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Abstract

Synthesis means restricting a specification behavior such
that the synthesized behavior satisfies some given property.
Previous work on the synthesis of embedded real-time sys-
tem have not considered parameters. In the world of em-
bedded systems, parameters are of paramount importance
for system design because tradeoffs among various system
features and functionalities have to be made. We define and
solve the parametric embedded real-time system synthesis
problem by integrating parametric analysis techniques into
embedded real-time system synthesis. An example is given
to illustrate the feasibility of our approach.
Keywords: embedded real-time system synthesis, paramet-
ric analysis, parametric synthesis, formal design

1 Introduction

Currently, a technological gap exists between system ana-
lyzers and system designers because the former do not take
real-world constraints into consideration while verifying
systems and the latter often lack preciseness and complete-
ness in designing systems. Researchers are trying to bridge
this gap through formal synthesis techniques [4, 5, 6, 11]
and through practical analysis techniques [2, 7, 8, 10, 9, 15].
Our effort at incorporating system parameters into embed-
ded real-time system synthesis is also directed towards this
goal. On one hand, parametric analysis techniques have
been proposed for real-time systems [15]. On the other
hand, synthesis methods have been proposed for real-time
systems [5, 12, 16] through extensions of Ramadge & Won-
ham’s classical work [13] on supervisor synthesis. Our work
consists of integrating these two classes of techniques such
that embedded real-time system can be synthesized for sys-
tems with static parameters.

In general, system parameters include system compo-
nent costs and performance readings such as response time,
throughput, utilization, power (percentage throughput per
unit utilization), fault-tolerance, scalability, reliability, and
others. These parameters become all the more important in
embedded systems, because the behavior of an embedded

system is constantly under the influence of an environment.
Synthesis that does not consider the values of such parame-
ters may not give the best system design result.

Parametric analysis of real-time systems solves the
problem of finding a general relationship that valuations for
a set of parameters must satisfy in order for a system to meet
a given property [15]. Parameters appear in a system de-
scription and as a quantification suffix in a property specifi-
cation. Previous work [15] first modeled a system by Para-
metric Timed Automata (PTA), specified a system property
by parametric timed computational tree logic (PTCTL), and
then derived a condition on parameter valuations, which is
a boolean combination of semi-linear expressions.

Synthesis for embedded control systems was mainly per-
formed in the discrete time domain, with a large portion
of classical work done by Ramadge and Wonham [13, 14].
Around 1994, when timed automata was proposed as a
dense-time model for real-time systems [3], discrete syn-
thesis was extended to dense real-time systems [4, 12, 17]
as well as to hybrid systems [16]. Recently, the same tech-
nique was further extended to multimedia scheduler synthe-
sis [1]. Given a dense real-time system modeled by timed
automata and a (temporal) property given as a formula in
Timed Computation Tree Logic (TCTL) [2, 8], a restriction
of system behavior is synthesized for satisfying the property.
This is called embedded real-time system (ERTS) synthesis
problem.

In previous work on synthesis [1, 4, 5, 12], discrete vari-
ables and constants appear in both system description and
property specification, but parameters were not allowed. We
extend the existing work by allowing parameters to appear
in system description and property specification such that
embedded real-time system can be synthesized for paramet-
ric systems, too.

This article is organized as follows. Section 2 formulates
and models the Parametric Embedded Real-Time Systems
(PERTS) synthesis problem. Section 3 proposes a method
for solving PERTS synthesis problem. Section 4 illustrates
the proposed method through an application example. Sec-
tion 5 concludes the article.



2 Problem Formulation

The problem that we are modeling and solving here consists
of two main issues:

1. Parameter Valuation: Given a system, a specifica-
tion, and a set of parameters, find a general condition
on the parameter values such that the system satisfies
the specification.

2. Embedded Real-Time System Synthesis: Given a
system, a synthesis mask, and a specification, find a re-
striction of the system behavior, interpreted under the
given mask, such that it satisfies the specification.

Given a system, a synthesis mask, a specification, and
a set of parameters, both of the above two issues must be
solved. A synthesis mask is a boolean vector that speci-
fies which transitions are synthesizable and which are not.
These two issues may at first appear to be orthogonal prob-
lems due to the former being a static problem (parameter
values do not change with time), while the latter a dynamic
problem (restricts the dynamic behavior of a system). But,
they are in fact intricately involved with each other. The
following are two ways in which they affect each other.

� Static affects dynamic: Corresponding to different
static parameter valuations, a system description will
have different interpretations, which results in differ-
ent behavior synthesized.

� Dynamic affects static: When the dynamic behavior of
a system is restricted in some way, certain static param-
eter valuations that worked originally may no longer
work now, where work means allowing a system to sat-
isfy a given property specification.

Due to the above relationships between the two issues,
we need to find the most general condition on parameter val-
uations while imposing the minimum restriction on a system
behavior to satisfy a given specification. Before formulating
our problem, some models and definitions are necessary.

Our target is a real-time system, that is, a system whose
correctness depends on satisfying certain temporal con-
straints. Here, a real-time system is formally modeled by
Parametric Timed Automaton (PTA) model [15]. The PTA
model basically extends Timed Automata (TA) [3] with pa-
rameters in the system description. Timed automata are au-
tomata with time or clock variables, which model temporal
characteristics and temporal specifications. In the follow-
ing, the set of integers and non-negative real numbers are
denoted by N and R�0, respectively. Mode predicates are
used to specify transition triggering conditions and mode
invariants and are defined as follows.

Definition 1 : Mode Predicate
Given a set C of clock variables, a set D of discrete vari-
ables, and a set H of parameters, the syntax of a mode pred-
icate � over C, D, and H is defined as: � := false j x �
c j x � y � c j d � c j �iai�i � c j �1 ^ �2 j :�1,
where x; y 2 C, � 2 f�; <;=;�; >g, c; ai 2 N , �i 2 H ,
d 2 D, and �1; �2 are mode predicates.

Let B(C;D;H) be the set of all mode predicates over
C, D, and H . A PTA is composed of various modes inter-
connected by transitions. Variables are distinguished into
clock and discrete, where variables of the former type in-
crement at a uniform rate and can be reset on a transition,
while variables of the latter type change values only when
assigned a new value on a transition.
Definition 2 : Parametric Timed Automaton
A Parametric Timed Automaton (PTA) is a tuple A =
(M;m0; C;D;H; �;E; �; �) such that: M is a finite set
of modes, m0 2 M is the initial mode, C is a set of
clock variables, D is a set of discrete variables, H is a
set of static parameters, � : M 7! B(C;D;H) is an in-
variance function that labels each mode with a condition
true in that mode, E � M � M is a set of transitions,
� : E 7! B(C;D;H) defines the transition triggering con-
ditions, and � : E 7! 2C[(D�N ) is an assignment func-
tion that maps each transition to a set of assignments such
as resetting some clock variables and setting some discrete
variables to specific integer values.
Definition 3 : Interpretation
An interpretation, I, of a PTA A =
(M;m0; C;D;H; �;E; �; �) is a mapping from the
set of parameters H to the set of integers N . A PTA A
interpreted under an interpretation I will be denoted as
AjI .
Definition 4 : State
Given a PTA A = (M;m0; C;D;H; �;E; �; �), a state s of
A is defined as a mapping from C [ D to R�0 [ N such
that
� 8x 2 C; s(x) 2 R�0 is the reading of clock x in s,

and
� 8d 2 D; s(d) 2 N is the value of d in s.

Definition 5 : Satisfaction of Mode Predicates
The satisfaction of mode predicates by a state s under inter-
pretation I, written as s j=I �, is defined by the following
rules:
� s 6j=I false;
� s j=I x� y � c iff s(x) � s(y) � c;
� s j=I x � c iff s(x) � c;
� s j=I d � c iff s(d) � c;
� s j=I

P
ai�i � c iff

P
aiI(�i) � c;

� s j=I �1 _ �2 iff s j=I �1 or s j=I �2; and
� s j=I :�1 iff s 6j=I �1.



Given a PTA A = (M;m0; C;D;H; �;E; �; �), an in-
terpretation I forH , and a state s, let sM be the mode inM
such that s j=I �(s

M ). If there is no mode m 2 M such
that s j=I �(m), then sM is undefined.
Definition 6 : Mode Transition
Given two states s; s0, there is a mode transition from s to
s0 in A under interpretation I, in symbols s!I s

0, iff
� Both sM ; s

0M are defined,
� (sM ; s

0M ) 2 E,
� s j=I �(s

M ; s
0M ), and

� 8x 2 C
�
(x 2 �(sM ; s

0M )) s0(x) = 0)

^(x 62 �(sM ; s
0M ) ) s0(x) = s(x))

�
.

Also, given a state s and a � 2 R�0, let s + � be the
state that agrees with s in every aspect except for all x 2 C,
s(x) + � = (s+ �)(x).
Definition 7 : Interpreted PTA
A PTA A = (M;m0; C;D;H; �;E; �; �) is said to be in-
terpreted under some interpretation I, when all the mode
invariants and trigerring conditions on transitions have their
parameters interpreted under I, i.e., 8� 2 H , � is replaced
by I(�) 2 N .

WhenA is interpreted under I, it is denoted byAjI . Let
VH;� be the set of all possible valuations of the parameters
in H and of those appearing in a PTCTL formula �.
Definition 8 : A Feasible s-run
Given a state s of PTA A = (M;m0; C;D;H; �;E; �; �)
under interpretation I, a computation of A starting at s is
called a feasible s-run which can be represented by an infi-
nite sequence
((s1; t1); (s2; t2); : : : : : :) such that
� s = s1; and
� for each t 2 R�0, there is an i 2 N such that ti � t;

and
� for each integer i � 1, sMi is defined and for each real

0 � � � ti+1 � ti, si + � j=I �(s
M
i ); and

� for each i � 1, A goes from si to si+1 because of
- mode transition, i.e., ti = ti+1 ^ si !I si+1; or
- time passage, i.e., ti < ti+1 ^ si + ti+1 � ti =
si+1.

We denote by Run(AjI) the set of all feasible s-runs of a
PTA A interpreted under I.

Timed Computation Tree Logic (TCTL) [8] is extended
to include static parameters in the automata and parameters
in TCTL formula, we call this extension Parametric Timed
Computation Tree Logic (PTCTL). The syntax of a PTCTL
formula, �, used for analyzing models described by a PTA
A = (M;m0; C;D;H; �;E; �; �) is defined as follows.
Definition 9 : Parametric TCTL (PTCTL)
A PTCTL formula � is defined to have the following syntax.

� ::= � j 9�1U���2 j 8�1U���2 j �1 _ �2 j :�1 (1)

where � is a mode predicate, �1, �2 are PTCTL formulae
and � is either an integer constant inN or a parameter inH .
Note that the parameter subscripts of modal formulae can
also be used as parameters in PTA.
Definition 10 : Synthesis Mask
A synthesis mask �c maps each transition of a PTA into a
boolean value, such that true (1) denotes a synthesizable
transition, and false (0) denotes an unsynthesizable transi-
tion.

�c : E ! f0; 1g (2)

where E is a set of transitions of some given PTA. Of-
ten, a synthesis mask is simply given as a boolean vector,
�c(E) = h�c(e0); �c(e1); : : : ; �c(ejEj)i, assuming some
sequential order for all the transitions in a PTA.

Given the above formal definitions and notations, our
target problem is thus formulated as follows.

Definition 11 : PERTS Synthesis (PSynth(S; �c; �)):
Given a real-time system modeled by a parametric timed
automaton S, a synthesis mask �c, and a parametric timed
computation tree logic formula �, the parametric embed-
ded real-time system synthesis problem is to find a general
condition V� on the parameter valuations and a synthesized
parametric timed automatonSC such that the following con-
ditions are satisfied.

1. the synthesized system SC , interpreted under V�, sat-
isfies �, that is, SC j=V� �, and

2. there is no state s 2 QS such that s is reachable in Sjv,
s =2 QSC and s j=v � for some parameter valuation v 2
VH;�, where Sjv is the interpretation of S under v, QS

andQSC are the state-spaces ofS andSC , respectively.

3 PERTS Synthesis

As mentioned at the start of Section 2, we have two goals
in solving the parametric controller synthesis problem: (1)
derive most general conditions on parameter valuations, and
(2) construct a minimally restricted synthesized system sat-
isfying a given property. These two goals are inter-related.
To achieve these two goals simultaneously, we propose an
integrated approach, where the iterative algorithm of em-
bedded real-time system synthesis is the basis and paramet-
ric analysis is performed on-the-fly.

3.1 Parametric Analysis

Parametric analysis is a method for finding a general con-
dition on the valuation of parameters appearing in a sys-
tem and in a specification such that the given system sat-
isfies the given specification [15]. Given a system repre-
sented by a PTA S = hM;m0; E;X; Y;H;L; �; �; �;  i



Table 1: Labeling Algorithm for Parametric Analysis

PAnalyze(S; �)
PTA S = hM;m0; E;X; Y;H;L; �; �; �;  i;
PTCTL Formula �;
f

Construct Param. Region Graph GS:� = (R;F ); (1)
for each r 2 R, recursively compute label L�(r); (2)
return

W
r02R0

L�(r0); (3)
// R0 � R is a set of all initial regions in R

g

and a PTCTL specification �, parametric analysis finds a
condition VH;� on the valuation of parameters in H and
of those appearing in � such that S j=VH;� �. The con-
dition VH;� is a boolean combination of semi-linear expres-
sions, where each semi-linear expression gives the pattern
of values that a parameter could take. A semi-linear ex-
pression is a union of a finite number of integer sets like
fa+ b1j1 + b2j2 + : : :+ bnjn j j1; : : : ; jn 2 Ng for some
a; b1; b2; : : : ; bn 2 N .

Parametric analysis is given briefly in Table 1 as a func-
tion PAnalyze(). The basic steps are explained here, but
details can be found in [15]. First, parametric analysis con-
structs a parametric region graph, which is a parametric ex-
tension of region graphs proposed by Alur et al. [3]. All
the states in a region have the same truth value with respect
to model checking and hence can be taken as the basis of
parametric analysis. Second, a conditional path graph is
constructed for each pair of regions in the parametric region
graph. A conditional path graph for a pair of regions rep-
resents a predicate condition and a semi-linear expression
such that a computation run along that path must satisfy
the predicate condition and takes time as recorded by the
semi-linear expression. Third, through a labeling algorithm
each region r is associated with a label L�(r) represent-
ing S; r j=L�(r) �. The labels are computed recursively.
Finally, a disjunction of labels associated with all initial re-
gions is taken as the general parametric condition for the
satisfaction of � by system S.

3.2 Predicate Synthesis

Predicate synthesis modifies existing triggering condition
predicates on synthesizable transitions and invariant pred-
icates in modes of a given to-be-controlled system such that
the resulting modified system satisfies a given specifica-
tion. More formally, given a system represented by a PTA
S = hM;m0; E;X; Y;H;L; �; �; �;  i interpreted under a
parametric valuation V , a synthesis mask �c, and a PTCTL
specification �, predicate synthesis constructs a new PTA

Table 2: System Synthesis Algorithm (2 Timed Game)

Synthesize System(SjV ; �c; �)
PTA S = hM;m0; E;X; Y;H;L; �; �; �;  i;
V is an interpretation or parameter valuation;
Synthesis Mask �c : E ! ftrue; falseg;
PTCTL formula �;
f
z0 = �; (1)
for i = 0; 1; : : : f (2)
zi+1 = zi \ �(zi; �); (3)
if (zi+1 = zi) break; g (4)

SC = Synthesize Predicate(SjV ; �c; zi); (5)
return SC ; (6)

g

zi is a set of states, i � 0, and SC is a PTA.

SC by refining �(e) for all e 2 E with �c(e) = true, and by
refining �(m) for all m 2M , such that SC ; r j=V �, for all
regions r in the parametric region graph of SC .

The algorithm Synthesize System() given in Table 2 il-
lustrates how a system PTA is synthesized. The basic steps
are explained here, but details can be found in [4, 5]. First,
a fix-point is obtained iteratively, which represents a closure
of all the regions (collection of states) in which � can be sat-
isfied. The iteration starts with an initial region z0 which in-
cludes all states that satisfy �. In each iteration i, a predeces-
sor operator � is applied to region zi and a new region zi+1

is obtained by an intersection of zi and �(zi; �) (for2 timed
game) or by a union of zi and �(zi; �) (for 3 timed game).
Here, a timed game is simply a PTCTL formula. The new
region represents a 1-step backward reachable collection of
states. Then, using the resulting fix-point zi, predicates are
synthesized by the algorithm Synthesize Predicate() given
in Table 3.

The predicate synthesis algorithm is given as a func-
tion Synthesize Predicate() in Table 3. Here, the predi-
cates we are concerned with are those appearing in trigger-
ing conditions on synthesizable transitions and those appear-
ing in invariant conditions of modes. By predicate synthe-
sis, we mean the existing predicates in a system S are to be
modified into new predicates, called synthesized predicates,
which guarantee that the modified system SC satisfies �.
This algorithm uses a region, z, called the fix-point region
which is a closure of regions that satisfy �. First, for all
modes m in M that has a state in z, its invariant condition
�(m) are conjuncted with z so as to restrict the states in
each such mode to only those in z. Then, for all out-going
synthesizable transition e of each such mode m, its trigger-
ing condition �(e) is conjuncted with a predicate condition
��. This predicate condition �� ensures that for each unsyn-



Table 3: Predicate Synthesis Algorithm

Synthesize Predicate(S; �c; z)
PTA S = hM;m0; E;X; Y;H;L; �; �; �;  i;
Synthesis Mask �c : E ! ftrue; falseg;
Set of regions z;
f

for each m 2M s.t. 9s 2 z; sM = m f (1)
�(m) = �(m) ^ z; (2)
for each out-going trans e of m

with �c(e) = true f (3)
�(e) = �(e) ^ � 0; (4)
where � 0 = 8e0 2 E0
@

(�c(e
0) = false) ^ (�(e0)) z)

^ 9 a run h(s0; t0); (s1; t1); : : : ; (sk; tk)i
such that e0 = (sM0 ; s

M
1 ); e = (sMk�1; s

M
k ):

1
A

gg
return S; (5)

g

thesizable transition f (i.e., �c(f) = false), the behavior of
a run from f to e does not leave the fix-point region z.

3.3 PERTS Synthesis Algorithm

We propose a solution to the PERTS synthesis problem by
an integration of the iterative synthesis algorithm (described
in Table 2 and the parametric analysis algorithm (described
in Table 1. The basis is the synthesis algorithm and para-
metric analysis is performed on-the-fly. Parametric regions
are labeled as and when they are included into the fix-point
set of regions derived in each iteration. Here, labeling re-
gions means regions are associated with conditions on pa-
rameter valuations such that computation runs starting from
those regions satisfy a given specification under the associ-
ated conditions.

The algorithm for this approach is given as function
PSynth() in Table 4, where a system PTA S is given along
with a synthesis mask �c and a PTCTL property �. On-the-
fly parametric analysis, as represented by OTF PAnalyze()
in Table 5, is performed in each iteration (Step (4) of Ta-
ble 4). A restricted behavior is synthesized in Step (9) using
the fix-point region zi. In the rest of this subsection, we
will state the completeness and termination of the iterative
algorithm. Proofs are omitted due to page-limits.

Lemma 1 A feasible computation run cannot simultane-
ously belong to two sets of runs of S interpreted under two
contradictory parameter valuations.

Theorem 1 Completeness There does not exist a state s 2
QS and a parameter valuation v 2 VH;� such that s is

Table 4: PERTS Synthesis Algorithm (2 Timed Game)

PSynth(S; �c; �)
PTA S = hM;m0; E;X; Y;H;L; �; �; �;  i;
Synthesis Mask �c : E ! ftrue; falseg;
PTCTL formula �;
f

Construct Param. Region Graph GS:� = (R;F ); (1)
z0 = �; (2)
for i = 0; 1; : : : f (3)

OTF PAnalyze(zi; �); (4)
zi+1 = zi \ �(zi; �); (5)
if (zi+1 = zi) break; g (6)

if (R0 6= ;) f
// R0 � zi is a set of initial regions of S (7)
VH;� =

W
r02R0

L�(r0); (8)
SC = Synthesize Predicate(SjVH;� ; �c; zi); (9)
return (VH;�; SC); g (10)

else return (false, NULL); // No solution (11)
g

zi is a parametric region, i � 0,
VH;� � VH;� is a condition on parameter values, SC : PTA.

Table 5: On-the-Fly Parametric Analysis Algorithm

OTF PAnalyze(Z; �)
Set of Parametric Regions Z;
PTCTL Formula �;
f

for each r 2 Z, recursively compute label L�(r); (1)
g

reachable in Sjv, s =2 QSC , and s j=v �, where QS and
QSC are respectively the state spaces of a system S and its
corresponding controlled system SC derived using the iter-
ative parametric controller synthesis algorithm.

Theorem 2 Termination The iterative parametric con-
troller synthesis algorithm is guaranteed to terminate.

4 Application Experiment

The proposed PERTS synthesis method is applied to an ex-
ample: a 3 timed-game. This example illustrates how the
proposed method for parametric embedded real-time system
synthesis works and how syntheses of trigger predicates on
a transition correspond to prunings of a parametric region
graph. A system PTA for this example is given in Fig. 1 and



x := 0

M3M1 M2 M4

M0

M5

x = 0

� = 1^
x = 1

x > 7

� = 3^� 6= 1^
x > 3

x := 0

� � 3^
x < 8

� < 3^
x � 4

� = 9^
x > 8

Figure 1: System PTA S for Example 1

the PTCTL specification for this example is as follows.

� = 93<�(M5 ^ x � 5 ^ x � 7) (3)

where � is a parameter,M5 is a mode name, and x is a clock
variable. For simplicity, it is assumed that all transitions are
synthesizable.

The PERTS synthesis algorithm given in Section 3.3 was
used to synthesize a system PTA S illustrated in Fig. 1 such
that it satisfied the PTCTL specification � given in Equa-
tion (3). A parametric region graph GS:� = (R;F ) was
constructed, whose pruned version is shown in Fig. 2. Just
as a complete parametric region graph depicts the behavior
of a system PTA S, a pruned parametric region graph de-
picts the behavior of a controlled system PTA SC . A prun-
ing in the graph is depicted as a dashed bold arrow and rep-
resents a control synthesis (refinement) of trigger predicates
on some transition. A parametric region is represented by
an oval in Fig. 2. Each oval is labeled by a region name (ri),
a mode name (Mk), a clock interval ([u; v)), and an optional
parametric condition (� : : :). A clock interval corresponds
to the valuation of clock x in the system PTA description
(Fig. 1). For ease of illustration, a parametric condition is
given at the top of a sub-graph, instead of repeating it in
each region of the sub-graph.

Details of the iterations in our proposed PSynth()
method (Table 4) are as follows.

� Initialization: In Step (2), regions satisfying � are in-
cluded in initial fix-point, z0 = fr1; r2; : : : ; r9g.

� Iteration i = 0: In Step (4), regions in z0 are labelled
with parametric conditions as follows
L�(r1) = (� = 1 ^ � < 3 ^ 1 � � � 3),
L�(r2) = (� = 1 ^ � < 3 ^ 1 � � � 2),
L�(r3) = (� = 1 ^ � < 3 ^ � = 1),
L�(r4) = (� 6= 1 ^ � � 3 ^ 1 � � � 3),
L�(r5) = (� 6= 1 ^ � � 3 ^ 1 � � � 2),
L�(r6) = (� 6= 1 ^ � � 3 ^ � = 1),
L�(r7) = (1 � � � 2),
L�(r8) = (1 � � � 2), and
L�(r9) = (� = 1).

In Step (5), the next fix-point region space is computed
as z1 = fr1; : : : ; r9; r10; : : : ; r18g.

� Iteration i = 1: In Step (4), new regions in z1 are la-
belled with parametric conditions as follows
L�(r10) = L�(r1), L�(r11) = L�(r2),
L�(r12) = L�(r3), L�(r13) = L�(r4),
L�(r14) = L�(r5), L�(r15) = L�(r6),
L�(r16) = L�(r7), L�(r17) = L�(r8),
L�(r18) = L�(r9).

In Step (5), the next fix-point region space is computed
as z2 = fr1; : : : ; r18; r19; : : : ; r27g.

� Iteration i = 2: In Step (4), new regions in z2 are la-
belled with parametric conditions as follows
L�(r19) = (� = 1 ^ � < 3 ^ 2 � � � 4),
L�(r20) = (� 6= 1 ^ � � 3 ^ 2 � � � 4),
L�(r21) = L�(r13), L�(r22) = L�(r14),
L�(r23) = L�(r15), L�(r24) = 2 � � � 4,
L�(r25) = L�(r16), L�(r26) = L�(r17),
L�(r27) = L�(r18).

In Step (5), the next fix-point region space is computed
as z3 = fr1; : : : ; r27; r28; : : : ; r32g.

� Iteration i = 3: In Step (4), new regions in z3 are la-
belled with parametric conditions as follows
L�(r28) = (� = 1 ^ � < 3 ^ 3 � � � 5),
L�(r29) = (� 6= 1 ^ � � 3 ^ 3 � � � 5),
L�(r30) = L�(r20), L�(r31) = 3 � � � 5,
L�(r32) = L�(r24).

In Step (5), the next fix-point region space is computed
as z4 = fr1; : : : ; r32; r33; : : : ; r36g.

� Iteration i = 4: In Step (4), new regions in z4 are la-
belled with parametric conditions as follows
L�(r33) = (� = 1 ^ � < 3 ^ 4 � � � 6),
L�(r34) = L�(r29), L�(r35) = 4 � � � 6,
L�(r36) = L�(r31).

In Step (5), the next fix-point region space is computed
as z5 = fr1; : : : ; r36; r37; : : : ; r40g.

� Iteration i = 5: In Step (4), new regions in z5 are la-
belled with parametric conditions as follows
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Figure 2: Pruned Parametric Region Graph for Example 1

L�(r37) = (� = 1 ^ � < 3 ^ 5 � � � 7),
L�(r38) = (� 6= 1 ^ � � 3 ^ 4 � � � 6),
L�(r39) = 5 � � � 7,
L�(r40) = L�(r35).

In Step (5), the next fix-point region space is computed
as z6 = fr1; : : : ; r40; r41; : : : ; r44g.

� Iteration i = 6: In Step (4), new regions in z6 are la-
belled with parametric conditions as follows
L�(r41) = (� = 1 ^ � < 3 ^ 6 � � � 8),
L�(r42) = (� 6= 1 ^ � � 3 ^ 5 � � � 7),
L�(r43) = 6 � � � 8,
L�(r44) = L�(r39).

In Step (5), the next fix-point region space is computed
as z7 = fr1; : : : ; r44; r45; : : : ; r47g.

� Iteration i = 7: In Step (4), new regions in z7 are la-
belled with parametric conditions as follows
L�(r45) = (� = 1 ^ � < 3 ^ 6 � � � 8),
L�(r46) = (� 6= 1 ^ � � 3 ^ 6 � � � 8),
L�(r47) = L�(r43)

In Step (5), the next fix-point region space is computed
as z8 = fr1; : : : ; r47; r48g.

� Iteration i = 8: In Step (4), new regions in z8 are la-
belled with parametric conditions as follows
L�(r48) = (� = 1 ^ � < 3 ^ 7 � � � 9). In
Step (5), the next fix-point region space is computed as
z9 = fr1; : : : ; r48g, which is the same as z8. Hence,
the loop terminates in Step (6).

� Step (7): The set of initial regions is R0 =
fr46; r48; r47g.

� Step (8): The general parametric condition is obtained
as:

VH;� = L�(r46) _ L�(r48) _ L�(r47)
= (� 6= 1 ^ � � 3 ^ 6 � � � 8)_

(� = 1 ^ � < 3 ^ 7 � � � 9)_
(6 � � � 8)

(4)

� Step (9): The system synthesized is illustrated in Fig. 3.
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Figure 3: Synthesized PTA SC for Example 1

� Step (10): (VH;�; SC) is the final output result.

5 Conclusion

An embedded real-time system synthesis problem was ex-
tended to include static parameters in system descriptions
and quantitative parameters in specifications. The paramet-
ric embedded real-time system (PERTS) synthesis problem
was presented and solved. A PERTS synthesis algorithm
based on iterative system synthesis was proposed to solve
the problem. The completeness and soundness of the algo-
rithm were validated analytically. An example experiment
was conducted to show the feasibility of our PERTS synthe-
sis algorithm. Using our approach, system engineers can
now take system parameters into consideration while de-
signing embedded real-time systems. The formal approach
also allows correct verified designs.
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