Improving ILP with Semantic Analyzer for Loop Unrolling
in X86 Architectures

Jih-Ching Chiu, Zh-Lung Chen, and Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering
National Chiao Tung University
E-mail: jjsham@csie.nctu.edu.tw

Tel: +886-3-5731832

ABSTRACT

In this paper, we propose an approach,
called semantic analyzer for loop unrolling,
which can increase ILP of loops by parsing the
semantics of instructions for collecting the
required information of loop unrolling. The
mechanism has the functions to construct and
maintain data flow graphs dynamically, and
stores these graphs inside the processor. When
loops occur, we can use this mechanism to solve
the repeated fetching and decoding of
instructions, and even to overcome the
bottleneck of data dependence checking. The
simulation results are used to decide the
parameters of this mechanism and compare its
issue rate to that of other microprocessors. The
performance of our mechanism is better than that
of other MiCroprocessors. Under
performance/cost consideration, our mechanism
can issue 2.07 x86 instructions per cycle.

Index Terms — semantic analyzer, data flow

processor, data-driven, ILP, superscalar
processor, x86 architecture

1. Introduction

Researchers have discussed the use of ILP
(instruction-level parallelism) to accelerate
performance for more than 20 years [1]. In order
to achieve high ILP, many kinds of
microprocessors have been proposed, such as
VLIW, superscalar and pipeline processors.
However, the complex x86 instruction set makes
it hard to improve the performance of x86
processors. For examples, checking instruction
boundary limits the exploitation of the ILP of
superscalar processors and increases hardware
cost, and complex instruction semantics make it
necessary to translate x86 instructions to
RISC-like instructions and thus increase the
burden of data dependence checking.

* Correspondence should be sent to the third
author.

** This paper presents partial result of a research
project financed by NSC of R.O.C. under
contract no. NSC89-2213-E-009-066.

Fax: +886-3-5724176

Most of the current CPUs are multiple issue
processors. Multiple issue processors come in
two flavors: superscalar, such as K7 [2], Pentium
IT [3]/ Pentium III [4], PowerPC [5], Alpha
21264 [6], etc., and VILW, such as Intel 1A-64
and Transmeta Crusoe [7]. While a higher issue
rate is often used to acquire higher processor
performance, it also complicates the control and
data dependencies on the processor performance
at the same time. Designers may opt to eliminate
dependencies during instruction issue by using
register renaming and speculative branch
processing. And with out-of-order execution
techniques, like scoreboarding and Tomasulo’s
algorithm, the results can be forwarded to the
current instructions when the precedent
instructions produce the results at the execution
stage. By these ways, we may avoid the latency
caused by writing, then reading the operands
from the register file or reorder buffer to
progress out-of-order execution. This can be
known as the pioneers of data-driven
computation. Although out-of-order execution is
only implemented in function units, the
performance it enhances is good. This
application is very suitable in the computer
architectures of traditional von Neumann
machines.

By applying the data-driven conception to the
decoder, we can get the features of loops
dynamically by constructing dataflow graph in
decode stage, and parse the behavior of the loops,
such as the loop-entrance data that are the result
operands produced by the instructions prior to a
loop and used by the instructions in the loop, and
the loop-exit data which are the result operands
produced by a loop and may be used by the
instructions next to the loop. By the operations
of the Pumping-Data Unit [8] that is designed in
another potion of our project, which can get a
large amount of relative data simultaneously and
label the operands of instructions by separate
tags to approach that the loops are unrolled.

The remaining parts of this paper are
organized as follows. In Section 2, we describe

the data driven concept in microprocessor design,
the processing of data flow computers, and its
weaknesses. In Section 3, we describe our design
details. In Section 4, we do the simulation to
decide the parameters of our semantic analyzer
and compare the performance of our design with
other microprocessors. Finally, in Section 5, we
give our conclusions of this work.

2. Backgrounds

It is well known that, to optimize a program
for speedup, efforts should be focused on the
regions where the payoff is the greatest. Loop
structures in a program represent such regions.
2.1 Exploiting Loop Performance in
Traditional Processors

In early pipeline processors CDC 6600 and
Cray 1, loop buffers have been used to hold
sequential instructions contained in a small loop.
The loop buffer operates with two advantages.
First, it contains instructions sequentially ahead
of the current instruction. This saves the
instruction fetch time from memory. Second, it
recognizes if the target of a branch is within the
loop boundary. In this case, unnecessary
memory accesses can be avoided if the target
instruction is already in the loop buffer.

In the designs of Bellas and his colleagues
[9], the loop cache is proposed and is placed
between the CPU and I-cache, but the D-cache
subsystem is not modified. Since most of the
programs tend to execute frequently only a small
subset of their instructions, the loop cache can be
used to capture these instructions and provide
them to the CPU. This scheme can be used for
performance improvements provided that the hit
rate in the loop cache is very high. Therefore, the
loop cache has a heavy influence on the loop
performance because it is specially designed for
exploiting the ILP of loops. In this approach, the
compiler is given the duty to select the
appropriate part of the code to be placed in the
loop cache. Hence the compiler acts an
important role in this scheme.

Loops in pipeline and superscalar
processors can use the branch prediction to cross
the limitation of basic blocks. But iterations in
loop must still be executed sequentially.
Although VLIW processors can achieve high
ILP, we need excellent compilers to recompile
all original applications, and this is inconvenient
for users. Lately, Intel Merced dynamically
translates x86 instructions to VLIW instructions
by special hardware. It results in not only more
hardware complexity and long stage delay, but

also low clock rate.

2.2 Exploiting Loop Performance in Data
Flow Processors

The serialization of the von Neumann
computing model is a serious limitation for
exploiting more parallelism in superscalar
microprocessors. The current CPUs make use of
reservation stations to achieve similar benefits of
the dataflow model. However, the execution of a
program is still limited by the program counter.
Dataflow computers in 1980s had their own
languages and compliers, and these computers
could translate a program to a dataflow graph by
their compliers. Because data flow processors
may label separate tags in different iterations of
a loop, they can well improve ILP of loops.

The static dataflow architecture was first
proposed by Dennis and Misunas in 1975 [10].
At the machine level, a dataflow graph is
represented as a collection of activity templates,
each containing the opcode of the represented
instruction, operand slots for holding operand
values, and destination address fields referring to
the operand slots in subsequent activity
templates that need to receive the result value.
On the other hand, the typical dynamic dataflow
architecture consists of a matching unit that
stores and matches tokens, a program memory,
an instruction-fetch unit that takes appropriate
instructions from the memory, arithmetic and
logic unit (ALU) to perform the instructions, and
an output unit to direct the tokens to their
destination [11].

The dataflow approaches is assumed that the
arcs are first-in-first-out (FIFO) queues. This is
accomplished by extending the basic firing rule
as follows:

An enabled node is fired if there is no token
on any of its output arcs and when the resources
are available.

By this way, this dataflow model has a
serious deficiency for handling loop.
Consecutive iterations of a loop can only be
pipelined, which limits the amount of parallelism
that can be exploited. The performance of a
dataflow machine will significantly increase
when loop iterations and subprogram
invocations can be preceded in parallel. To
achieve this, each loop iteration or subprogram
invocation should be able to be executed as a
separate instance of a re-entrant subgraph. This
replication, however, is only conceptual.

Consequently, the dataflow mechanisms are
limited by FIFO queues because the same
instructions in different iterations of the loop
must be executed sequentially due to the FIFO
queues. And the dataflow computers need their
own language and complier, and can only work
for small-sized programs. Accordingly, we must
translate x86 instructions to dataflow
instructions for compatibility, and it is
complicated. In this paper, we will associate the
conceptions of data-driven to capture the loop
semantics, and the techniques of the loop cache
and the loop buffer to exploit high ILP of loops
in general codes.

3. Design of the Semantic Analyzer for Loop
Unrolling

The traditional fetch units are limited to one
branch prediction per cycle and can therefore
fetch one basic block per cycle or up to the
maximum instruction fetch width, whichever is
smaller. As Figure 1 shows, loops occupy a large
part of general programs, and hence, it is very
profitable to exploit ILP of loops. Therefore, we
intend to increase ILP and the issue rate of loops
by parsing the semantics of instructions in order
to collecting the required information for loop
unrolling. We name this method as the semantic
analyzer for loop unrolling.

[BPercentage of Instructions in Loops to All instructions

100

90

80

60 —
50

40
30
20
10
0 L L L L L L

2o compress gcc iipeg li m88k

perl vortex average

Figure 1. The percentage of the instructions in
loops to all instructions.

In a program trace, if the program counter of
the current instruction equals to that of a
previous instruction in the instruction stream,
then there may be a loop. For reasonably
simplifying the mechanism of the semantic
analyzer for loop unrolling, a loop that can be
recognized by our mechanism must satisfy all of
the following four conditions:

(1) The loop has only one branch instruction
whose target address is not equal to any of
the program counters of the instructions in
this loop.

(2) The number of iterations of the loop must be
explicitly known as one of the following
two types of examples:

for (i=0;i<100; i++)

for (i=0;i<n;it+)

... Style-1 Loop
... Style-2 Loop

where the wvariable 7 is called a

loop-counter.

(3) We must consider the influence caused by
the memory overlap of arrays in a loop
because this will limit the maximum
unrolling numbers of the loop. The
head-value of an array means the starting
location of the array in the memory. The
stride of an array indicates the difference of
index values in this array. The strides of the
arrays in the loop must be all positive or all
negative. And the loop must satisfy the
condition that if the arrays are permuted
according to the increasing (or decreasing)
order of the head-values, then the stride
order of the permuted arrays must also be
increasing (or decreasing).

(4) There is no function call in the loop.

3.1 Structure of the Semantic Analyzer for
Loop Unrolling

The computational kernel of a data-driven
machine is applied to a traditional x86
microprocessor in our project. Figure 2 shows
the detailed block diagram of the Data Flow
Engine. The Loop Semantic Analyzer can parses
an instruction fetched by the fetch unit, and store
the parsed information, such as the operand’s
data dependences, the data-flow graph of these
sequent instructions, and the loop structure.
When the Loop Semantic Analyzer detects a loop,
it will send the parameters of requested data to
the Pumping-Data Unit and set up loop unrolling
environment at the Match Unit. Once the data
enters the Match Unit in parallel and is matched
with its partner, we will put the corresponding
instructions of the data flow graph to data
prepare unit to wait for execution. Then the
functional unit will send the result data back to
the pumping-data unit via Register File, in order
to continuously precede the operations that are
dependent on the result data.

Instruction
Stream
gy
H data set 7 Data Flow Engine:
: |Lequest) L oop Semantic :
! Analyzer zﬂ instrugtion !
H data port node !
, Pumping-Datal request '
! Unit tokens Loop |
: Match Data-Flow i
1 Unit Graph '
: Upuud:a :
! I
1 1
| [P RPN - R [T | gy S
result executable
tokens packets
Data > .
suler| | RF [] Data Prepare Unit

To Function Units
Figure 2. The detailed block diagram of the Data
Flow Engine.

In the paper, The Loop Semantic Analyzer
is our design goal. The parsing procedures of the
typical loops are designed to organize it.

3.3 Loop Semantic Analyzer

In order to clearly describe how we get the
semantics in the instruction stream, we will
describe the necessary tables for storing the
semantics of instructions, called semantic tables,
and the procedures for parsing the instructions.

3.2.1 Semantic Tables

There are four types of sematic tables in the
Loop Semantic Analyzer for storing the
semantics of instructions, called Instruction
Table, Source Table, Result Table, and
Dependence Table.

Instruction Table

The Instruction Table, as shown in Figure 3,
is used to store the format of every instruction in
the instruction stream. Each entry in the
Instruction Table consists of a program counter
of the x86 instruction (PC), an opcode, and three
other fields that are used to point to the
corresponding positions of the source operands
in the Source Table and the destination operand
in the Result Table.

Instruction Table

S1Tag | S2 Tag | D Tag

] PC ‘Opcode

S1 Tag : A pointer points to Source operand 1 in Source Table
S2 Tag : A pointer points to Source operand 2 in Source Table
D Tag : A pointer points to Destination operand in Result Table

Figure 3. Structure of the entries in the
Instruction Table.

Source Table

Each cycle when an instruction flows into
the semantic analyzer, the source operands of the
instruction will be keep in Source Table. The
entry in the Source Table consists of a mark bit,
the source operand, and a field that points to the
position of the source operand in the Instruction
Table. Figure 4 shows the structure of the entries
in the Source Table. The mark bit is used to
mark if the source operand is dependent with the

destination operand of a previous instruction.
Source Table

Mark Bit Source ITag [Operand Order

Operand

I-Tag : A pointer points to Instruction Table
Operand Order : describing the operand order in an instruction

Figure 4. Structure of the entries in the Source
Table.

Result Table

When the source operands of an instruction
are kept in Source Table, the destination operand
of the instruction is also kept in the Result Table.
As Figure 5 shows, each entry in the Result
Table consists of a tag of the instruction in
Instruction Table that owns the destination
operand, and the destination operand.

Result Table

Destination
operand

Result
Tag

P-Tag

Figure 5. Structure of the entries in the Result
Table.

Dependence Table

When the source operand of an instruction
is dependent with the destination operand of a
previous instruction, the program counters of the
instruction and the previous instruction are kept
in the Dependence Table. Each entry in the
Dependence Table, as Figure 6 shows, consists
of a program counter of a previous instruction
that produces the dependent data (PC-P), a
program counter of the instruction that consumes
the dependent data (PC-C), and a field that
points to the position of the source operand in
the Parsing Table that needs the dependent data.

Dependence Table

Source Tag in
Instruction Table

| PC-P | PC-C

PC-P : the program counter of the instruction that produces the dependent data
PC-C : the program counter of the instruction that consumes the dependent data

Figure 6. Structure of the entries in the
Dependence Table.

3.2.2 Parsing Procedures of Instructions

When every instruction flows into the
semantic analyzer for loop unrolling, it must be
processed by the following procedure :
PROCEDURE 1

1" : From the decoder, we can get the
relational information of the current
instruction, such as source operands,
destination operand, types of the
source and destination operands, and
opcode, and put the instruction into
the Instruction Table. Then go to step
2.

2™ : We put the source operands of the
current instruction into Source Table.
If the operand has appeared in Result

4th :

When the mechanism detects a loop, it will

Table, we will set the mark bit of the
operand in Source Table and go to
step 3 ; else go to step 4.

: Because we must keep the dependent
relation between the instructions in
Dependence Table, we will write “the
tag” of the current instruction and
“the tag” of a previous instruction
whose destination operand s
dependent with the source operand of
the current instruction into
Dependence Table. Then go to step 4.

We put the destination operand of the
current instruction into Result Table.
If the destination operand has
appeared in Result Table, we will
overwrite the tag of the same
destination operand with the new tag
of the current instruction.

enter the following procedure : .
PROCEDURE 2

1* : In Source Table and Result Table, the

2nd :

3rd

operands that belong to the range
between the start-PC and the end-PC
of the current loop are selected out.
The operands that are selected out and
do not have mark bit in Source Table
are regarded as entry-loop-data
Besides, the operands that are selected
out in Result Table are regarded as
exit-loop-data.

Compute the maximum unrolling
number of the loop;

4™ : if(inst-pc == start-pc in one of four loop

frames) then
current loop frame= the
frame that is matched;
command the fetcher to stop
fetching instructions from cache;
The loops are unrolled by labeling
operands of instructions in current
loop frame with different tags at
first iteration;

else // first time to meet this loop
find one of four loop frames to be
the current loop frame with FIFO
method;
store the instructions of the loop
and dependent relations into the
current loop frame;
store the start-pc and end-pc of the
loop into current loop frame;
the instruction is executed the

loop

same as that in superscalar
Processors;
end if

5™ 1 count the number of instructions in this
loop, and store the inst-num in current
loop frame ;
6™ : if(the instruction matched in inst-queue
is not ‘L’ type) then
the instruction matched in
inst-queue become ‘L’ node ;
end if

3.3 Loop Data-Flow Graphs

In order to maintain the loop data-flow
graphs of the instruction stream, we construct
the loop graph storage to provide the space to
store the instructions and the relational
information of the loop. As Figure 7 shows, the
loop graph storage consists of several function
frames. Each function frame is used to store the
relative information in a function, such as the
program counters of the function and the caller.
Each function frame also consists of one
inst-queue and several loop frames. The
inst-queue of the function frame is used to
record the program counter of every instruction
in the function. Besides, each loop frame
consists of a Loop Instruction Reference Table, a
Source Table, a Result Table, a Dependence
Table, and some fields that store the relational
information of the loop, such as the starting
program counter, the ending program counter,
execution times, etc. The Source Table, Result
Table, and Dependence Table are used to store
the dependence relations between instructions in
a loop as described previously. In addition, the
Loop Instruction Reference Table stores the
program counters and types of the instructions in
a loop.

function frames

program | program counter
counter | of the caller

inst-queue l loop
start PC | times

|

1

Figure 7. The structure of the loop graph storage.

When our design detects that the program
counter of current instruction is equal to the
starting program counter of a loop frame, we
send “Loop Instruction Reference Table”,
“Source Table”, “Result Table”, and
“Dependence Table” to the Pumping-Data Unit
for loop unrolling at the first iteration. On the
other hand, when we meet a loop the first time,
we will send the four tables in the loop frame to

the Pumping-Data Unit for loop unrolling at the
third iteration.

4. Simulations and Analyses

In this section, we describe the simulation
environment and present the simulation results
of our semantic analyzer.

4.1 Simulation Environment

We use trace-driven technique for our
simulation. The benchmark programs are
compiled using GNU C compiler. Then the
compiled benchmark programs are executed on a
computer running the Linux operating system.
The traces of the benchmark programs are
extracted using Linux ptrace() system call.
These traces are then fed into the simulator.

The benchmark programs we use are from
SPECint95, which includes go, m88ksim, gcc,
compress, li, jpeg, perl, and vortex. These
benchmark programs represent the
characteristics of most software applications.

4.2 Simulation of the Loop Styles Handled by
the Proposed Mechanism

The loop style 1 in our handling range is a
loop whose loop-counter is a constant variable,
for example, the constant 100 in “ for (i = 0, i <
100; i++)”. Besides, the loop style 2 in our
handling range is a loop whose loop-counter is a
simple variable, for example, the variable n in
“for (i=0;i<n;i++)”.

BStyle-1 Loop MStyle-2 Loop

20 compress gcc ijpeg li m88k perl vortex — average

Figure 8. The percentage of style-1&2 loops to
all loops.

The percentages of style-1 and style-2 loops to
all loops are shown in Figure 8. The average
percentage of style-1 loops to all loops is 47%
and that of style-1&2 is 60%. From the
preliminary simulation results, the loops that we
want to deal with occupy a large part of all
loops.

Furthermore, we simulate the percentage of
the instructions in loops handled by our design
to all instructions, as shown in Figure 9.

ercentage of Instructions in General Loops o All nstructions
ar f Instr General Loops to Al Instructi
&= | MPercentage of Instructions in Loops Handled by Our Design to Al Instructions.

100
%0]

20 compress gee ijpeg i m88k perl vortex average

Figure 9. The percentage of the instructions in
general loops or in loops handled by our design
to all instructions

4.3 Simulation of the Features of Loops

In Section 3, we mentioned that the
instructions in a loop are stored into the loop
frame for loop unrolling. Figure 10 shows the
cumulative distribution of the x86 instruction
numbers in a loop. From this figure, we observe
that 64-instruction loops could cover the most
common (or frequent) cases of loops. Nearly 90
percents of the loops have less than or equal to
64 instructions. Besides, if the program counter
of the current instruction equals to the program
counter of a previous instruction in the
inst-queue, we could know that there may be a
loop. Therefore, from the simulation result we
find that 64-entry inst-queue is a good choice
under performance/cost consideration.

100 ——
zg —— compress
70 gce
€0 iipeg
0 Vi 7/ —¥—i
30 / —0— mssk
fg g?r ; ——perl
0 == vortex

2 4 8 16 32 64 128 256 mswcion NunberferLoo
Ceur

Figure 10. Cumulative distribution of instruction
numbers in a loop.

Figure 11 shows the cumulative distribution of
the depths of nested loops in the x86 instruction
stream. The x-axis represents different depths of
nested loops, ranging from 1 to 8. The number 1
at the x-axis means that the loop is not a nested
loop. In other words, there are no other loops
within the loop. The percentage of the loops that
at most have the fixed depths to all loops is
shown in the y-axis. The eight lines represent the
different benchmark programs in SPECint95.

From Figure 11, we observe that most common
(or frequent) loops are not the nested loops.
Furthermore, the depth of nearly 97 percents of
loops are less than or equals to 2. Therefore, we
know that simple loops occupy a large part of
general codes and 2 or 4 loop frames within a
function frame 1is a good choice under
performance/cost consideration.

&
100 -
98 ——
% I —— compress
94 e
) // ijpeg
%0 .,// —H—1i
7 —&— m8sk
88 [
—+—perl
86
" —vortex
1 2 3 4 5 6 7 8 Depth of Nested Loops
(cumulative)

Figure 11. Cumulative distribution of the depths
of nested loops.

4.4 Performance Analyses

In this subsection, we compare the x86
instruction issue rate of our mechanism to that of
other microprocessors. In our simulator, the
following assumptions are made :

1. The fetch unit of our mechanism
fetches only one x86 instruction per
cycle. But the fetch units of Pentium,
Pentium MMX, and K6 series fetch
two x86 instructions per cycle; that
of P6 series fetches three x86
instructions per cycle; and that of K5
series fetches four x86 instructions
per cycle.

2. The function units may execute any
kinds of instructions in a clock
cycle.

3. Every instruction can be hit in the
cache.

The results are shown in Figure 12. In this
figure, we apply the semantic analyzer for loop
unrolling to the two simulation models, noted as
our choice and Ideal. In our choice, we assume
that the simulation model has 7 issue degree, 3
unrolling degree, 64-entry inst-queue, and 3 loop
frames within a function frame. On the other
hand, the Ideal model means unlimited issue
degree, unlimited unrolling degree,
unlimited-entry inst-queue, and unlimited loop
frames within a function frame.

From this figure, we find that the
performance of Ideal is excellent and its issue
rate is 2.3 x86 instructions per cycle. Besides,

the issue rate of our choice also surpasses all the
other microprocessors and achieve at 2.07 x86
instructions per cycle. This simulation shows
that the semantic analyzer for loop unrolling
mechanism have its benefits.

13
n

o

in

instructions / per cycle

o
T

o

Pentium Pentium ~ P6series K5 series K6 series Ourchoice Ideal
MMX

Figurel2. Issue rate comparison.
5. Conclusions and Future Works

In this paper, the conception of data-driven
computation is applied to design the x86
microprocessors, and we name the hardware the
semantic analyzer for loop wunrolling. The
semantic analyzer is designed to detect loops in
the instruction stream by parsing the rich
semantics of instructions and stores the
instructions in the loops to the loop frames for
loop unrolling. The mechanism has the functions
to construct and maintain data flow graphs
dynamically, and stores these graphs inside the
processor. When loops occur, we can use this
mechanism to solve the repeated fetching and
decoding of instructions, and even to overcome
the bottleneck of data dependence checking.

From the evaluations, the average percentage
of instructions in the loops that can be handled
by the proposed mechanism is 35% to all
instructions. Therefore, shows that it is worthy to
exploit the ILP of loops. The simulation results
show that the issue rate of the semantic analyzer
for loop unrolling mechanism is higher than that
of the current commercial superscalar
MiCroprocessors.

In our design, we only recognize the loops
of which repeated times may be explicitly
known. However, the ILP of loops could be
wider by unrolling other kinds of loops, such as
the structures of software pipeline and dynamic
linking. The structure of software pipeline means
a loop that has dependent semantics between
iterations, such as “A[i] = A[i-1] + k”. The
structure of dynamic linking means a loop that
we can not explicitly know its iteration times,
such as “while (ptr !'= NULL)”. Thus,
researches of parsing other kinds of loops are the
future works of this paper.

[References]

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

B.R. Rau and JA. Fisher,
“Instruction-Level Parallel Processing:
History, Overview and Perspective,” in J.
Supercomputing, Vol. 7, No. 1/2, pp. 9-50,
1993

AMD Corporation, “AMD Athlon(TM)
Processor Architecture,” August 23, 1999
Intel Corporation, “Pentium II Processor
Developer’s Manual,” October 1997

Intel Corporation, “Pentium 1T
Processors — Datasheets,” May 2000

S.P. Song, M. Denman, and J. Chang, “The
PowerPC 604 RISC microprocessor,” in
IEEE Micro, Volume: 14 Issue: 5, pp. 8,
Oct. 1994

R.E. Kessler, “The Alpha 21264
microprocessor,” in IEEE Micro, Volume:
19 Issue: 2, pp. 24 —36, March-April 1999
Transmeta Corporation, “The Technology
Behind Crusoe(TM) processors,” January
2000

BRI g ESE GRS, RERS %
x86 i i P OB B¢ (% 3%
NSC89-2213-E-009-066)

N. Bellas, 1. Hajj, C. Polychronopoulos,
and G. Stamoulis, “Energy and
Performance Improvements in
Microprocessor Design using a Loop
Cache,” in ICCD, 1999

JB. Dennis and D.P. Misunas, “A
Preliminary Architecture for a Basic
Data-Flow Processor,” in Proceedings of
the 2™ Annual Symposium on Computer
Architecture, pp. 126-131, Houston, TX,
January 1975

E.J. Lerner, “Data-flow Architecture,” in
IEEE Spectrum, pp. 57-62, April 1984

