potential adaptivity.

4.12)

5. Conclusions

In this paper, we consider the problem of path-based
multicasting on wormhole-routed hypercubes. A mini-
mum set of routing restrictions based on the strategy pro-
posed by Li [4] is given for both unicast and multicast.
These restrictions prevent a message to be forwarded from
a lower dimensional channel to a negative higher dimen-
sional channel. Hence, no deadlock will be incurred for
unicasts in the routing algorithms. To perform the multi-
cast operations correctly, we propose the natural list ap-
proach to order the destination nodes in each multicast
operation. The proposed approach can be proved to be
deadlock-free for both one-port and multi-port systems.
Furthermore, it creates only one worm for each multicast
operation, and provides adaptive shortest paths between
each pair of nodes in the multicast path. The potential
adaptivity of the proposed algorithm is compared with
that of the UD-path algorithm. The result clearly shows
the significant improvement provided by the proposed
approach. Between ecach pair of nodes in the multicast
path with distance %, the average number of paths, £, is

(k+1) ke x k!

bounded to be — < E; <———. Unicast and broad-
2 2

cast can be treated as degenerated cases and use the same
algorithm. Therefore, the proposed algorithm offers a
comprehensive routing solution for communication on
hypercubes.
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