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Abstract 
 

The concept of visual secret sharing (VSS) scheme was 
first proposed by Noar and Shamir in 1994. This is a 
technique to divide a secret image into several 
meaningless images, called shadows, such that certain 
qualified subsets of shadows can recover the secret image 
by “eyes”. The main characteristic of VSS schemes is that 
its decoding process can be perceived directly by the 
human visual system without the knowledge of 
cryptography and cryptographic computations. It 
possesses a special meaning and effect that “the secret 
codes are visible”.  

In this paper, we propose a new Visual Multi-Secret 
Sharing (VMSS) scheme. The main difference between 
VMSS scheme and traditional Visual Secret Sharing (VSS) 
scheme is that it is allowed to hide more than one secret 
in VMSS while VSS can hide only one secret. We give an 
optimal generating codebook of (2,2) VMSS scheme and 
discuss the security of the proposed scheme. The 
characteristic of the (2,2) VMSS scheme is to conceal two 
secret messages (P1 and P2) on two shadows such that P1 
is recovered by stacking together the two shadows. 
However, P2 is recovered by reversing one of the two 
shadows. 
 
 

1. Introduction 
 

Visual secret sharing (VSS) scheme brought up by 
Naor and Shamir [11] in 1994 is established on the 
concept of secret sharing scheme. The key concept of VSS 
scheme is that the original shared secret is image (printed 
text, handwritten notes, pictures, etc.), and the decoder for 
the VSS scheme is “eyes” of human being, i.e., the shared 
secret is perceived directly by the human visual system 
without the knowledge of cryptography and cryptographic 
computations. For more concise description, we assume a 
secret image P is encoded into shared images called 
shadows Ti, i = 1,2…, such that certain qualified subsets 
of shadows can recover the secret image by “eyes”. The 
decoder by “eyes” consists of xeroxing the shares onto 
transparencies, and then stacking them. After stacking, the 
secret image P is revealed without any calculation. 

However, stacking unqualified subsets of shadows does 
not reveal any information about P. 

After the concept of VSS scheme was proposed, there 
are many research institutes have plunged into studying, 
such as [2-4, 8-10, 15-16, 19-21]. Some important ideas 
have been considered in the following literatures. 

. In 1994, Naor and Shamir [11] first considered 
the VSS scheme and proposed a solution of 2-out-
of-n scheme. 

. And then, Ateniese et al. gave an efficient solution 
[1] for general access structures. 

. Droste [6] considered the problem that sharing 
more than one secret image among a set of 
participants. A construction was given to obtain 
VSS schemes in which different subsets of 
transparencies reveal different secret images. 

. In [12], an alternative reconstruction method for 
VSS schemes was studied. This method provides 
a higher contrast in the reconstructed image for 2-
out-of-n schemes, but cannot be applied to the k-
out-of-n schemes. 

. Advanced VSS scheme to share colored images 
were given in [14], [18] and [23]. 

. The bounds and contrast in VSS scheme were 
discussed in [5], [7] and [18]. 

. The authentication and identification using VSS 
scheme were studied in [13] and [22]. 

In this paper, we propose a new Visual Multi-Secret 
Sharing (VMSS) scheme. The main difference between 
VMSS and traditional VSS scheme is that it is allowed to 
hide more than one secret with the same qualified subset 
of shadows in VMSS while VSS can hide only one secret. 

This paper was organized as follows. We review the 
basic concept and characteristics of VSS schemes in 
section 2. Then, we will propose our (2,2) VMSS scheme 
in section 3. The codebooks of generating (2,2) VMSS 
scheme and their security analysis are also given. The 
characteristic of the proposed (2,2) VMSS scheme is to 
conceal two secret messages P1 and P2 on two shadows 
such that P1 can be recovered by stacking together the two 
shadows and then P2 can be recovered by reversing one of 
the two shadows. The experimental results and conclusion 



are given in section 4 and 5, respectively. 
 

 

2. The Review of VSS Schemes 
 

In the VSS scheme, we assume the secret is an image 
which is consisted of black and white pixels. Each original 
pixel is transformed into m subpixels on n modified shares 
shown for each transparency (shadow). Each share in a 
shadow is a collection of m black and white subpixels, 
which are printed very closely so that the human visual 
system averages their individual black/white contributions. 
We symbolize the resulting structure by a n × m Boolean 
matrix S = [sij], where sij = 1 if and only if the jth subpixel 
in the ith transparency is black. When transparencies i1, 
i2,...ir are stacked together in a way which properly aligns 
the subpixels, we see a combined share whose black 
subpixels are represented by the Boolean “or” of rows i1, 
i2,...ir in S. The gray level of this combined share is 
proportional to the Hamming weight of the “or”ed m-
vector V. For some fixed threshold 1 ≤ d ≤ m and relative 
difference α > 0, if H(V) ≥ d, this gray level is interpreted 
by the users’ visual system as black. And if H(V) ≤ d - αm, 
the result is interpreted as white. 

A solution to k out of n visual secret sharing scheme 
can be shown as two collections of n × m Boolean 
matrices C0 and C1. When sharing a white pixel, the dealer 
randomly choose one row of the Boolean matrix C0 to a 
relative share. On the other hand, he selects one row of the 
Boolean matrix C1 for sharing a black pixel. The chosen 
matrix defined the gray level of the m subpixels in every 
one of the n shares. The solution is valid if it can meet the 
following three conditions[11]: 

1. For any S in C0, the “or” V of any k of the n 
shares satisfies H(V) ≤ d - αm. 

2. For any S in C1, the “or” V of any k of the n 
shares satisfies H(V) ≥ d. 

3. For any q shares and q < k, the “or” V of q of the 
shares satisfies H(V) = const. It means that we 
cannot distinguish whether the pixel is black or 
white. 

With the illustration given above, the important 
parameters of a VSS scheme are: 

. m is the number of subpixels generated from a 
pixel in a share. This represented the loss in the 
resolution from the original picture to shared one. 
From the viewpoint of efficiency, we would like 
m to be as small as possible. 

. α is the relative difference in weight between 
combined shares that come from a white pixel and 
a black pixel in the original picture. From the 
contrast point of view, we would like α to be as 
large as possible. 

 

 
Figure 1. The basic (k, n) model of VSS scheme 

 
The foremost two conditions are called contrast and the 

third condition is called security. In other words, by the 
third condition, we cannot get any information about the 
share secret if we do not have more than k shares. The 
basic model of (k, n) VSS schemes is shown in Figure 1. 

 
3. The proposed (2,2) VMSS Scheme 
 

The traditional (2,2) VSS scheme we discussed 
divides a secret message P into two shadows, T1 and T2. If 
we got only one shadow, we cannot obtain any 
information about P. However, we observe that the 
rectangular shadows are transparent and dual-face. It 
means that there are two combinations in two shadows T1 
and T2, i.e., one is to stacking T1 and T2 together and the 
other is to reverse one of T1 and T2 and then stack them 
together. Thus, the basic concept of our VMSS scheme is 
to hide more than one secrets in the shadows such that the 
same qualified subset of shadows can reveal the secrets 
and the revealed secrets are relied on the position of the 
shadows. Due to the page limitation, we only discuss the 
(2,2) VMSS scheme in this paper. Note that it is allowed 
to hide two secrets in two shadows in our (2,2) VMSS 
scheme and it is possible to hide 2k-1 secrets in (k,n) 
VMSS schemes. 
 
3.1 Codebook Generating 
 

As far as we know, all the proposed (2,2) VSS schemes 
[1,2] can only conceal a secret message in two shadows, 
and the size of each shadow extends fourth as much as of 
the original secret message. In order to conceal more 
messages in the same size of transparency, we propose the 
way as follows. 

Considering two secret messages, P1 and P2, the 
scheme shares them into two shadows, T1 and T2. When T1 

and T2 stacked together, P 1 is recovered. By reversing T1 
and covering it on T2, then P 2 is recovered.  

Because of the need of reversing T1, we have to 
consider the symmetric two points (top and down) of a 



message simultaneously in the codebook construction. 
The number of messages we want to conceal are two, so 
we have to consider four points simultaneously. 
 

 
Figure 2. The pixels of two original secret messages 

 
As shown in Figure 2, suppose that there are two 

messages, P 1 and P 2. The symmetric two pixels of P 1 are 
P 11 and P 12. The symmetric two pixels of P 2 are P 21 and 
P 22. After calculating, two shadows are generated, T1 and 
T2. The share in T1 is composed of two black and two 
white subpixels so its Hamming weight is 2. And the share 
in T2 is composed of three black and a white subpixels so 
its Hamming weight is 3. The symmetric two shares of T1 
are T11 and T12. The symmetric two shares of T2 are T21 
and T22. The relationship between the shadow and its 
shares is shown in Figure 3. 
 

 
Figure 3. The subpixels of four shares in two shadows 

 
When T1 and T2 are stacked, if the Hamming weight of 

T1 “or”ed T2 is 4 then it means black while it means white 
if the Hamming weight is 3. For we need to consider four 
pixels at a time and for each pixel has changes of black 
and white, the number of the cases needed to consider are 
sixteen. Let P11, P 12, P 21 and P 22 ∈  {W, B}, the sixteen 
cases (1 ~ 16) are shown in Table 1. 
 

Table 1.The cases of the VMSS scheme 

Case 1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

P11 B B B B B B B B W W W W W W W W 
P12 B B B B W W W W B B B B W W W W 
P 21 B B W W B B W W B B W W B B W W 
P 22 B W B W B W B W B W B W B W B W 

 
We design this scheme by two ways. First, we fix the 

Hamming weight of T11 “or”ed T12 to be 3 and the 
codebook is shown in Table A1 in Appendix. 

Second, we fix the Hamming weight of T21 “or”ed T22 
to be 4 and design the codebook as shown in Table A2 in 
Appendix. 

Here, we give an example of this scheme. Let the 

corresponding pixels in secrets P1 and P2 be {P11, P12, P21, 
P22}={B, W, W, B} which is the case 7 in Table 1. If we fix 
the Hamming weight of T11 “or”ed T12 to be 3, then from 

the case 7 of codebook in Table A1, we have that 



















22

21

12

11

T

T

T

T

 

are the columns permutated from 



















0111

1011

0110

0101

. The 

subpixels of stacked shadows are shown in Figure 4. 
 

 
Figure 4. An example of the VMSS scheme (case 7) 

 
3.2 Security Analysis 

 
Due to the fact that the hiding secrets in our (2,2) 

VMSS schemes are two times of (2,2) VSS schemes. It is 
possible that one secret will be revealed some information 
when another secret and one shadow are given (Note that 
there is no pixel expansion in our schemes). It means that 
the proposed (2,2) VMSS scheme can not satisfy the 
perfect secrecy. However, it satisfies perfect secrecy for 
the two secrets P1 and P2 independently, when only one 
shadow T1 or T2 is given. Now, we make the security 
analysis for our (2,2) VMSS scheme as follows. 

In order to generate our codebook, we must fix the 
Hamming weight of T11 “or”ed T12 (T21 “or”ed T22) and 
generate the code of T21 and T22 (T11 and T12). What value 
will the Hamming weight of T21 “or”ed T22 (T21 “or”ed T22) 
be? It is an interesting question for us to discuss. 

Some tables as follows are listed to discuss this 
question. In Table 2, we fix the Hamming weight of T11 
“or”ed T12 to be 3 and analyze the Hamming weight of T21 
“or”ed T22.  

 
Table 2. Fix H(V) = 3 for T11 “or”ed T12 to analysis 

H(V) of T21 “or”ed T22 
Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
H(V) 3 4 4 4 4 3 4 4 4 4 3 4 4 4 4 3 

In Table 2, we find there are four special cases that 
may affect the security of the (2,2) VMSS scheme. We list 



them as below.  

. Case 01: {P11, P12, P21, P22} = {B, B, B, B}. 

. Case 06: {P11, P12, P21, P22} = {B, W, B, W}. 

. Case 11: {P11, P12, P21, P22} = {W, B, W, B}. 

. Case 16: {P11, P12, P21, P22} = {W, W, W, W}. 
It means that these cases can be identified by observing 

one shadow, i.e., T11 and T12 in T1. Although it still can not 
guess the secrets P1 and P2, it can not achieve perfect 
secrecy theoretically. 

In Table 3, we fix the Hamming weight of T21 “or”ed 
T22 to be 4 and analyze the Hamming weight of T11 “or”ed 
T12. 
 
Table 3. Fix H(V) = 4 for T21 “or”ed T22 to analysis H(V) 

of T11 “or”ed T12 (I) 
Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

H(V) 2 3 3 4 3 4 2 3 3 2 4 3 4 3 3 2 
 

We change four codes (case 4, case 7, case 10 and 
case 13) shown in Table A2 in Appendix, and hope to 
improve our scheme. The change is shown in Table A3 in 
Appendix.  

Those are the same to the codebook of fixing the 
Hamming weight of T11 “or”ed T12 to be 3. Hamming 
weight of T11 “or”ed T12 is changed by code alteration is 
listed as follows.  

 
Table 4. Fix H(V) = 4 for T21 “or”ed T22 to analysis 

H(V) of T11 “or”ed T12 (II) 
Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

H(V) 2 3 3 3 3 4 3 3 3 3 4 3 4 3 3 2 
 

All codebooks that can be used in our scheme are 
considered in Table A1, A2 and A3 in Appendix. After we 
gather statistical data, total 28 different codebooks can be 
used to generate this scheme as shown in Table A4 which 
can be grouped into 16 cases. 

In a moment, we will compare our different methods 
used to generate the visual secret sharing schemes. The 
different kinds of conditions to analyze the security of (2,2) 
VMSS scheme and the comparison with the (2,2) VSS 
scheme are shown in Table A5. 
 

4. Experimental Results 
 

Let us see an example for this scheme. Two secret 
images, P1 and P2, share into two shadows T1 and T2. The 
shadows T1 and T2 are generated by the first method, i.e., 
the Hamming weight of Ti1 “or”ed Ti2 is 3 for i=1 and 2. 
When T1 and T2 stack together, the P1 is revealed. While 
T1 is inverted to T1’ and then we pile T1’ with T2, the P2 is 
appeared. They are shown in Figure 5. 

 

 
(a) The shadow T1 

 
(b) The shadow T2 

 
(c) T1 and T2 stacked together 

 
(d) T1’ and T2 stacked together 

Figure 5. The example of VMSS scheme 
 
5. Conclusion 
 

In this paper, the concept of hiding more than 
multiple secrets in the same qualified subset of shadows in 
VSS schemes is proposed. We call it Visual Multi-Secret 
Sharing (VMSS) schemes. Two methods of constructing 
(2,2) VMSS scheme with concealing two secrets are given. 
The experimental results are also given. From our security 
analysis, it is impossible to design a (2,2) VMSS scheme 
satisfying perfect secrecy for two secrets due to the 
generating codebook is related to the two secrets, i.e., 
given one shadow the probability to guess 4 
corresponding pixels in P1 and P2 is higher than 1/16. 
Nevertheless, it is possible to design a (2,2) VMSS 
scheme satisfying perfect secret for only one secret as 



traditional (2,2) schemes. Nevertheless, The proposed 
VMSS schemes has the advantage to hide more secrets 
with the same size of shadows. 
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Appendix 
Table A1. The codebook of the scheme using fixed the H(V) = 3 of T11 “or”ed T12 

Case Codebook Case Codebook 

1 }. 

1011

1011

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
2 }. 

1011

1110

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

3 }. 

1101

1011

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
4 }. 

1101

1110

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

5 }. 

1110

1011

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
6 }. 

1110

1110

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

7 }. 

0111

1011

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
8 }. 

0111

1110

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

9 }. 

1011

1101

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
10 }. 

1011

0111

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

11 }. 

1101

1101

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
12 }. 

1101

0111

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

13 }. 

1110

1101

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
14 }. 

1110

0111

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

15 }. 

0111

1101

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
16 }. 

0111

0111

0110

0101

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 



Table A2. The codebook of the scheme using fixed the H(V) = 4 of T21 “or”ed T22 
Case Codebook Case Codebook 

1 }. 

0111

1110

1001

1001

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

2 }. 

0111

1110

1100

1001

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

3 }. 

0111

1110

1001

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

4 }. 

0111

1110

1100

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

5 }. 

0111

1110

0011

1001

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

6 }. 

0111

1110

0110

1001

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

7 }. 

0111

1110

0011

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

8 }. 

0111

1110

0110

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

9 }. 

0111

1110

1001

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

10 }. 

0111

1110

1100

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

11 }. 

0111

1110

1001

0110

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

12 }. 

0111

1110

1100

0110

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

13 }. 

0111

1110

0011

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

14 }. 

0111

1110

0110

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

15 }. 

0111

1110

0011

0110

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

16 }. 

0111

1110

0110

0110

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

 



Table A3. The result of changing codes by fix H(V) = 4 for T21 “or”ed T22 
Case Codebook Case Codebook 

4 }. 

0111

1110

1010

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
7 }. 

0111

1110

0101

0011

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

10 }. 

0111

1110

1010

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 
13 }. 

0111

1110

0101

1100

 permutated columns {

22

21

12

11



















=



















T

T

T

T

 

 
Table A4.The distribution of different codebook in 16 cases 

Case 1 2 3 4 5 6 7 8 

(H(T1), 
H(T2))* 

(2, 4) (3, 3) 
(2, 3) 

(3, 4) (3, 4) (4, 4) (3, 4) (3, 4) 
(4, 4) (3, 3) 

(4, 3) 
(2, 4) (3, 4) (3, 4) 

Case 9 10 11 12 13 14 15 16 

(H(T1), 
H(T2)) 

(3, 4) (2, 4) (3, 4) 
(4, 4) (3, 3) 

(4, 3) 
(3, 4) (4, 4) (3, 4) (3, 4) (3, 4) 

(2, 4) (3, 3) 
(2, 3) 

* H(T1) (or H(T2)) represents that the Hamming weight of T11 “or”ed T12 (or T21 “or”ed T22). 
 
Table A5. The security analysis of (2,2) VMSS schemes 

Conditions Cases 
VMSS scheme 

(Fix the H(V) = 3 of 
T11 “or”ed T12) 

VMSS scheme 
(Fix the H(V) = 4 of 

T21 “or”ed T22) 

VMSS scheme 
(Change previous 

codebook) 

VSS scheme 
(get the no weak 

shadow) 

Normal case 1/12 1/8 1/12 
Guess P1 and P2 (4 

pixels) 
Special case 1/4 1/4 1/2 

1/16 

Normal case 1/4 1/4 1/4 
Guess P1 or P2 
independently 

(2 pixels, (P11, P12) or 
(P21, P22)) 

Special case 1/4 1/4 1/2 
1/4 

Normal case 1/4 1/4 1/4 
Guess P1 or P2 

relationship 
(2 pixels, (P11, P22) or 

(P12, P12)) 
Special case 1/4 1/2 1/2 

1/4 

Normal case 1/4 1/4 1/4 
Guess P1 or P2 

relationship 
(2 pixels, (P11, P21) or 

(P12, P22)) 
Special case 1/2 1/4 1/2 

1/4 

Normal case 1/2 1/2 1/2 

U
nknow

n P
1  and P

2  

Guess P1 or P2 
independently 

(1pixel) Special case 1/2 1/2 1/2 
1/2 

Normal case 1/3 1/2 1/3 Guess P1 or P2 
(2 pixels(P11, P12) or 

(P21, P22)) Special case 1 1 1 
1/4 

Normal case 1/2 1/2 1/2 

K
now

n P
1 or P

2  

Guess P1 or P2 
independently 

(1pixel) Special case 1 1 1 
1/2 

 


