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Abstract

Multicast perfectly befits many Internet applications such
as teleconference, real-time information distribution, and
so on. Without guarantee of security, however, usage of
multicast will be limited only to academic research. One
challenge of multicast security is group key management,
because the overhead of multicast key management gets
much heavier while the size of a group growing larger.
Even worse, if membership of a group changes frequently,
overhead of re-keying becomes a critical issue of group
key management. In this paper, we propose a scalable and
efficient group key management scheme which addresses
on re-keying strategy for highly fluctuating multicast
groups. We use a two-level hashing method to organize
multicast key chains. Our scheme can reduce huge
computation and communication overhead of re-keying
when members leave.
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1. INTRODUCTION

Multicast is an internetworking mechanism that can
deliver data stream to multiple receivers simultaneously. In
recent years, multicast becomes a hot research area and
attracts legion attention to the enacting of its related
protocols, including aspects of multicast routing, group
management, and security. The applications of multicast
are widespread, such as network conferences, multi-party
games, distribution of digital media (e.g., Video-on-
Demand and pay per view), and distribution of real-time
information (e.g., stock information, news, and traffic
report).

The security issues of multicast become more and
more urgent recently, because most of the applications
mentioned above require some properties of confidential,
authentication, and integrity. Without guarantee of security,
multicast will never be applied to e-commerce world and
its usage will be restricted upsettingly.

To achieve secure multicast, members of a
communicating group have to share a group key so that the
transmitted data can be encrypted and verified. However,
the membership of the multicast groups may change
frequently. For instance, while a teleconference is
proceeding over Internet, someone may leave whereas
someone else may join on the half way. Each time when

the membership of a multicast group changes, re-keying
(update of group key) has to be taken place so that new
members cannot reveal old data stream and ex-members
cannot decrypt transmitting data any more. In traditional
group key management schemes, vast computation power
and communication bandwidth has to be consumed in
order to maintain frequent re-keying. If the membership of
a group changes frequently, re-keying becomes the major
burden of group key management.

Consider the communicating group as shown in
Figure 1, the KDC (key distribution center) has to share a
secret (&, ) with each group member to maintain a secure

channel. Whenever re-keying takes place, the KDC can
encrypt the new group key with k, and deliver it to 7,

through the secure channel. For instance, when Alice
wants to join the group, the KDC has to generate a new
group key and deliver it to all current members including
Alice respectively. Similarly, when Bob quits the group,
re-keying occurs and the KDC delivers the new group key
to all members except Bob. As a result, the KDC has to
encrypt and send the new group key for N times in each
re-keying, where N is the number of group members.
Although the KDC could encrypt the new group key with
the old group key when someone joins and reduce the
number of encryption and delivery to 1, this strategy
would cause broken-key propagation problem. That is,
when a hacker breaks a group key, he can derive all the
subsequent group keys thereafter.

Several group key management schemes have been
proposed, but only a handful of them address the frequent
re-keying issues of dynamic groups. Some researchers
adopted tree structures into their management schemes
[4,5,6,21], and hence reduced the complexity of re-keying
from O(N) to O(log N). Still some others [12,13,15]
divided group members into more subgroups and
distributed overhead of key distribution to the agents of
these subgroups. In [13], Hardjono and Cain developed a
distributed architecture for group key management for
inter-domain IP multicast. Hence it is a very practical
proposition.

In this paper, we propose an efficient group key
management scheme using two-level hashing method
based on Hardjono and Cain’s architecture. Our scheme
can greatly reduce KDCs’ and local agents’ overhead of
re-keying, especially in member-leaving-phase re-keying.



Figure 1. An example of key management for a dynamic
group.

The rest of the paper is organized as follows. In the
next section, Hardjono and Cain’s group key management
scheme is briefly introduced. Then section 3 describes our
proposed scheme. Analysis of our work will be presented
in section 4. Finally, conclusions are drawn in section 5.

2. PRELIMINARY

The architecture of Hardjono and Cain’s scheme in [13] is
shown in Figure 2. Each component is explained as
follows:

AS (autonomous system) Each network domain forms
an AS.

KD (key distributor) Each domain exists one or more
KD servers. We call the KD in the multicast group
initiator’s domain as IKD (initial KD), which
undertake the group key generating and distributing to
other RKDs (remote KD). RKDs cooperate with IKD
to send current group key to members in their domain.

LBR (leaf border router) There should be at least one
border routers which are able to hand multicast traffic
in each domain.

TBR (trunk border router) Each LBR is directly
connected to a multicast-aware TBR in the trunk
region.

2.1 New Multicast Group Initiation

Let AS1 be an autonomous system and s be the multicast
group initiator in AS1. The establishment process of a
multicast group is as follows:

Step N1: s notifies its LBR about the creation of a new
multicast group.

Step N2: s notifies the IKD about the creation and requires
it to manage the group key for the multicast
group.

Step N3:IKD generates a multicast-key K, and also

generates a subgroup-key K, for the

iinitiator’s AS.
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Figure 2. The architecture of group key management
proposed by Hardjono and Cain.

2.2 First Member in a Remote AS

As shown in Figure 3, when the first member in a remote
AS requires to join the group (say # in AS2), the
following steps take place.

Step F1: 7, requests its LBR to join the multicast group.

Step F2: 7, requests its KD to provide it with K, . 7 and
the KD also share a secret key for on-going
secure 1-to-1 communication.

Step F3: The RKD in AS2 does not have K, yet. So it
requests IKD for K, . It also generates the sub-
group key K ,, forits own AS2.

Step F4: IKD sends K, to RKD in AS2 through a secure
1-to-1 channel.

Step F5:The RKD in AS2 provides n with K, and
KAS2 .

2.3 New Member Joining

When a host in an AS which already has at least one

member (say 7, in AS3 shown in Figure 3) wants to join

the multicast group, the following steps take place.

Step J1: , requests its LBR in AS3 to direct the multicast
traffic to it.

Step J2: r, requests its KD for K, . 7, and the KD also

share a secret key.
Step J3: The RKD issues a join-request to the IKD.

Figure 3. A snapshot of Hardjono and Cain’s scheme.
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Figure 4. Session seeds are generated by two-level hash
chain. Then the group key is derived from the session seed

as mk, ;= f(ss; ;).

Step J4: IKD initiates a re-keying and deliver the new
group key to all existing members.

Step J5: After receiving the new group key, the RKD in
AS3 sends it to 7, through their secure 1-to-1

channel. r, also receives the sub-group key
KASS'

In Step J4, IKD can encrypt the new multicast key
with the old one and broadcast the ciphertext to all existing
members. But this may suffer a propagation problem of
broken keys, because someone can get all subsequent new
multicast keys if he/she has broken an old one.

2.4 Member Leaving

When a member in AS2, say 7, leaves the group, the
following steps have to be executed to prevent 7 from

listening to future traffic.

Step L1: IKD generates a new multicast key and deliver
it to all RKDs through 1-to-1 secure channel
(unicast).

Step L2: Each RKD (except AS2) encrypts the new
multicast key with its own subgroup-key and
sends the encrypted multicast key to its
members by broadcasting within its own
domain.

Step L3: AS2 sends the new multicast key and new
subgroup-key to each of its members (except
the ex-member, 7 ) through 1-to-1 secure

channels respectively.

3. THE PROPOSED SCHEME

In this section, we present an efficient key management
scheme for multicast. As in [13], we assume that all KD
servers are trusted. The proposed group key management

system is designed to meet the following goals.

®  Scalability: A scalable group key management
scheme should be able to serve large groups as well
as sparse ones.

® Independence: This means that a scheme can
operate well with different underlying protocols, such
as cryptographic algorithms, multicast standards, and
o on.

® Security: Only current members can decrypt
multicast stream correctly.

® Efficiency: An efficient group key management
scheme should be able to deal with highly dynamic
groups.

3.1 Notations

Besides the notations introduced in the previous section,
we also use the following in our scheme:
h,(),h,() : publicly known one-way hash functions.

£ : one-way group key generation function mapping

from a session seed to a multicast group key.
ms; : master seed, where ms, is chosen by IKD randomly

and ms, =h(ms,_;), iON.

ss; ;¢ session  seed,  where

i,

58,0 =hy(ms;)  and
ss;, ; =hy(ss; ;;), jUON. Consequently, different
master seeds can form different chains of session

seeds.
mk;, ;: multicast group key, where mk, ; = f(ss, ;).

3.2 The Basic Model

Our scheme is based on [13], so the architecture and
terminology is similar to [13] as shown in Figure 1.
However, we adopt a two-level hashing method to
generate group keys as shown in Figure 4. The IKD
chooses a master seed (ms ) and shares it with all RKDs.
The master seed ms can generate a chain of session seeds
(ss). The current session seed is shared by all existing
group members. The multicast group key (mk ) is derived
by group key generation function f(ss). Whenever a new

member joins, all existing members can compute new
group key by generating new session seed and then new
group key. On the other hand, when a member leaves, all
KDs derive a new master key and hence generate a new
chain of session seeds. In this way, most burden of re-
keying is distributed to local hosts and RKDs.

3.3 New Multicast Group Initiation

If someone wants to establish a multicast group (namely s
in AS1 as shown in Figure 5), he has to notify his LBR and
IKD and advertises just as usual multicast protocols do
(e.g., IGMP [3]). IKD chooses a master seed ms, .
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Figure 5. AS-adding-phase re-keying occurs when the first
member in AS2, 7, wants to join the multicast group.

3.4 First Member in a Remote AS (AS-Adding-Phase
Re-keying)

If someone wants to join the multicast group, say 7 in
AS?2 as shown in Figure 5, and he/she is the first member
in that remote AS, the following steps take place:

Step al: r requests its LBR to join the multicast group.

Step a2: r requests its KD ( KD, ) to provide it with the
multicast key.

Step a3: KD, informs IKD that # wants to join the
group.

Step a4: IKD checks the access control list. If # is
allowed to join, an AS-adding-phase re-keying
happens and IKD informs all existing members
to change multicast key. The new session seed

88, s =Mhy(ss; ;) , where ss, ; is the current one,

and the new  multicast

mki,j+l = f(SSi,jﬂ) .
Step a5: IKD sends the new session seed ss, ;,, and the

group  key

next generation master seed ms,,, to KD, .
Step a6: KD, sends ss, ,, and the subgroup-key K,
to 7, through secure unicast channel. Of course,

r; can derive valid group key hereafter.

3.5 Member Joining (Member-Join-Phase Re-keying)

This subsection describes how subsequent joiners can get

into an existing subgroup (AS). For instance, r, in AS2

wants to join the multicast group as shown in Figure 6.

There is already an existing (7,) member in AS2. The

following steps take place:

Step bl: r, requests its LBR to forward multicast traffic
to him.

Step b2: r, requests its KD ( KD, ) to provide him with a
copy of the multicast key.

Step b3: KD, notifies IKD that 7, wants to join.

Step b4: After access control checking, IKD triggers a
member-join-phase rekeying.

Stepb5: All existing members can generate new
multicast key by computing ss; ., =h,(ss; ;)

= f(ss; ;.) , where ss, ; is the old

i,j+1

and mk,

session seed.
Step b6: KD, computes ss,

i,j+1°

and sends the new

session seed and the subgroup-key K ,, to r,
through secure unicast channel.

3.6 Member Leaving

There are two different scenarios that may happen when a
member leaves the group. In Case I, some member in an
AS leaves and there are still other members in that
subgroup. On the other hand, we will discuss removing of
an AS caused by member leaving in Case II.

Case I: Member Leaving (member-leaving-phase re-
keying)
When some member (namely », in AS2) leaves, there

may be still other hosts (7;) in that subgroup. In such

situation, the following steps must be executed.

Step cl: IKD initiates a member-leaving-phase re-keying.

Step ¢2: Each RKD computes the new master seed

ms,,, = h(ms;), where ms; is the old master
seed. Then they compute new session by
88i00 = hy(ms;y) .

Step ¢3: Each RKDs (except AS2) broadcasts the new
session seed to their members encrypting with
their subgroup-keys.

Step c4: AS2 sends the new session seed and the new
subgroup key to its current members through
secure unicast channels.

After receiving the new session seed, each party can
derive  the new  multicast group key by

mki+1,0 = f(55i+1,0) .

Case II: Subgroup Removing (AS-removing-phase re-
keying)

When some member (namely 7 in AS2) leaves and there
is no other member exists, the following steps must be
executed.

Step d1: IKD chooses a new master seed ms,' and sends

it to all remainder RKDs through secure 1-to-1
channels.

Step d2: All KDs compute the new session seed
88, = by (ms'y) .
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Figure 6. Member-join-phase re-keying.



Step d3: All remainder KDs broadcast the new session

seed to their members encrypting with their
subgroup-keys. All surviving members can
derive the new group key by themselves.

4. ANALYSIS

In this section, we discuss the properties of our proposed
scheme. We can prove that our scheme is secure and more
efficient than previous works.
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New joiners can’t decrypt any previous traffic

Whenever a new member joins the group, the session
seed is updated by computing ss; ;,, = hy(ss, ;) . The
new joiners cannot derive the old session seeds with

the current session seed, because they cannot reverse
the one-way hash function.

i,j+1

Leaving hosts cannot decrypt any subsequent
traffic any more

Whenever a host quits from the group, the master seed
held by KDs is updated. Consequently, the session
seed chain is replaced. It is useless for ex-members to
possess their old session seeds. As a result, any
leaving host cannot decrypt subsequent multicast
packets.

New RKDs cannot retrieve previous master seeds
and session seeds

Whenever a RKD is added in, it is given the newest
session seed and the next generation master seed.
Instead of giving current master seed, IKD gives the
RKD the next generation master seed. This can
prevent the RKD from deriving previous session seeds

(s8;,°+-ss; ;- , where ss, ; is the current session seed).

The new RKD can’t derive the previous master seeds
either because of one-way hash function.

Removed RKDs can’t derive new master seed any
more

Once a RKD is kicked out, the master seed is re-
chosen by IKD. As a result, the master seed which the
removed RKD possesses is useless.

No propagation problem of broken keys

A multicast group key is derived from a session seed
by a one-way group key generation function. If
someone breaks a multicast group key, he/she has no
way to derive the corresponding session seed and thus
cannot derive the subsequent session seeds. Therefore,
our scheme does not suffer the propagation problem.

Efficiency

Now, we will compare the efficiency of re-keying
processes of our scheme with those of [13]. The

numbers in the tables represent the amount of
messages the entity has to encrypt and deliver through
1-to-1 channel. In Table 1, we can see that our scheme
is a little better than [13]. However, the join phase re-
keying in [13] suffers the propagation problem
mentioned above. To avoid the problem, the complex
must raise back to O(N).

In table 2, our proposed scheme is much more
efficient than [13]. When a member leaves (but the AS
is still active), the IKD need not encrypt and deliver
anything. As a result, when the size of a
communicating group extends and shrinks frequently,
IKD can save a lot of computation and
communication overhead. This may be critical
because an IKD possibly serves many groups
simultaneously, and each group could be very large
and owns very unstable membership.

In our scheme, the only trouble situation that IKD
has to deal with is AS-removing-phase re-keying. This
only happens when an RKD is removed from the
multicast group. Howbeit, KD servers are usually
trustworthy and an empty AS probably gets some
joiners soon later. Therefore IKD dose not have to
kick out a RKD of an empty AS, and this could
achieve better performance.

Table 1. Comparison of join-phase re-keying.

First member in a remote |Subsequent member
AS (AS adding) joining
RKD RKDs RKDs
IKD (new IKD | (new
.+ . |(others) .+ | (others)
joiner’s) joiner’s)
[13] 1 1 1 1 1 1
Our | 1 1 0 1 0
scheme

Table 2. Comparison of leaving-phase re-keying.

Member leaving (there’re [Member leaving (AS
still others in that AS) removing)
RKD RKDs . RKDs
IKD | (leaving (others) IKD | (leaving (others)
member’s) member’s)
[13] m n 1 n X 1
Our 1 n 1 n | X 1
scheme

2% n is the number of RKDs, m is the number of members

in a specific AS.

5. CONCLUSION

We have proposed an efficient group key management




for 1-to-N inter-domain IP multicast in this paper. Our
work can also be applied to N-to-N multicast with IKD
being as the centralized key management server. The
proposed scheme can not only reduce computation
overhead of encryption but also save network bandwidth
of key distribution. With our scheme, the re-keying
overhead is not only reduced but also distributed, so the
scheme is quite scalable and practical.
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