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Abstract

As we know, the execution efficiency of a loop can be en-
hanced if the loop is executed in parallel or partially parallel,
like a DOALL or DOACROSS loop. This paper also reports
on a practical parallel loop detector (PPD) that is imple-
mented in PFPC on finding the parallelism in loops. The
PPD can extract the potential DOALL and DOACROSS
loops in a program by verifying array subscripts. In addi-
tion, a new model by using knowledge-based approach is pro-
posed to exploit more loop parallelisms in this paper. The
knowledge-based approach integrates existing loop transfor-
mations and loop scheduling algorithms to make good use
of their ability to extract loop parallelisms. Two rule-based
systems, called the KPLT and IPLS, are then developed us-
ing repertory grid analysis and attribute ordering tables re-
spectively, to construct the knowledge bases. Finally, a run-
time technique based on inspector/executor scheme is pro-
posed in this paper for finding available parallelism on loops.
Our inspector can determine the wavefronts of a loop with
any complex indirected array indexing pattern by building
a DEF-USE table. Experimental results show that the new
method can handle any complex data dependence pattern
that cannot be handled by the previous research.

1 Introduction

The last decade has seen the coming of age of parallel com-
puting. Many different classes of multiprocessor systems have
been designed and implemented in industry and academia,
for example, IBM RP3, Cray T3D, NEC SX-3, CONVEX
C4, CONVEX SPP, and IBM SP2. To achieve high speedup
of such systems, it requires decomposition of tasks into sev-
eral sub-tasks which can be executed on different processors
in parallel. Unfortunately, it possesses several difficulties for
the users to write explicitly parallel programs. First, they
had to rewrite their existing sequential programs into paral-
lel programs. Second, most of the resulting explicitly parallel
programs were not portable. Third, writing efficient paral-
lel programs often required optimizations that need intimate
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knowledge of the machine’s architecture and the program’s
access patterns, e.g., data distribution, prefecting, or block-
ing.

To address these difficulties, parallelizing compilers were
developed to transform sequential programs into parallel ones
[14, 1, 7]. Parallelizing compilers can be broken into two com-
ponents: a component that identifies parallelism in a pro-
gram, and a component that exploits this parallelism. The
component that identifies parallelism attempts to determine
what parts of a program can be run in parallel. The com-
ponent that exploits parallelism determines which of these
parallel parts should be run in parallel, as well as how to
generate efficient codes for them. Therefore, design of effi-
cient parallelizing compiler is an important part of achiev-
ing maximum parallelism on multiprocessors. However, the
generation processes of parallel object codes by parallelizing
compilers are very difficult and complicated. Most investiga-
tions of parallelizing compiler still focus on source-to-source
transformation, for example, Parafrase-2 and Polaris devel-
oped at UIUC [1, 8], ParaScope developed at Rice University
[3], and SUIF developed at Stanford University [6].

In addition to the advance in computer architecture, some
operating systems also support parallelism. Multithreading
support seems to be the most obvious approach for help-
ing programmers to take the advantage of parallelism by
operating system. For example, Mach, OSF/1, Solaris, Mi-
crosoft Windows N'T are operating systems that support mul-
tithreading. These operating systems usually have packages
for handling multithreads [2], e.g., the C Threads package in
Mach and P Threads package in OSF/1. Although a multi-
threading operating system for a multiprocessor system can
be powerful, it still needs good parallelizing compilers to help
programmers exploit parallelism and gain performance ben-
efit. So, we wanted to design and implement a portable par-
allelizing compiler for multithreading operating system. Our
compiler can generate parallel object codes for running on
multiprocessor systems rather than being just a source-to-
source restructurer [10, 12].

This paper describes the design and implementation of
an efficient parallelizing compiler to parallelize loops and
achieve high acceleration rates on multiprocessor systems.
In this paper we introduce how to design and implement
a portable FORTRAN parallelizing compiler (PFPC) on

a shared-memory multiprocessor machine running multi-



threading operating system OSF/1. Our compiler is highly
modularized so that porting to other platforms will be very
easy. Furthermore, the compiler can partition parallel loops
into multithreaded codes based on several DOALL loop-
partitioning algorithms. Then, this paper reports on the
practical parallelism detector (PPD) that is implemented
in PFPC at NCTU to concentrate on finding available the
parallelism on loops [13]. The PPD is used on extracting
the potential DOALL and DOACROSS loops in a program.
Moveover, if DOACROSS loops are available, an optimiza-
tion of synchronization statements were made.

To exploit more parallelism, a new model by using
knowledge-based techniques is proposed in this paper [9].
The knowledge-based approach integrates existing loop
transformations and loop scheduling algorithms to make
good use of their ability to extract loop parallelisms. Two
rule-based systems, called the KPLT and IPLS, are then de-
veloped using repertory grid analysis and attribute ordering
tables respectively, to construct the knowledge bases. For in-
stance, IPLS can choose an appropriate algorithm and then
apply the resulting algorithm to assigning parallel loops on
multiprocessor systems to achieve high speedup rates [4].
Finally, a runtime technique based on inspector/executor
scheme is proposed in this paper for finding available paral-
lelism on loops. Our inspector can determine the wavefronts
of a loop with any complex indirected array indexing pattern
by building a DEF-USE table [11]. The inspector is fully par-
allel without any synchronization. Experimental results show
that the speedup delivered by our compiler is high. Further-
more, for system maintenance and extensibility, our approach
is obviously superior to others. As an ultimate goal, a high-
performance and portable FORTRAN parallelizing compiler
on shared-memory multiprocessors will be constructed.

2 The Model of Parallelizing Compilers

2.1 An Overview of PFPC

Multithreading support may be the most obvious approach
to help programmers take the advantage of parallelism by
operating systems. Therefore, we propose a new model of
parallelizing compiler for exploiting potential power of multi-
processors and gaining performance benefit on multithreaded
operating systems OSF/1 [2]. The portable FORTRAN par-
allelizing compiler (PFPC) intended to produce parallel ob-
ject codes rather than just acting as a source-to-source re-
structurer is shown in Figure 1 [10, 12].
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Figure 1: The PFPC model running on OSF/1.

First, a practical parallelism detector (PPD) is used to test

the data dependences of array references and then restructure
a sequential FORTRAN source program into a parallel form
at compile-time [13], i.e., if a loop can be parallelized or par-
tially parallelized, then PPD marks that loop with DOALL
loop or DOACROSS loop by comments. If the access pat-
terns of some arrays cannot be determined at compile-time or
have non-constant dependence vector, then PPD marks that
loops with DOCONSIDER loop by comments. The flow of
loops parallelization is shown in Figure 2. The PPD (practi-
cal parallelism detector) will analyze the loop’s array access
patterns to find the data dependences of array references.
As we know, if the information of data dependence is not
available until the program is running, i.e., defy the static
analysis, then PPD will mark it as a DOCONSIDER loop. If
there is no dependence between statements in a loop, or these
dependences are loop-independent dependences, different it-
erations can be executed in parallel on separate processors
as DOALL loops. If dependence is occurring across differ-
ent iterations, i.e., is a loop-carried dependence, it is called
a DOACROSS loop. The iterations are executed either se-
quentially, or partially in parallel by means of enforced syn-
chronization instructions within the bodies of the concurrent
loops, and incur some run-time overhead will be incurred.
Otherwise, if the loop dependency patterns are too complex
to analyze by current algorithms , for example, with non-
linear array index expressions or with non-constant depen-
dence distance, then we also can mark it as a DOCONSIDER,
loop.

Second, because OSF/1 has no FORTRAN compiler and
because multithreading only supports C programming, a
FORTRAN-to-C (f2c) converter is used to convert the FOR-
TRAN program output by PPD into its C equivalent. Third,
the single-to-multiple threads translator (s2m) takes the pro-
gram obtained from f2c as input, and then generates the
output in which the parallel loops (DOALL or DOACROSS)
are translated into sub-tasks by replacing them with mul-
tithreaded codes. For run-time parallelization, the s2m
will generate the inspector and executor codes for DO-
CONDISER loops at compile-time.

Finally, The resulting multithreaded program is then com-
piled and linked with the P Threads or C Threads run-time li-
braries by using the native C compiler, e.g., GNU C compiler.
Then, the generated parallel object codes can be scheduled
and executed in parallel on the multiprocessors to achieve
high performance. Based upon this model, we implemented a
FORTRAN parallelizing compiler to help programmers take
advantage of multithreaded parallelism on AcerAltos 10000
multiprocessor system, running OSF/1.

2.2 Using Knowledge-based Techniques for
Loop Parallelization

Knowledge system is a system that depends on a vast base
of knowledge to perform difficult tasks. The knowledge is
saved in a knowledge base separately from the inference com-
ponent. This makes it convenient to append now knowledge
or update existing knowledge easily. The rule-based approach
is one of the commonly used form in many knowledge-based
systems. The primary difficulty in building a knowledge base
is how to acquire the desired knowledge. To ease acquisition
of knowledge, one primary technique among them is Reper-
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Figure 2: The flow of loop parallelization.

tory Grid Analysis (RGA). RGA is easy to use, but it suffers
from the problem of missing embedded meanings. For ex-
ample, when a doctor expresses the features of catching a
cold are headache, cough and sneeze, he may have those fea-
tures. However, in RGA, a person is not considered to catch
a cold except that he gets all of the features. To overcome the
problem, the concept of Attribute Ordering Table (AOT) is
employed to elicit embedded meanings by recording the im-
portance of each A knowledge-based system is composed of
two parts: the development environment and the runtime en-
vironment. The former is used to build the knowledge base,
while the latter is used to solve the problem. In this paper,
the development environment is not discussed here. The run-
time environment contains five components, which are briefly
described as follows:

The runtime environment which using knowledge-based
techniques for loop parallelization contains three components
as shown in Figure 3, which are briefly described as follows.

¢ Knowledge Base: This component contains knowl-
edge required for solving the problem of determining
an appropriate test, scheduling, or transformation to be
applied. The knowledge can be organized in many dif-
ferent schemes, and can be encoded into many different
forms. Therefore, there exist many choices of building
the knowledge base. In our implementation, the knowl-
edge base is constructed as a rule base, i.e., the knowl-

edge is expressed in the form of production rules. These
rules can be coded by hand or generated by a translator.
In our system, the latter method is used. A translator,
GRD2CLP, translates the repertory grid and attribute
ordering table to CLIPS’s production rules. This ap-
proach has great flexibility as we can add new scheduling
algorithms to the repertory grid and attribute ordering
table, and then use GRD2CLP to convert the tables into
CLIPS rules.

Inference Engine: The inference engine is the inter-
preter of the knowledge stored in the knowledge base.
It examines the contents of the knowledge base and the
data including the system characteristics and the loop
attributes provided by machine architecture and pro-
grammers to derive a conclusion, an appropriate paral-
lel loop-scheduling algorithm. The inference engine at-
tempts to find connections between the input attributes
stated in section three and the selected loop-scheduling
algorithm according to RGA and AOT. An example of
applying RGA/AQOT is shown in Table 1. ’X’ means
that the attribute has no relation with the scheduling
algorithm. ’D’ means that the attribute dominates the
scheduling algorithm, i.e., if the attribute is not equal
to the entry value, it is impossible for the scheduling
algorithm to be implied. For those entries that are not
labeled "X’ or ’D’, integer numbers are used represented



the relative degree of importance for attribute does not
dominate the object but is of some degree of importance
relative to other attributes. Larger integer number im-
plies the attribute being more important to the object.
According to the table, four rules can be generated. As
we observe, [Al, S1]=1,5,6, [A2, S1|=YES, [A3, S1]=X;
hence the resulting rule will be generated.

RULE:

If (Al is in 1,5,6) and (A2=YES) Then Choose S1

Table 1: The repertory grid and the attribute ordering
table.

ST 52 S3 54
Al 1,5,6/D X/X 3/D 2,4/D
A2 YES/D X /X YES/D X/X
A3 X/X NO/2 NO/D X/X

e Algorithm Library: The library collects several rep-
resentative tests, transformations, and schedules, either
proposed by others or designed by ourselves. The ques-
tion of how these tests, transformations, and schedules
are chosen in the development environment, so here we
assume that it has been built. For example, we have in-
cluded eight scheduling algorithms in the library for loop
scheduling, that are static scheduling, SS, CSS, GSS,
Factoring, TSS, AFS (MAFS, DAFS), and LDS. This is
another advantage of using knowledge-based system; we
can easily modify the rules and add any new scheduling
strategy.
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Figure 3: Components of our new model

3 Main Results

3.1 PPD: A Practical Parallel Loop Detec-
tor

PPD takes the traditional FORTRAN 77 source program as
input and yields the corresponding prompted parallel code.
The framework of PPD is divided into two phases, analy-
sis phase and codegen phase. In analysis phase, a single-
subscript testing algorithm, the I test, is used for checking if
the linear equation formed by array subscript has an appro-
priate integer solution. Instead of linearizing the subscript
of an array, we check it subscript-by-subscript since there is
no certainty that either of them overrides the other in pre-
cision. The effect of analysis phase is the determination of
the execution modes of all loops. The execution mode of a

loop may be the one of the following three types: DOALL,
DOACROSS, and DOSEQ, where the former two ones point
out that a loop can be executed in a fully or partial parallel
manner respectively, and the last one is the normal sequen-
tial style. In codegen phase, the outcome of analysis phase is
referred to produce the prompted parallel codes. The opti-
mizations for synchronized statements of DOACROSS loops
are also taken.

3.2 S2m: A Single-to-Mutiple Threads
Translator

The component, single-to-multiple threads translator
(s2m), takes the program obtained from f2c¢ as input,
and then generates the output in which the parallel loops
(DOALL or DOACROSS) are translated into sub-tasks by
replacing them with multithreaded codes. The structure of
single-to-multiple threads translator (s2m) [10] consists of
five modules. The kernel module is written to be portable;
it calls functions in thread-code generating module and calls
functions in DOALL loop-partition module. and calls func-
tions in DOACROSS loop-partition module through the con-
fig module. The thread-code generating module contains
several functions that are used to generate different thread
specific codes; P Threads or C Threads. The DOALL loop-
partition and DOACROSS loop-partition modules contain
routines partitioning DOALL and DOACROSS loops, respec-
tively.

We now describe how the s2m converts specific types of
conventional sequential programs, i.e., DOALL loops, into
their parallel equivalents with the P Threads runtime library
codes embedded in them. The general form of a DOALL loop
program to s2m is shown in Figure 4. In this figure, there
is one for-loop enclosed in “/* /$DOALL$/ L?7?7: */” and
“/* /$END_DOALL$/ L?777: x/” comments, these two com-
ments are used to indicate the for-loop enclosed by them is
a DOALL loop. The 7?77 here stands for the loop label used
in the original FORTRAN program.

main()

{

|Variab1es declaration area

/* /$DOALL$/?77: */
for (i= .... ){

/* L?77: x/

}

/* /$END_DOALL$/ ?777: */

Figure 4: The DOALL loop of input program to s2m.

The output of the main program has the form shown in
Figure 5 produced by s2m. There are six rectangles in this
figure, each corresponds to a session that performs a spe-
cific job. The first session, thread-related definition, out-
puts thread-related definitions. Some variables for using the



thread package are defined in this session. The loop variable
is an array of loop_args, which is used to pass the begin iter-
ation, end iteration, and the iteration step for each pthread
created later on. The ThCount variable records the number
of threads; this number is decreased by one when a thread is
going to be terminated.

|Thread related definition|

|Variables declaration area|

main()

{

[Mutex & condition variable initialization

|Iterations calculation|

Fork threads

Figure 5: Main program of the general output produced
by s2m.

void DOALL??(loop)
struct loop._args *loop;

{
int i;

for (i=loop->begin; i<=loop->end; i++){

}

|Decrease the thread count by 1|

}

Figure 6: The DOALL function definition for an output
thread produced by s2m.

3.3 IPLS: An Intelligent Parallel Loop
Scheduling

In PFPC, we propose a system as shown in Figure 7,
called intelligent parallel loop scheduling (IPLS), by using
knowledge-based techniques to select an appropriate loop-
scheduling algorithm. The approach will make good use of
the advantages of the algorithms for loop parallelism. By the
resulting algorithms for assigning parallel loop on multipro-
cessor systems, it is believed that the applications can save
execution time and achieve high speedup.

e Profile Information - After the program applying the
selected loop scheduling algorithm is executed, some in-
formation about number of iterations, maximal time of
iteration, minimal time of iteration, total time of pro-
gram, number of synchronization, number of remote
memory accesses, and the workload distribution of each
processor will be recorded and saved in a profile file.

The profile file will be referred to modify the attributes
by refining system.

e Refining System - When a program is embedded with
some parallel loop scheduling algorithm, if we can re-
fine some attributes, such as the values of factors in the
loop-scheduling algorithm by using the profile informa-
tion derived from the record of executing process of the
program. Refining procedure in order to get ideal values
will modify the factors. It is obvious that this make the
parallelism of program higher and performance better.

Profile
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- !
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Figure 7: The system architecture of IPLS.

Tables 2 and 3 show the relationships between seventeen at-
tributes and parallel loop scheduling algorithms in UMA and
NUMA models respectively. Besides, each table is districted
by different kind of loops, i.e., DOALL and DOACROSS
loops. The features mentioned above are the attributes upon
which we constructed our attribute grid. ‘Machine model’
is classified into UMA and NUMA. ‘Memory access ratio’
means the speed ratio of cache, memory and network. ‘CPU
number’ denotes the system size, which can be classified
into three levels, small, medium, or large. ‘Loop style’ in-
cludes four kinds of loop, such as U(uniform), I(increasing),
D(decreasing) and R(random). ‘Program size’ shows the ap-
propriate scale that algorithms fit. ‘Data locality’ determines
if loop data behavior has affinity or not. ‘Loop boundary’ de-
termines if it must be known at compile time. ‘Loop level’ de-
termines if nested loop is profitable to algorithms. ‘Loop car-
ried dependence’ is classified into DOALL and DOACROSS.
‘Easiness’ describes if the implementation of algorithm is
easy. ‘Factor’ means the variables, which can dynamically
influence the performance due to loop information and sys-
tem states. The overheads of synchronization, communica-
tion and thread management are roughly classified into four
levels, none, light, normal, or heavy. ‘Start time’ determines
whether all each processor starting time need to be equal or
not.

In many parallel loop-scheduling algorithms, there are some
attributes, such as factors, which influence the performance
of executing program. For example, the adaptive hybrid
scheduling algorithm has two factor, § and ~, determining
the fetching processor whether or not to fetch more itera-
tions form work queue in dynamic level after executing the
iterations coming from static level. These two factors, 3
and 7, should be adjusted by the programmers according
to the properties of parallel computers. However, how to se-
lect appropriately the value of 8 and ~ on different system
is difficult. If we can refine values of the factors in the loop-
scheduling algorithm by using the profile information derived



Table 2: The

attributive table for UMA models.

UMA Model
DOALL DOACROSS
Static SS CSS GSS TSS Factoring AHS SSS Enhanced CSS
UMA /NUMA UMA UMA UMA UMA UMA UMA UMA /NUMA UMA /NUMA UMA
No of Processor X X X X X X X X X
Memory Access Rate 1:10:200 1:10:200 1:10:100 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200
Loop Style U, D, I X U, R U, I, R X X X X U
Program Size X X Large X X Large X X Large
Loop Type 1-10 X 1-2, 5-7, 9-10 2-3, 7-8 1, 3-4, 7, 11 3-4, 7-8 X 1-3, 5-11 1, 6-7
Data Locality X No No No No No Yes Yes X
Loop Boundary Yes X No X X X Yes Yes X
LCD DOALL DOALL DOALL/(0,1) DOALL DOALL DOALL DOALL DOALL Doacross (>1)
Easiness X X X No X No No No No
Factor - - & - Ng, Np T — ¢ B, ~ o, k I3
Thread Overhead 1, n h 1, n h n n n, h n, h 1, n
Comm. Overhead X T T 1 T, n 1 T, n 1, n 1
Sync. Overhead X 1 2,3, 4 2 3, 4 3, 4 1,5 1, 5 3,4, 5
Start Time Yes X Yes X X X Yes X Yes
Table 3: The attributive table for NUMA models.
NUMA Model
DOALL

AFS MAFS CAFS LAFS DAFS LDS GDCS ASS

UMA /NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA

No of Processor S, M S, M S, M, L S, M, L S S, M S, M S

Memory Access Rate 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200

Loop Style X D, I, R X X X X X X

Program Size - - - X - - - -

Loop Type 2-3, 9-10 2, 4-5 1,4, 8 1, 4,8 2,5,9, 11 1,5, 6,8, 10 2, 5,9, 11 2, 4,5, 6

Data Locality Yes Yes Yes Yes Yes Yes Yes Yes

Loop Boundary X X X X X X Yes X

Loop Level X X X X X X X X

LCD DOALL DOALL DOALL DOALL DOALL DOALL DOALL DOALL

Easiness No No No No No No No No

Factor 05<a<1 - K k - B o, B o = %

Thread Overhead 1, n 1 1, n 1, n 1 1, n 1, n 1

Comm. Overhead T T T T T T, n, h T, n, h h

Sync. Overhead 3, 4 5 3, 4 3, 4 5 3, 4 1,5 3, 4

Start Time X X X X X X X X

from the record of executing process of the program, it is ob-
vious that the new factors cyclically modified by refining pro-
cedure will make the parallelism of program more clear and
make the performance better. And we say this method stated
above has feedback-learning ability and is intelligent. In the
paper, a refining system based upon the profile information
consisting of the following seven items will be included into
our model.

e The number of iteration

e Maximal time of iteration

e Minimal time of iteration

e Total time of program

e The number of synchronization

e The number of remote memory access

e The workload distribution of each processor

How to refine attributes and not to modify rules in the
knowledge base is a problem, which is solved in our refining
system by storing attribute data into a file called Attrifile
and using data type of structure (record) as condition testing
of antecedent of if statement in rules. When a loop is exe-
cuted and profile information is generated, the refining sys-
tem will input profile information to modify the attributes
in Attri_file; therefore, the rules in knowledge base does not
need to be changed and the inference engine does not need
to be recompiled.

There are several situations at which the refining system
is suggested. Firstly, when IPLS is constructed completely,

maybe the attributes in knowledge base are crude that an
optimal loop-scheduling algorithm to transform a sequential
program into an efficient multithread program can not be
selected. Secondly, when IPLS is ported on a new environ-
ment, some attributes about system states, such as memory
access rate, need to be changed to influence the selection
of scheduling method. In addition, perhaps an appropriate
loop-scheduling algorithm is selected by inference engine, but
the bad values of factors in algorithm, such as chunk size in
CSS, will result in larger execution time. The factors had
better be refined to reduce the wasted considerable execu-
tion time if the executable code will be executed repeatedly.
It seems that the overhead from refining the attributes can be
neglected because of its advantage. After all, to increase the
accuracy is to increase efficiency. The programmer can deter-
mine whether to use refining system before deriving an ideal
loop-scheduling algorithm for the program or not. When us-
ing the refining system, the programmer can also decide the
number of loop-scheduling algorithms selected by inference
engine.

3.4 Run-Time Parallelization

The way of parallelizing our general inspector is by par-
titioning the entire range of iterations into consecutive seg-
ments and each segment is assigned to a different thread.
Each thread computes a valid parallel schedule for iterations
in its segment and ignoring any dependences with other itera-
tions outside of its segment. After all segments have finished,
we have a schedule for each segment. Every such schedule,



we called a sub-schedule, is a mapping from the iterations
in the corresponding segment to the wavefronts of that seg-
ment. The overall schedule is formed by concatenating the
sub-schedules with the order of the segments in entire range
of iterations. The number of segments can be set to a appro-
priate number, in intuitively, we will set the number of pro-
cessors to it. But, if the number of segments is larger, then
it will increase the total number of wavefronts (i.e., depth)
in overall schedule. The larger number of wavefronts implies
that there are fewer iterations in each wavefront, and then it
will decrease the speedup of run-time parallelization.

The executor performs the overall schedule extracted by the
general parallel inspector. As a rule of thumb, the executor
performs the sub-schedule of each segment in order, i.e., visits
the first wavefront till the last wavefront in a segment, then
does for next segment’s first wavefront closely, go on until the
last wavefront of the last segment have been visited. Every
wavefront is sequentially executed and ideally, all iterations
in the same wavefront are executed concurrently. In practice,
iterations in the same wavefront are partitioned into equal-
sized chunks and every chunk is enclosed in one thread, the
number of threads are automatically adapted according to
the number of iterations in each wavefront by calling function
auto-adapted, and then the threads scheduled by OSF/1 can
be executed in parallel manner.

We now compare the methods described in this paper to
several other techniques that have been proposed for analyz-
ing and scheduling DO loops at run-time. Most of this work
has concentrated on developing inspectors. A high level com-
parison of the various methods is given in Table 4. Since the
process of inspector for finding the wavefronts can be paral-
lelized fully without any synchronization. Our executor can
perform the loop iterations concurrently. In addition, for
each wavefront in a loop, the auto-adapted function is used
to get a tailored thread number for optimizing execution.

4 Experimental Results

4.1 Performance of PPD

To evaluate the performance of PPD for PFPC, experi-
ments were performed using both practical and contrived
data. The practical data included two numerical packages,
LINPACK and EISPACK, while the contrived data included
several examples that appeared in other papers. Another
program parallelization restructurer, Parafrase-2, was also
applied to the same testing data, and the results compared
with those from our design. LINPACK and EISPACK are
two well-known numerical packages. LINPACK is a collec-
tion of FORTRAN subroutines that analyze and solve vari-
ous systems of simultaneous linear algebraic equations, while
EISPACK is a collection of subroutines for evaluating the
eigenvalues of matrices. Because of their systemization and
representatives, the packages have been widely adopted as
benchmark programs [14]. There is total of 256 DO loops
distributed across the 52 subroutines in LINPACK. PPD was
able to exploit 51 DOALL loops and 0 DOACROSS loops,
as was Parafrase-2. In the experiments using LINPACK, we
have examined all the DOALL loops detecting by PPD and
Parefrase-2 carefully. PPD was able to exploit the same 51
DOALL loops as Parafrase-2 was. Because there is no DO

loop that can be translated into DOACROSS loop by using
our algorithm in the experiments of LINPACK. So, we show
the other experiments for demonstrating the DOACROSS
loops detected by using PPD.

There are a total of 657 DO loops distributed across the
77 subroutines in EISPACK. PPD was able to exploit 185
DOALL loops and 7 DOACROSS loops, while Parafrase-2
was able to exploit only the 185 DOALL loops. If there
is a constant dependence distance in the loop, PPD will
record the information for generating the synchronization
statements, and translate that loop into DOACROSS loop
during codegen phase. In our version, Parafrase-2 cannot
detect the DOACROSS loops, so PPD was able to exploit 7
DOACROSS loops in the experiments using EISPACK, while
Parafrase-2 was not. PPD translated the loops into DOALL
or DOACROSS loops conservatively. So, it is not possible
that PPD mistakenly marks non-DOALL loops as DOALL
or non-DOACROSS loops as DOACROSS.

4.2 Performance of IPLS

To demonstrate the performance of IPLS, there are two ex-
perimentations on UMA system and NUMA system, the first
one concerns each execution time and speedup of above ten
applications, and the other is a combined program, including
ten applications. Under the implementation on UMA sys-
tem, which is 2-processor machine, the execution time and
the corresponding speedup are shown in Table 5.

GSS performs poorly for Adjoint Convolution because the
workload of iterations is decreasing, and TSS is the most ef-
ficient algorithm for Adjoint Convolution. CSS/2 is suitable
for the applications like Gauss Jordan Elimination with ran-
dom unbalanced workload, LU Decomposition with decreas-
ing unbalanced workload, and SOR with uniform balanced
workload respectively. Factoring scheduling algorithm is
suitable for Gauss Elimination with random balanced work-
load. SSS is suitable for the applications like Reverse Adjoint
Convolution with increasing unbalanced workload, All Pairs
Shortest Paths with random balanced workload, and Transi-
tive Closure with random unbalanced workload respectively.
AHS is suitable for Jacobi Iteration with random unbalanced
workload. We can find that none of six scheduling algorithms
on UMA system is suitable for all applications. Alternatively,
IPLS can choose an appropriate scheduling algorithm and get
good performance for most applications except Matrix Mul-
tiplication and If_Then application.

5 Conclusions and Further Work

This paper describes the design and implementation of an
efficient and parallelizing compiler to parallelize loops and
achieve high speedup rates on multiprocessor systems. We
first introduce how to design a portable FORTRAN par-
allelizing compiler (PFPC) on a multiprocessor system by
multithreading operating system OSF/1. The main contri-
butions of this paper are described as follows. A model of
FORTRAN parallelizing compiler on multithreading OSF/1
was also proposed in this paper. This paper also reported
on the practical parallel loop detector (PPD) that was im-
plemented in PFPC on finding the parallelism in loops. Fur-
thermore, if DOACROSS loops are available, an optimiza-



Table 4: Characteristics comparison between several methods.

The superscripts have the following meanings:

1, Our serial inspector version can perform an optimal schedule. 2, The bit-vector atomic operation must be
applied to avoid the use of global synchronization. Since most of parallel machines don’t provide this operation,

the performance of this run-time method is degraded.

Methods Get optimal No sequential No global No restrict No merge No large local Integrate
schedule portions syn. type of loops between pro. mem. required in compiler

Our Method Nol Yes Yes Yes Yes Yes Yes
Zhu and Yew No Yes No Yes Yes Yes No
Midkiff and Padua Yes Yes No Yes Yes Yes No
Chen et al. No Yes No Yes Yes Yes Yes
Rauchwerger et al. Yes Yes Yes Yes No No Yes
Saltz et al. Yes No No No Yes Yes Yes
Leung and Zahorjan Yes Yes No No Yes Yes Yes
Sheng et al. Yes Yes Yes2 Yes Yes Yes No

Table 5: The execution time (ms)/speedup of 11 applications applying different scheduling algorithms.

Applications SERIAL CSS/2 GSS TSS
Adj_-Con 20104/1 15042/1.337 15055/1.335 10398/1.933
Gauss_Eli 365359/1 256945/1.422 197157/1.853 202922/1.8
Gauss_Jor 7765/1 4245/1.829 5587/1.39 5599/1.387
Jacobi_lter 14047/1 10109/1.39 12836,/1.094 12656/1.11
LU 40995/1 28094/1.459 33521/1.223 34356/1.193
Matrix_Mul 23453/1 12281/1.91 12095/1.939 12229/1.918
Radj-Con 27235/1 21274/1.28 14719/1.85 15587/1.747
SOR 109062/1 76891/1.418 82594/1.32 83943/1.299
Spath 63063/1 57032/1.106 58867/1.071 43146/1.462
Tran-Clos 479188/1 298312/1.606 308844 /1.552 325430/1.472
If_Then 17125/1 9682/1.769 9693/1.767 8595/1.992
Applications Factoring SSS AHS IPLS
Adj_-Con 13974/1.439 12359/1.627 12352/1.628 as TSS
Gauss_Eli 195016/1.873 208055/1.756 196852/1.856 as Factoring
Gauss_Jor 5266/1.475 4333/1.792 4391/1.768 as CSS/2
Jacobi_lter 13125/1.07 9802/1.433 9758/1.44 as AHS
LU 33071/1.24 28505,/1.438 28432/1.442 as CSS/2
Matrix_Mul 12214/1.92 12187/1.924 12203/1.922 as CSS/2
Radj-Con 15255/1.785 14336/1.9 15477/1.76 as SSS
SOR 86742/1.257 77376/1.41 77680/1.404 as CSS/2
Spath 61547/1.025 38126/1.654 38797/1.625 as SSS
Tran-Clos 310469/1.543 295922/1.619 296078/1.618 as SSS
If_Then 8667/1.976 8656,/1.978 8620/1.987 as AHS
tion of synchronization statements are made. Experimen- [5] L. Rauchwerger, N. M. Amato, and D. Pauda, “Run-time meth-

tal results showed that PPD was more reliable and accu-
rate than previous approaches. In addition, a new model by
using knowledge-based techniques was proposed to exploit
more loop parallelisms in this paper. The knowledge-based
approach integrated existing data dependence tests and loop
scheduling algorithms to make good use of their ability to
extract loop parallelisms. Experimental results show that
the speedup delivered by our compiler was high. As an ulti-
mate goal, a high-performance and portable FORTRAN par-
allelizing compiler on shared-memory multiprocessors will be
constructed. In the study of high-performance parallelizing
compilers, results of this paper will be able to deliver theo-
rectical and technical contributions.
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