A CMAC with Content Addressable Memory

Yuan-Pao Hsu, Kao-Shing Hwang, and Jinn-Shyan Wang
Department of Electrical Engineering
National Chung Cheng University
Chia-Yi, Taiwan
E-mail : hsuyp@robot.ee.ccu.edu.tw

Abstract

A new design scheme of Cerebellar Model Articular
Controller (CMAC) is presented in this article. The
controller is designed with a content addressable memory
(CAM) to replace the function of hash-coding method,
which consumes more computation efforts, in the
traditional CMAC for memory space consideration.
Therefore, the address mapping of the proposed CMAC is
comparatively different from the hash-coding method. The
CAM, which is capable of fast comparison, can
immediately determine in parallel if there is any akin data
in memory as the input data presents. If a match doesn’t
occur after comparison, the activated address is then
stored in a vacant cell of the CAM indexed by a circular
incremental pointer. The memory collisionshould be able
to be avoided unless the memory is all occupied. Thereby,
memory utilization rate can be improved to 100%
Meanwhile, control noise can be suppressed significantly.
In content addressing, the associated mask function, which
is triggered while the CAM is full, can decrease the
probability of collision and improve control performance
Simulation results of function approximation and truck
backer-upper control indicate the proposed CMAC is
explicitly superior to the conventional CMACs.

1. Introduction

Cerebella Model Articulation Controller (CMAC),
originally proposed by James Albus[1], is the architecture
of a neural network. A CMAC fundamentally estimates
the desired output by taking input states as an index to
refer to a look-up table where the synaptic weights are
addressed and stored. The relationship beéween input and
output can be represented approximately by a CMAC if
addressable weights are updated evolutionarily by a decent
algorithm. Functionally, a CMAC is defined by a series of
mappings as shown in Fig. 1.

S>M—->C—>P->0 ’

where S, M, C, P, and O stand for the input vector,
encoding, the conceptual memory, the actual memory, and

the output respectively. The overall mapping S — O
can be presented in the form O=h(S). The capability of
learning and adaptability of a CMAC is provided bythe
memory addressing algorithm. It has been widely used in
robot control [2], color correction [3], and system model
approximation [4] as a result of the properties of local
generalization, rapid computation, function approximation,
and output superposition.

The hardware implementation of CMAC is hard to
be realized since its conceptual memory theoretically
needs a huge space to address the encoded input

information. Hash coding algorithms [5] are generally
applied to reduce the space into a more reasonable scale.
However, this approach has some drawbacks [6]. First,
collisions always occur frequently during mapping from a
wide input domain to a relatively small field. For instance,
the cells of c; and a,_as illustrated in Fig. 1, project onto a
memory cell p; simultaneously. Some algorithms [5] have
been introduced to achieve low collision rate and high
memory utilization. However, in these improved algorithms
some cells are still never visited thoroughly. In other words,
they hardly achieve 100% memory utilization rate. Second,
while collisions occur, hash coding algorithms regard the
weights stored in the clashed memories as a validated one
that responds to the temporal input though. Therefore, most
of CMACs with hash coding algorithms may retrieve, output,
and update an irrelevant data in terms of mapping crash.
From the viewpoint of system control, this manner could
cause CMAC:s interfered by so-called control noises.

The objective of this article is to propose a hardware
realization of the CMAC function. The proposed
architecture of the CMAC is called CAM-based CMAC
(CCMACQ), which utilizes an embedded content addressable
memory (CAM) to execute the functions of efficient
encoding and memory association. The mechanism of CAM
is mainly used to replace the function of hash coding in
addressing. By the scheme, the new design should have
better performance in memory utilization and control noise
alleviation.

Fig. 1 Theoretical diagram of CMAC

The paper is organized as follows. Section 2 briefly
introduces the theory of the conventional CMAC for the
purpose of comparison with the proposed design. Section 3
illustrates the functional architecture of the proposed
CCMAC. The simulations on function approximation of a
sinusoidal function and the backerupper control of a truck
are conducted in section 4. The comparison between the
proposed CCMAC and the conventional CMAC is discussed
in this section also. Finally, discussion and conclusions are
drawn in the last section.

S M C P o

Actual Desired
memory Response
Weight 4V
— Updating .
Input Conceptual Hash)l p. € | Learning

— Mapper Coder rules
A ; \ T v
. u

: ®—> Plant

Fig. 2 The functional block of HCMAC

2. The Conventional CMAC
The input vector S is the state feedback from the
plant or environment, and is mapped to the conceptual
memory C by means of conceptual mapping mechanism
M, as illustrated in Fig 1. This conceptual mapping
mechanism can be described as Eq. (1)

X . S +R-i-1 . (1)

fc(S/) = X/i = [lnt(jT)]XR'Fla

where §; is the input, and R is the size of the receptive
field (R = 2 in the case of Fig 1).i =0, 1, 2,..., R-1 is an
index number of the activated address, and Xj; is the
activated address mapped from S to C. If the distance
among the input vectors is relatively short, then there
should be some addresses overlapping as the case off.(S>)
and f.(S;) indicated in Fig. 1. The situation is referred as
the generalization problem. The problem can also be
explained as: if input vectors S, and S; are similar, and
there have been adequately tuned weights stored in the
memory with respect to S;already, then S; could refer to
these overlapped addresses associated with S, to get more
suitable weights for producing output before updating.
The functional block diagram of a conventional CMAC
with hash coding function, called as HCMAC, is depicted
in Fig. 2.

Without a decent encoding function, te size of
conceptual memory would be unreasonably large in terms
of hardware implementation. For example, if an input
vector is encoded in 20 bits, then the size of the
conceptual memory needed can be 1M bytes. Therefore,
such conceptual memory is not practical to be realized in
hardware. Since a hash coder can map the activated cells
onto a physical memory in a reasonable size, the coder
scheme is always adopted in various implementations

The output of the controller is computed by the
summation of the values (weights) stored in the indexed
physical memory cells. The learning process, where
weights are adjusted based on the desired and actual
outputs, is taken thereby. The weights of the indexed cells
W; is updated according to the deltatype learning rule [7]
by the scale of

AVVi:yydiR_yi’ (2)

where y; is the actual output of the ith control cycle; y,; is
the desired output of the ith control cycle; y is the learning
rate which is in the range of (0, 1]; R is the number of the
activated memory cells.

3. CMAC with Embedded CAM
The most significant characteristic of Content

2

S M C P o
Desired
CAM SRAM Response
I Active addr. m Weight m UWdelght Y4
nput pdating .
P Conceptual || Active addr. n Weightn | .oooeoee Adjust
Mmapper E rules
4 .
3 : i
: “ Active addr. s Weight s : ®_' Plant
: b . u
Single Y
variable
B <«
o Active addr. t Weight t
R=2

Fig. 3 CCMAC functional block diagram

Activated addres®
in CAM ?

Store the activated
address into vacant
cell of CAM and
mark this address as

matched one

]

Mask from LSB of
CAM

Mark matched
address of CAM

Activated addres®
in CAM ?

“All activated
addresses
compared ?

According to the
pointer, stores the
activated address into
the occupied cell of
CAM and reset the
weight

Get the next activated
address

]

v

Mask the next bit of
CAM

Mark this address as
matched one

]

Fig 4. CCMAC mask function behavior flowchart

Addressable Memory is of fast matching. It can determine
whether the addressing content resides in the memory or not
very quickly. This function is very useful for the mapping
function of a CMAC. Therefore, the proposed architecture of
a CMAC is designed to utilize the merit of CAM in memory
addressing. The functional block diagram of a CCMAC is
shown in Fig. 3. Each cell of the CAM stores the activated
addresses and their associated weights are kept in SRAM,
respectively. The input of each control cycle introduces
some activated addresses through a conceptual mapping
function similar to Eq. (1). These addresses are immediately
compared with the ones stored in the CAM. If a match
occurs, the corresponding weight is read out, otherwise,
these activated addresses is stored in vacant cells of the
CAM indexed by an circular incremental pointer. If there is
vacancy no more, the mask function is invoked alternatively.
The superset of the activated addresses bits of which will be
ignored bit by bit from the least significant bit (LSB) to the
most significant bit (MSB) in matching process until a
match appears or the limited bits have been masked. In this
scenario, matching tolerance and searching range become
larger and larger along with the number of the searching
cycles. In the worst case, there might be no match during the
whole masking-matching process. The address is then
pushed in an occupied cell pointed by the circular pointer.
Memory utilization rate can, with this mechanism, be
improved to 100%. The noise is attenuated since the weight
is reset to zero instead of inheriting theobsolete value while

Fuction approximation

Sin(2°pi*X/360)

memory size=200, learning rate=0.1, recptive field=36

L L L L L L L L L ‘
200 400 600 800 1000 1200 1400 1600 1800 2000
X

Fig. 5 CCMAC and HCMAC function approximation
results, y=0.1

Fuction approximation

sin(2*pi*X/360)

ﬁemo size=200, learning rate=1, recptive field=36
-1.5F

0 200 400 600 800 1000 1200 1400 1600 1800 2000
X

Fig. 6 CCMAC and HCMAC function approximation
results, y=1

(%)

~ D

X

Fig. 7 Workspace for truck backer-upper control

the collision occurs. Fig 4 is the flowchart that the whole
process be illustrated.

4. Performance Evaluation
Function approximation and truck backerupper
simulation are used to compare the control performance
between HCMAC and CCMAC methods. The simulation
results are investigated for verifying the practicability of
CCMAC.

Case I. Function Approximation

Assuming that y=sin(2zx/360) is the function to be
approximated. x represents the input variable and varies
integrally in the range [0, 360]. Receptive field R=36,

conceptual memory C=395, actual memory P=200, and
initial value of weight #W=0 are the correlative parameters of
the CMAC. Simulations are repeatedly performed five times
while x varies from 0 to 359. Fibonacci hash-coding
mapping algorithm [5] is, as listed in Eq. (3), adapted for the
simulation of HCMAC.

H(x)=1+ ﬁx{P[gx} mod 1}’ (€)

where F=663608941, G=2", x stands for activated address,
actual memory P=200, mod 1 means only the fraction part
of a value remained, fix means that only the integer part of a
value is remained, and H(x) is the final actual address
mapped.

The approximation function of CCMAC seems worse
than HCMAC when the learning rate is small, i.g. y=0.1 as
shown in Fig. 5. Whereas, the performance of CCMAC is
apparently better than HCMAC ifthe learning rate increases,
such as y=1 the improved performance can beobserved from
Fig. 6. It is worthy to note that HCMAC produced obvious
noises in both results. On the contrary, CCMAC
demonstrates no noises, which appears as fluctuation along
the trajectory of the simulated curve, in the results.

Case II. Truck Backer-Upper Control Simulation

The second simulation is a backer-upper truck [8].
Fig. 7 shows the configuration of the workspace. The
angle ¢ between the truck tail and horizontal line and the
distance x between the truck tail and the target line are the
input variables to the neural network. & the output variable
is the angle between front wheel and the direction along the
truck tail. Controlling the truck in a manner of backerupper
going toward the middle line until¢ = 90 is the goal of the
control. The truck moving range is [0, 20]. Metrics y is not
important here. So the controller has a sense of parking a
truck along the roadside while there are no other trucks
parking there. The dynamic equations are as follows P]

xX(t+1)=x(t)+d cos(§(1)) , “
yA+1)=y()+d sin(§(1),)
Ht+1)=H1)+), (6)

where d is moving distance between two successive samples.
The simulated input variables ¢ and x are encoded in 17-bit

and 9-bit wide respectively. Each input variable actives six
addresses respectively. Then the addresses are combined to
36 active addresses. The size of the actual memoryP is 1024.
Output variable 6 is represented in a format of 16-bit

digital data. The system converts a digital output to an
analog signal for controlling the turning angle of the truck's

front wheel. A simple weight-updating algorithm similar to
the delta-type learning rules [7] is applied to adjusting

weight incrementally. The rules are listed as follows

W,-(k+1):w,(k)+7(yd‘RM, 7)

where y, is the desired output; the term f;(s) determines
which weights should be updated. Fig. 8, Fig. 9, and Fig. 10
are the simulation results that the truck started from different
starting points, respectively. The moving trajectories of the
control effect of CCMAC and HCMAC ar plotted in the
figures for comparison. In every control cycle, the state of
the truck is marked as a short line with an arrow. The dot
line with a solid arrow represents the desired state of the

CCMAC Truck Backer-Upper Simulation Results HCMAC Truck Backer-Upper Simulation Results
I 3r

A Receptive field = 6x6
i 25} Memorysize = 1024
41 Receptive field = 6x6 Initial state - ¢ =-30,x=7 4
Mermory size = 1024

3| Initial state : ¢ =-30,x=7 15

Fig. 8 Truck backer-upper simulation results, the truck
starts from the point ¢=-30, x = 7. CCMAC controls the
truck to reach the desired condition more smoothly than
that of HCMAC does. The dot line with upward arrow
stands for the desired truck state.

CCMAC Truck Backer-Upper Simulation Results

Receptive field = 6x6
Mernory size = 1024

Initial state : ¢=-90,x= 10

i
o 4 o a4 v w oA
T

HCMAC Truck Backer-Upper Simulation Results

= Receptive field = 6:6
Mermory size = 1024

Initial state : ¢ =-90,x= 10

Y
G = & o 3 n 5
T

Fig. 9 Truck backer-upper simulation results from the
starting point ¢=-90", x = 10, HCMAC controls the truck
with a surfeit of output value to make the truck moving
unstably, as indicated at the bottom figure. The dot line
with upward arrow stands for the desired truck state.

CCMAC Truck Backer-Upper Simulation Results
Receptive field = 6x6 :
Mernory size = 1024

Initial state - ¢ =-90,x= 10

e NN e R e
T T

n i
0 5 10 15
X
HCMAC Truck Backer-Upper Simulation Results

A

Receptive field = 6x6

Memory size = 1024 ‘
niial state ¢ =0,x=13 |

| i |
0 5 10 15
X

¥
. o
N o8 R
T T

Fig. 10 Truck backer-upper simulation results from the
starting point ¢=0",x = 13, CCMAC controls the truck
incrementally toward the desired state, conversely,
HCMAC steers the truck by adopting inadequately
weights to make the truck towards the undetermined
direction. The dot line with upward arrow stinds for the
desired truck state.

truck under control.

In Fig. 8 the truck can get to the goal under both
control methods, however, CCMAC gets smoother trajectory
than HCMAC. The HCMAC controls the truck with fairly
unsuitable output value as depicted inFig. 9 and Fig. 10, so
the truck is over forced towards the undetermined direction
after only just tens of control signal had emitted. The
successive control results are worse and are not depicted on
the figures for the clarity of the moving trajectories. In
addition with many other results are not shown herereveal
obviously that the control effect of CCMACs is superior to
HCMAG:s.

5. Discussion and Conclusion

The function approximation is a repetitive control job.
Although the approximation effect of HCMAC s better than
CCMAC with small learning rate, CCMAC still excels
HCMAC apparently if the learning rate increases
accordingly. Moreover, the control noise of HCMAC always
appears but CCMAC does not have this drawback. CCMAC
adopts circular incremental pomter, so the activated
addresses and weights are stored where this pointer indexes.
The pointer points back to the starting address when the
CAM is filled. In such circumstance, if more activated
addresses should be stored, CCMAC replaces the old
address directly according to the pointer. The weight stored
in this new address would be reset to zero. Consequently, the
control value becomes slightly small if the number of new
activated addresses is too many as indicated in Fig.5. This
weakness is, as depicted in Fig. 6, improved by means of the
adjustment of the learning rate. On the contrary, HCMAC
refers to the weight stored previously while collision occurs.
These values are not always so suitable for the new situation.
Unavoidably, HCMAC causes control nose.

Nevertheless, the truck backerupper control is a
nonrepetitive control job. The relevant weights are adjusted
gradually so as to approximately manipulate the truck
toward the goal with correct direction. In the whole control
process, the controller must emit the correct control value to
the truck in each control step. CCMAC can achieve this
requirement due to its less control noise generated in the
control process. HCMAC, with high SNR, will introduce too
large or too small signals to control the trudk. The truck
spends too much time to reach the goal even it is not out of
control. In the viewpoint of hardware realization, the major
differences between CCMAC and HCMAC are listed in
Table 1. CCMAC need an extra CAM to store the activated
address, while HCMAC needs multiplier and adder to map
the activated address to the actual memory. CCMAC spends
some gate delay time to process the mapping from the
activated address to the CAM. As well, HCMAC consumes
some time consumption on the hash-code mapping by the
multiplier and adder. The more accuracy is the HCMAC
performs the calculation, the more complexity of the
multiplier is needed and the more time is consumed. In
summary, CCMAC is faster than HAMAC. Under
reasonable estimation, the cost of the hardware isnot much
difference between CCMAC and HCMAC.

As a whole, in this article we propose a new neural
network architecture, CCMAC, where a content addressable
memory (CAM) is embedded into the CMAC. The scheme

Table 1 Comparison between CCMAC and HCMAC

CCMAC HCMAC
Active address |Via index pointer Hash-coding
mapping
Hardware SRAM storing SRAM storing weight,
requirement weight, Multiplier
CAM storing active |Adder
address
Mapping Depend on CAM Depend on multiplier operation
latency matching time (fast) |time (slow)
Memory 100% According to hash-coding
usability algorithm (<100%)
Control noise [Hardly observed High
Learning Yes Yes
ability
Applications [Jobs need that low [Can not handle jobs that need low
control noise control noise (e.g. truck
backer-upper control)

can be used to replace the HCMAC with traditional
hash-coding method. 100% of memory utilization and less
control noise are the major advantages of CCMAC.
CCMAC can handle repetitive and nonrepetitive control
job as superior control speed.

6. References

[1] J. S. Albus, “A new approach to manipulator control:
The cerebellar model articulation controller
(CMAC),” Trans. ASME, J. Dynamic Syst. Meas.,
Contr., vol. 97, pp. 220-227, Sept. 1975.

[2] W.T. Miller, III, "Sensor-Based Control of Robotic

(4]

(6]

(7]
(8]

Manipulators Using a General Learning Algorithm,"
1IEEE Journal of Robotics and Automation, Vol. RA-s,
No. 2, April 1987.

R.-C. Wen, J.-S. Ker, Y.-H. Kuo, B.-D. Liu, and G.-W.
Chang," A CMAC Neural Network Chip for Color
Correction," Neural Networks, IEEE World Congess
on Computational Intelligence, 1994 IEEE International
Conference, Vol. 3 , Pp. 1943-1948, 1994.

W. T. Miller, 111, R. T. Hewes, F. H. Glanz, and L. G.
Kraft, III, "Real-Time Dynamic Control of an Industrial
Manipulator Using a NeuralNetwork-Based Learning
Controller," IEEE Transactions on Robotics and
Automation, Vol. 1, February. 1990.

Z.—-Q. Wang, J. Schiano and M.

Ginsberg, "Hash-coding in CMAC Neural Networks,”
proceedings of International Conference on Neural
Networks, pp. 1698-1703, Washington, D. C., June 3-6,
1996.

Y.-P. Hsu, K.-S. Hwang, C.-Y. Pao, and J.-S. Wang, "A
New CMAC Neural Network Architecture and Its ASIC
Realization," proceedings of Asia and South Pacific
Design Automation Conference 2000, Yokohama, Japan,
pp. 481-484, January 2000.

J. M. Zurada, Introduction to Artificial Neural Systems,
West Publishing Company, Singapore, 1992.

L. -X. Wang and J. M. Mendel, “Generating Fuzzy
Rules by Learning from Examples,” IEEE Transactions
on systems, man, and cybernetics, vol. 22, no. 6,
Nov./Dec. 1992.

	C-125.pdf
	Abstract

