hERENATAEZEEERTE

ek ke x86 54 2 RISC 354 &%t
Design of RISC-based Instruction Set For Efficient x86 Emulation

wRE

s

Ing-Jer Huang, Jer-Ming Shiu .
Institute of Computer and Information Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
Email: {ijhuang, jmshiu}@cie.nsysu.edu.tw

S

FERLHFZED - FFesiT x86 fEmEay—&RHE »
W EFEHLL RISC BERHIMIERIRECUE x86 18
SEMNT BT BE-FASITHINGE - #iE
BB REREALIEE S EMES ReR—EE
—HJ RISC $64 - $TEREIE RIS T LHAEH —EF
EEARRE » KETEERESEIRITHER
2 e R EERIA/VIER LHE R - FHRER
BEREIFIESTEEERY x86 fERavRITEAENL
BUTEE DR EE EAESEE -
RRE T - fEHEEENET, x86 2848, x86 f&E#E, RISC,
CISC, #@nE

Abstract
In this work, we first analyzed the features of x86
instruction set and defined micro operations as RISC-
based instruction set to efficiently support x86
emulation. To further improve the performance,
powerful RISC instructions are synthesized by
compacting multiple micro operations into a single
RISC instruction. The synthesized powerful instructions
are evaluated by a cost function contained execution
cyele, instruction set size and the hardware cost. As a
result, the new powerful instruction set can execute the
x86 instructions with reduced instruction cycle counts
and gained the performance in instruction level.
Keywords: instruction set design, x86 architecture, x86
emulation, RISC, CISC, micro operation
1. Introduction

The x86 is a CISC style instruction set, and often
one instruction can operate several complex micro
operations. This caused the instruction execution cycles
do not balance with instructions that executed in
different functional unit.

Due to the benefit of the RISC instruction set, it is
worth to find a new instruction set that has RISC style
format to efficiently emulate the x86 instruction set. By
using the new instruction set, we can gain performance
in instruction level. So here we want to find a new RISC

* This work is supported by NSC, R. O. C. under contact
number 83-2262-E-009-0102.

instruction set that supports x86 architecture efficiently,
and with a fast, automatic way.

Viewing the x86 emulation as the dedicated
application to be run of the RISC code, we can adopt
the techniques used for application specific instruction
set synthesis to systematically generate a RISC-based
instruction set that best support the x86 emulation. First
we construct basic RISC micro-operations (instructions)
based on the analysis of the x86 instruction ‘semantics.
With these operations, we can synthesize new
instruction set further. The new RISC-based instruction
set consists of simple micro operations and powerful
instructions consisting of multiple independent simple
micro operations. The powerful instructions can be
generated by compacting the simple micro operations.

The compaction can be treated in the three ways:
1. individual x86 instructions, 2. instruction pairs, 3.

~ instruction window. In the next three figures, “X86_I”

is the instruction of x86, the “MOP_I” is the mapped
micro operation. In the right of the figures are the.
synthesized instructions.

N6 _t > MOoP _t D MoP_1

K62 MOoP_2
MOP_ Y P MOP_T.\OP_3 {new 1nst)
MOP 3 }

Figure 1: Individual x86 instructions mapping
X6 _ < 2:2:i‘ [e— i i]

X A6 2 oo .\10!;\} g M O P _1: M OP_3 (nee inet)

Figure 2: Instruction pairs mapping
N8 | commmemm®y M OP | —fp. % © P

XEn_3 Q wor_ 2
MOoP_Y m———=l M 0P 1M OP 3

}_’ MOP_)M 0P (inew 100t}

X561 > M OP s
Figure 3: Instruction window mapping
Here we presented a way to systematically
synthesize a new RISC-based instruction set for
efficient x86 emulation from a given application
benchmark or a sequence of basic blocks that can reflect
the typical usage of x86 instruction set in real world.
The technique is based on compaction of micro
operations to form new instructions. The compaction
result is evaluated by the cost function of cycle count,
instruction set size and hardware cost that supported the
new instruction set.
The rest of the paper is organized as follows.
Section 2 describes the mapping of x86 instructions into
RISC-based instructions (micro instructions). Section 3

C-38

PERE\TAEZEERTE

presents'a systematic approach to search for powerful
RISC instructions for efficient x86 mapping. Section 4
shows the resulis of section 3. Section 5 concludes this
paper.

2. Mapping x86 Instructions to RISC

Operations

The following sections described some micro
operations that have special features for supporting x86
translation. These micro operations focus on integer
instructions.

2.1 Decoupling Memory Operands

Most x86 ALU instructions support the operation
with the operands from the memory location, or store
the results into the memory location after execution. In
RISC micro operations, this kind of instructions in x86
should be replace by load and store operations before
and after execution ALU operation. The value loaded
from memory first put in a temporarily register, then the
function unit can operate the operand in the temporarily
registers.

Because x86 instructions support different size of
operand, the load or store micro operations need to
specify the size that the data move from or to the
memory. The possible size of data could be 8, 16, 32,
64, 80 bits. 64-bit data is for an instruction,
“CMPXCHG8B”, that compares the 64-bit value in
EDX:EAX register with memory location. 80-bit data
could be used for floating point instructions that need
80-bit extended real format or 80-bit packed decimal
integer.
2.2 Instructions Without Modification to

the Register Contents
There are two instructions that do not write back
the results after execution. The “CMP” instruction
compares two source operands but needs not to write
back the result. Its operation is to subtract two source
operands and updates the six flag status bits of EFLAGS
register, then discards the result of subtraction.

Another instruction in the same situation is
“TEST”. Its operation is same as “AND”, but not writing
back the result. In RISC architecture, the register set
often has a register called “RO” that it can not be
modified and always has the value of zero. The concept
of using “R0” as discarded register output is proper for
the two instructions, but not for load and store micro
operations that must modify the content of the register.
2.3 Flags Side Effects

X86 arithematic/logic instructions do not
manipulate the flag bits in a uniform way
Therefore,many variutions of the arithematic/logic
operations are necessary. For example, many ALU
operations need to modify six flag status bits of the
EFLAGS register, but “INC” and “DEC” just modify 5
bits,

“PUSH” and “POP” instructions need to decrease
or increase the stack pointer register, ESP, to indicate

C-39

the top location of the stack. But the decrement or
increment of stack point register should not affect the
six flag status bits of EFLAGS register, for this reason,
we created new micro operations called “SUBIN and
“ADDIN” that are suitable for this kind of instructions.
These two micro operations are suitable for the other
two instructions, “PUSHA” and “POPA”,

2.4 EFLAGS Register Naming

In x86, it has 8, 16, and 32 bits general registers,
and each part that used by the instruction for the
operand has corresponding register names. Rather than
provide separate storage for each, the shorter registers
are overlaid on the longer ones, as shown in the
Figure.4 . For example, a 32-bit register EAX has 8-bit
part (AH, AL) and 16 bit part (AX) register name that
can be assigned as operand for 8, 16, 32 bits operations.
The registers of EAX, ECX, EDX, and EBX have $-bit
and 16-bit register names for short, while the registers
of ESP, EBP, ESI, and EDI just have 16-bit names as
illustrated in Figure 4.

But in EFLAGS register, it is a 32-bit register.
Unlike general registers, it does not have additional
names for 8-bit and 16-bit part. It will be fine if the
instruction set does not need the small parts of the 32-
bit register as operand. On the contrast, it does need.
The instruction “LAHF” (Load AH register into flags)
copies the lowest byte of the EFLAGS register into the
AH register. The instruction “SAHF” (Store AH register
into flags) copies the contents of the AH register into the
active flags in the lowest byte of the EFLAGS register.
Since the bit 1, bit 3, and bit 5 of the EFLAGS register
can not be modified, the instruction just stores five bits
values from the AH register into the lowest byte of the
EFLAGS register. The instruction “PUSHE™ pushes the
contents of the low order WORD (16-bit) of the
EFLAGS register onto the stack. The instruction
“POPF” removes the top WORD from the stack and
stores it into the low order WORD of the EFLAGS
register.

Flag Conirol Instructions Micro Operations Mapping

ANDIN EFLAGS, EFLAGS, O¢FFFFFBFE
CLD

ANDIN EFLAGS, EFLAGS, OxFFFEFFED
CLI

ORIN EFLAGS,EFLAGS, 0x00000001
ST¢ 67T tempT, 5:0060000T ~]

ORN EFLAGS, EFLAGS, templ

ORIN EFLAGS, EFLARGS, 0:00000400
STO e i

MOVI templ, 0x00000400

ORN EFLAGS, EFLAGS, templ

[ORIN EFLAGS, EFLAGS, 000000200
STI MOVI templ,0%00000200 |

ORN EFLAGS, EFLAGS, templ

Table 1: Flag control instructions mapping

23

Bit 31 16 15

mmmmmErmm
Cuoumwg s

FERE/N+AEREHERES

Figure 4: The general registers naming
As those 'instructions mentioned above, the
operand needs additional names for indicating the 8-bit
or 16-bit partial data of the EFLAGS register. There are
two ways to solve this problem. One is to add the 8-bit
and 16 bit register names for the EFLAGS register like
the eight general registers. The second is to define a
micro operation that can move register data by
indicating the field of the register that needs for moving.
Here we defined a micro operation called “MOVM”
(move with mask) to implement the partial register
names of the EFLAGS register. Table 2 lists the four
instructions mapping using “MOVM” micro operation.
The micro operation “MOVM” needs five fields for
operand. ‘
MOVM Destination, Source, D_Size, S_Size, Mask
The first and second fields, Destination and
Source, defined as the destination and source registers
that the m@ve operation needs. The third and fourth

field defined for the size of the destination and source .

registers. The last field, Mask, defined the mask value

- for moving. It is a 32-bit value that indicates the bits
need to move to destination register. For example, the
instruction “LAHE” moves the lowest byte filed of the
EFLAGS register to the register AH. The mask value,
Mask, is defined as “0x000000FF” that can describe
the bits need to move clearly.

x86 inst. RTLs Micro Operations Mapping
LARF AH & EFLAGS(7,,0 |MOVM i
AH,EFLAGS,8,32,0x000000FF
SAHF EFLAGS(7..0p € AH MOVM
EFLAGS,AH,32,8,0x000000FF
PUSHE Sp & Sp - 2 SUBIN §P,2
templ € EFLAGS{1s..03 MOVM
Mem(SS:SP] 4 templ|templ.EFLAGS,16,32,0x0000FFFF
ST16 temp1,SS,R0,SP,0,16
POPF templ € Mem(SS:5p]|LDI6 templ,SS,R0,SP,0,16
EFLAGS(15..03 &« templ MOVM
Sp & SP + 2 EFLAGS temp1,32,16,0x0000FFFF
ADDIN SP,2

Table 2: “MOVM” micro operation

This micro operation has another purpose for
assignment different size from source to destination
operands. For example, the instruction “LES” (Load
pointer into ES and a register) loads the far pointer
stored at the memory location into the registers of “ES”
and the another one specified by the operand. It can
access memory twice for the data writing into the two
registers or access once because the memory addresses
of the two data are consecutive. After load from
memory with a lager temporarily register (32 bits) and
then assign the data to the two registers by the micro
operation of “MOVM” that can specify the part of the
temporarily register for assignment.
2.5 Summary of the Basic Micro Operations

There are 112 integer of micro operations and
some of the micro operations can operate on operands
of 8, 16, or 32 bits. In this section, we summaries the
integer related micro operations, which can be classified
into eight sub-classes: (1) register transfer, (2) memory

Cc-40

& 1/0, (3) arithmetic, (4) logic, (5) rotation & shift, (6)
bit manipulation, (7) branch, and (8) miscellaneous
micro operations, as listed ‘in Table3. In order to
simplify the table, please note the micro operations with
the * superscript have many variations with different of
types or operations.

3. Synthesis of Application Specific

Instruction Set

To find an automatic way to synthesis new
instruction set, we need a tool to help us finding a
solution that can support the x86 architecture efficiently,
particularly the x86 instruction set is complex and large
in size. With the help of the tool, the synthesized new
instruction set can create with different constraints
decided by the parameters. When changing the
parameters, the tool can create another new instruction
set in an automatic and systematic way in less time.

This section describes the steps of design flow of
synthesis instruction set. Before the steps, some
background knowledge of the x86 instruction set should
have. It includes the instructions encoding formats, the
addressing modes, the operation modes, and the
behavior of each instruction.

Micro Operations | Description
Register transfer
MOV* S1,82 move operation
MOVee R1,R2 conditional move
MOVM R1.R2,S1,82,Mask move with mask value
MOVSX R1,R2 move with sign-extention
MOVZX R1,R2 move with zero-extention
SETcc Rl conditional set 0 or 1
SWAPB R1.R2 byte swap operation
Memory & IO
IN* §1,52 - |data read from IN port
LD? (parameters) Load from memory
LEO* (parameters) Load effective address
OUT* §1,52 data write to OUT port
ST* (parameters) Store to memory
WRSEGRI1.R2 move to segment register
Arithmetic
AAA* six BCD adjust MOPs
ADD* S1,52 add operation
CMP* §1,82 compare operation
DEC R1 decrement one
DIV* (parameters) division operation
INCRI | increment one
MUL* (parameters) multiply operation
NEGRI negative operation
SUB* (parameters) subtraction operation
Logic
AND* 81,82 logic and operation
INOTRI1 logic not operation
OR* $1,82 logic or operation
TEST? S1,S2 test operation
XOR* S1,S2 logic xor operation
Rotation & shift
IROL" 81,82 rotate left
ROR* S1,82 rotate right
SHL* §1,S2 shift left
SHR* 81,52 shift right
SHRA®* §1.52 shift arithmetic right
Bit manipulation
BSFRI,R2 bit scan forward operation
BSR RI,R2 bit scan reverse operation
BT* S1,S2 bit test operation
Branch
1 Immed {jump immediate
Jicc® Immed condifional jJump immediate
JR*R1 jump register
JRec* RI conditional jump register

hERE/\TAFZEEHRTE

|

Miscellaneous

CHKBND R1,R2 check bound
CPUID return CPU information
EUD undefined operation exception

Table 3: Summary of the basic micro operations
Benchmark Program
Here the benchmark program is binary execution

code. It is hard to get source code just from execution
file, so the software, “SOURCER”[8], is used for the
purpose. Translation by “SOURCER”, the output file is
Assembly language listing file of original binary
execution file. “SOURCER” can help us finding not
only the instruction that the execution files used but also
the label that referenced by the jump type instructions.
The data definitions and other directives in the
benchmark program are ignored. Only the x86
instruction lines are taken for consideration.
3.2 Mapping to Micro Operations

In this step, the x86 instructions are translated to
micro operations. The rules of mapping are defined in
library file by designer and can be modified for other
reasons.
3.3 Synthesis of New Instruction Set

Given micro architecture, and hardware
constraints, synthesis the new powerful instruction set

3.1

that support the benchmark program we choose. The -

new instruction set is generated by simulated annealing
algorithm [13], and its objective cost is evaluated by
cost function that the designer can adjust for given
intention.

The instruction word length of the new instruction
set can be adjusted by the designer as parameters. The
typical instruction word length are 32, 48, or 64-bit.
‘Wider instruction word length can be compacted more
micro operations but the hardware cost may be higher.
To find the trade off, it is an impersonal way to evaluate
it by a cost function.

The cost function is used to evaluate that add a
new instruction is worthwhile. The function here
contains execution cycle (Cycle), the final instruction
set size result (InstructionSetSize), and the
hardware cost (HardwareCost) that the instruction
set used. The function can be describe as blew and is a
parameter that can be adjusted.

Cost = a*Cycle + B*InstructionSetSize + y*HardwareCost.

a, B, and y are the factors that can be adjusted by
the designer. The higher value of the factor results in
more emphatic about which parameters are taken more
considerations,

The instruction cycle could bedecreased when the
instruction word width increases. That is large
instruction word width can accommodate more micro
operations. The new instruction set size could be
increased by added these powerful instructions.

3.4 Reassemble the Benchmark Program

After the new instruction set is synthesized, we
can use the new instruction set to reassemble the

c-41

benchmark program. The new benchmark program
should do the same function as the one using the x86
instruction. The new program assembled by the new
instruction set has the spirit of RISC and has few
execution cycles.

The whole design flow can be simply described in

Figure 5.

4. Synthesis Results of Compact RISC
Instructions

4.1 Symnthesis From Individual x86

Instructions and Pairs
First, we give an example that.the contains the
TOP 25 x86 instructions, and TOP 15 x86 instruction
pairs. Use TOP 25 instructions and TOP 15 instruction
pairs as the application benchmarks for AS5/4 synthesis
methodology.Each instruction and instruction pair in
different basic blocks are divided by /abels. Therefor,
no data dependency will occur. The micro operations in
the basic block also are the basic component of micro
operations. Each basic block-is assumed executed once.
label(top_1). .
mov_R16_R16(ax,bx).
abel(top_2).
shl_R16_1(ax).
label(pair_1).
mov_R16_R16(ax,bx).
shr_R16_l(ax).

This benchmark program contains 25 different
instructions originally and result is 22 RISC style
instructions from the tool synthesized. The reduced
instruction set size from 25 to 22 is that some x86
instructions, like string instructions, have same micro
operations with other instructions. The result instruction
set is one micro operation or compacted instruction with
more than one micro operation. In this small benchmark
program, one new parallel instruction is <ADD,
FWAIT> appeared in the 15th instruction pair.
“FWAIT” is a floating point instruction, and use
different resource type with “ADD”. This pair is used in
our benchmark programs to execute next floating point
instructions. The compiler adds a “FWAIT” instruction
before a floating point instruction that follows an “ADD”
instruction.

Another new instruction in the benchmark is
conditional add or sub created from string instructions.
All string instructions add or sub registers according to
the flag “DF” (direction flag). If DF = 0, then one or two
registers must increase. If DF = 0, then decrease. One or
two registers must be changed is determined by the
instruction itself.

The benchmark program executed 55 (25 + 15%2)
instructions before using synthesized instruction set.
With mapping into micro operations, it has 82. micro
operations. The cycles of per micro operation are
assumed one. Afier reassembled with new instruction
set, it execution cycles became 72. The benefit is most

hERBENATAFZEEEREE

from simplify the string instructions using conditional
add or sub instruction.

The hardware cost used by the benchmark
program is 2 register read ports, 1 register write ports, 1
ALU, and 1 FPU. Because the benchmark program is
very small, it used fewer hardware resources. The result
is same with instruction length from 32 bits to 48 bits
and 64 bits. ‘

4.2 Frequent Execution Core of DOS and
Win95 Applications

‘ Applications l l Dexign Conviraints I

Cust Fuactivg

I

‘ MTcra Operatinay I

Schedubing lastroctivn Furmativa

Instruction Set 1 Compiled Code

Figure 5: Design flow

It is hard to find all programs in the real world, so
it is another way to find the most executed basic blocks
for typical programming model. Nowadays, the
program often executed in Windows mode and the
Windows system executed some GUI routines for all
Windows applications. On the other hand, Windows
system uses Virtual Memory Management routines to
‘support virtual memory. It is objective to find the
representation slice of this kind of program as the
benchmark input.

We took about 500 lines of assembly code as
benchmark program. The number of basic blocks of the
benchmark program is 131 with 396 x86 instructions,
and this shows the fact that the benchmark program has
many instructions that take branch, like Jcond, CALL,
and RET. It results in a basic block contains a few
instructions.

4.2.1 First experiment: optimization
performance/cost trade off

The original instruction set size is 69, contains 32
bits and 16 bits mode instructions., The result of
instruction set size is 29. That is we take different size
operation as same instructions, and the complex x86
instructions could be extracted into simple micro
operations. The mapped micro operations number is
597. The average numbers of mapped form x86
instructions to micro operations are 1.45 (597/396).
Assumed one micro operation executed in one cycle, so
the original execution cycle counts is 597. After using
the new instruction set synthesized, the execution cycle

count is reduced to 574.
Distinct Insiructions

for

Esxecution Cycle Counts

Benchmark in x86

69 597

Micro operations

29 574
Table 4: First experimental result
The new insiruction created in this benchmark

-

program is <JI, MI>and <JI, MR> that shown in the
Table 5. They are used for the program for 15 and §
times respectively. “JI” is a jump instruction with
relative address which is an immediate value. “MI” is a
store instruction that writes an immediate value to
memory, “MR” is also a store instruction but the value
that writes to memory is from a register. With the two
of new instructions, <JI, MI> gained performance
improvement in reduced execution cycle counts as
2.51% and <JI, MR> as 1.34%, respectively. Totally,
overall performance improvement is 3.85%.

The new instructions of <JI, MI> and <JI,
MR> can be summarized as the Table 5. The RTL of the
new instructions are the combinations from the simple
micro operations. The symbol “;” in the RTL column
means the two operations can be operated at the same
time.

Micro operation Operands RTL
JI addr(A) reg(pc) € addr(A)
MI R1.Immed mem(R1) € Immed
MR R1,R2 mem(R1) € reg(R2)

addr(A), R1, Immed |reg(pc) € addr(A);

mem(R1) ¢ Immed

addr(A). R1.R2 reg(pc) € addr(A):

mem(R1) € reg(R2)

Table 5: New instructions, <JI,MI>and <JI, MR>

The new instruction set used two register read
ports, one register write port, and one ALU. If the
designer reduces the factor of hardware cost in the cost
function, then it is to minimize the -effect of hardware
resources. Let us try to reduce the factor and find what
new instructions have produced.
4.2.2 Second experiment:

performance

The input of second experiment is same as first,
except the second using lower hardware cost constraint.
That is, the synthesized new instruction set takes less
importance on hardware cost, just considering the
performance issue. Then the another result with lower
hardware cost constraint summarized in Table 6.

optimization for

Distinct Instructions | Execution Cycle Counts

Benchmark in x86

69 597

Micro operations

synthesized with lower 30 556

hardware cost constrain

C-42

Table 6: Second experimental result

The new instructions created with lower hardware
cost constraint that changed the hardware resources
number compared with the previous result. It used three
register read ports, and has new instructions <MR,
SUBIN>and <MR, SIGN> that used for 30 and 1 times,
respectively. “SUBIN” is a sub micro operation that one
source operand is immediate value, and without
changing corresponding flags (CF, PF, AF, ZF, SF,
OF). It is mapped from the “PUSH” instruction in x86
for updating the stack top pointer register, SP. “SIGN”
is a one to one mapping micro operation that from the
“MOVSX™ instruction in x86. It just appeared once in the
benchmark program. As being compacted into

TERENTAFEEIERES

instruction with “MR”, the instruction set created at this
time does not contain the “SIGN” micro operation. The
overall performance improvement with added hardware
resources number has reached to 6.86%. The new
instruction includes <MR, SUBIN> and <MR, SIGN>
beside <JI, MI>and <JI, MR> mentioned at section
4.2.1.

Let us take more close look at the usage of the
new instruction <MR,SIGN>. The original x86
instructions in the benchmark are written at the left
column. The “PUSH” instruction mapped into 3 micro
operations as <1>, <2>, <3> and MOVSX as <4>,
Using the new instruction <MR, SIGN>, that is
compacted from <3> and <4>, the result program slice
reduced one instruction and reduced one execution
cycle. The micro operation <MR> needs two register
read ports and one memory unit. The micro operation
<SIGN> needs one register write and one register read
port. The new compact instruction, <MR, SIGN>,
results in three register read ports that is due to the
hardware cost constraint had reduced by designer.

Original x86 Mapped micro operations Using synthesized new
instructions instruction set

PUSH [EAX+8] [l.RMD(temp32(1),eax,+3) [1. ..
2.8UBIM(esp,esp,4) . -
3MR(esp, temp32 (1)) . <R, SIGN>(esp, temp

MOVSX EAX, oL |4, 516N (eax, ¢ii" 32(1),eax,cl)

Table 7: The new instruction <MR, SIGN>
5. Conclusions and Future Work

The instruction set design is a tedious work,
especially for the x86 architecture. Not only the
complex instruction formats and the addressing modes,
but also the variety operations from ALU to system
instructions. It needs group of work to cover all of the
details in the instruction set and computer architecture.

We found a way to improve performance by
designing a new internal instruction set of x86
emulation. The new instruction set has the spirit of
RISC and still preserves all the operations of x86. The
new instruction set is synthesized by compacting the
micro operations that support the original x86
instructions. Here we presented an automatic way to
synthesize the new instruction set and provided some
parameters that can be adjusted by the designer such as
the mapping rules from CISC to RISC, hardware cost
constraints, instruction length (32 bits, 64 bits...). With
the new powerful instructions, the program can be
executed with fewer cycles that fully utilized the
functional units provided by the given micro
architecture. The result also gives us a suggestion to add
additional functional units to support the new
instruction set.

The design of instruction set not omly need to
consider the support of micro architecture and hardware
resources but also need the benchmark programs to find
the typical programming model. The future work
contains:

(1) The collection of benchmark program that have used
many types of x86 instructions like FPU and MMX
unit.

(2) Define more precisely of the RTL descriptions of
the micro operations, especial the system instructions.
(3) Define the hardware cost of each hardware resource
in the cost function with reasonable parameters.

6. Reference

[1]Mike Johnson: “Superscalar Microprocessor
Design”, PTR Prentice Hall.

[2] “Pentium Pro Family Developer's Manual”,
Volume 2,3, Intel corporation 1996.

[3]1 David W. Wall: “Limits of Instruction-Level
Parallelism”, In Proc. Fourth Int. Conf on

Architectural ~ Support for Programming
Languages and Operation Systems, April 8-11,
1991.

[4] “Intel’s MMX Speeds Multimedia”,

Microprocessor Report, Vol. 10, No. 3, March 3,
1996.

[5]1“Pentium Family User's Manual, Vol 3:
Architecture and Programming Manual.”,
Appendix B.

[6] “SOURCER user's Manual”, V Communications,
INC. 1993.

[7] “Intel's P6 Uses Decoupled Superscalar Design”,
Microprocessor Report, Vol. 9, No. 2, February
16, 1995.

[8] David A. Patterson: “Reduced Instruction Set
Computers”, Communications of ACM, Volume
28, Number 1, January 1985, pages 8-21.

[9] Ing-Jer Huang, Alvin M. Despain: “Synthesis of
Application Specific Instruction Sets”, 1EEE
transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 14, NO. 6,
JUNE 1995,

[10] D.F. Wong, H.W. Leong, C.L. Liu: “Simulated
annealing for VLSI design”, Kluwer Academic
Publishers.

[11} Andrew Wolf, John P. Shen: “A Variable
Instruction Stream Extension to the VLIW
architecture”, In Proc. Fourth Int. Conf on

Architectural ~ Support for Programming
Languages and Operation Systems, April 8-11,
1991.

[12] Monica S. Lam, Robert P. Wilson: “Limits of
Control Flow on Parallelism”, The 19th Annual
International ~ Symposium on Computer
Architecture, 1992.

[13] Barry B. Bery: “The Intel Microprocessors-
8086/8088, 80186, 80286, 80386, and 80486-

L)

Architecture, Programming, and Interfacing”, 3rd
ed.

C-43

