
 1 

Publicly Verifiable Batch Encryption 
Po-Wen Ko, Jong-E Hsien, and Chien-Yuan Chen 

Department of Information Enginerring, 

I-Shou University, Kaohsiung County, Taiwan, 840 R.O.C. 

E-mail: {m883317m, m883311m, cychen}@ isu.edu.tw 

 
Abstract 

In this paper, we propose a publicly verifiable batch 

encryption scheme, which allows a third party to verify 

some encrypted messages without revealing any 

information at the same time. These encrypted messages 

can also be verified by running a single PVE scheme many 

times. However, it is less efficient than our scheme. 

According to our analysis, our scheme can reduce the 

overhead of computations by 66%. Furthermore, our 

scheme can be applied to batch escrowed e-cash systems. 
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1. Introduction 

Since its invention [4], verifiable secret sharing 

(VSS) is a cryptographic primitive to achieve security 

against cheating participants. In [10], Stadler presented a 

publicly verifiable encryption (PVE) technique of discrete 

logarithms, that allows the prover to convince the verifier 

that the ciphertext C hinds a message m under someone’s 

public key without revealing the message. For example, 

Alice places a piece of paper in a translucent envelope and 

sends it to Bob. Bob can verify that there is a piece of 

paper in the envelope without opening it. 

PVE can be used for e-commerce-related 

cryptographic protocols such as escrow-cryptosystems [7, 

8] and fair exchange of digital signatures [1, 2]. In some 

cases, the sender must send several ciphertexts using the 

PVE scheme at the same time. Thus, the overhead of 

computations for running a single PVE scheme to verify 

these ciphertext s is more expensive. That motivates us to 

present a publicly verifiable batch encryption to reduce the 

overhead. 

In this paper, we present a new publicly verifiable 

encryption that allows a trusted entity to verify batch 

encryption at the same time. For example, if the sender 

Alice wants to send several ciphertexts C1, C2,  …, Cn  to a 

group of participants via the verifier Bob. Bob can verify 

these encrypted messages without seeing the messages. 

Instead of running a single PVE scheme for every 

ciphertext, our publicly verifiable batch encryption (PVBE) 

scheme is more efficient. 

Based on our PVBE scheme, we combine the batch 

signature [3, 9] to construct batch escrowed electronic cash 

systems. Batch signatures allow many coins to be 

withdrawn once. The cost is reduced for verifying many 

coins together. As introduced in [9], it allows multiple 

coins can be withdrawn and spent by using batch protocols. 

In this paper, we will construct a batch escrowed electronic 

cash system, which allows the user Tom to withdraw coins 

one time, later he can dispense each coin to other 

participants via Bob, who acts on behalf of recipients to 

verify that Tom has indeed sent the e-cash to every 

recipient. 

The remainder of this paper is organized as follows. 

In the next section we review Stadler’s PVE scheme. We 

present a PVBE scheme in Section 3. Furthermore, our 

presented PVBE scheme can be applied to e-cash systems 

in Section 4. Finally, Section 5 concludes the work of this 

paper. 

 

2. Review of Stadler’s Scheme 

Before the introduction of Stadler’s scheme, some 

parameters should be defined, that will be used throughout 

this paper. 
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Let p, q, and r be large primes, where q = 2 × r + 1, 

p = k × q + 1. Here k is any even number. Let further G be 

a group of order q generated by g and H be a group of 

order r generated by h. Then computing discrete logarithms 

to the bases g or h is difficult. 

According to the double discrete logarithm from 

x∈Zr to y∈G with bases g and h, we have 

Y = ghx mod q mod p. 

Here Zr denotes the ring of integers modulo r. 

Stadler’s scheme uses ElGamal’s public key system 

[5] to encrypt the message and a zero-knowledge protocol 

to convince the verifier that the ciphertext hinds the 

message m without revealing the message.  

There are three participants: Alice (the sender), Bob 

(the verifier), and Nancy (the recipient). The private/public 

key pairs of Alice, Bob and Nancy are (XA, YA = gXA mod p), 

(XB , YB =  hXB mod q) and (XN, YN =  hXN mod q), 

respectively. To encrypt a message m ∈Zq
*, where Zq* 

denotes the ring of integers modulo q except zero, Alice 

randomly chooses k ∈Zq to calculate A = hk mod q and  

B = m-1 YN
k mod q. Nancy can decrypt the ciphertext (A, B) 

by computing m = AXN / B mod q. 

In Stadler’s scheme, Alice sends A, B, Y’ to Bob 

and convinces Bob that the pair (A, B) hinds the message 

m without revealing the message under a public value  

Y’ = gm mod p by running Protocol ZP1 j times for some 

integer j. Protocol ZP1 is listed as follows: 

Protocol ZP1: 

Step 1: Alice randomly chooses w∈Zr to calculate  

t1 = hw mod q (1) 

and t2 = g (YN)w 
mod p. (2) 

Then she sends Bob t1, t2. 

Step 2: Bob randomly chooses C, where C =1 or 0, and 

sends it to Alice. 

Step 3: After receiving C, Alice computes R = w – Ck mod r, 

and she sends R to Bob. 

Step 4: Finally, Bob checks whether  

t1= hR AC mod q  (3) 

and t2 = (g(1 - C)Y’CB)(YN)R mod p. (4) 

If they are correct, Bob accepts that the message 

has indeed been encrypted in the ciphertext (A, 

B).  

 

To overview Stadler’s scheme, Fig.1 is given. 

If Alice wants to send several encrypted messages to 

different recipients at the same  time and convince Bob that 

those ciphertexts hind the corresponding messages . She 

must construct a single PVE scheme for each ciphertext  

with Bob, thus the overhead will be heavy. In next session, 

we will present our solution to reduce the overhead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Publicly Verifiable Batch Encryption Scheme 

There are three roles in our scheme: Alice (the 

sender), Bob (the verifier), Ui (a group of recipients). The 

private key/ public key pairs of Alice, Bob, and Ui are  

 (XA,  YA =  gXA mod p), (XB ,  YB  =  hXB  mod q), (Xi,  

Yi = hXi mod q), respectively. 

Assume that Alice wants to send some messages to 

other participants (Ui) by using ElGamal encryption via 

Fig.1 Stadler’s Scheme  

Alice                            Bob 

Compute 

A = hk mod q 

B = m-1YN
k mod q 

Y’ = gm mod p 

 A, B, Y’ 

Protocol ZP1 

Repeat j times 

w∈ Zr 

Compute 

t1 = hw mod q 

t2 = g(YN)w mod p     t1, t2  

 C  C∈R {0, 1} 

R = w – Ck mod r R 

              Check  

t1 = hRAC mod q 

t2 = (g(1 – C)Y’CB) (YN)R mod p 
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Bob. Bob must verify that those ciphertexts hind the 

correct messages without revealing messages. For example, 

assume that Alice wants to send the message m1 to U1, m2 

to U2,  … ,  mn to Un. Alice must convince Bob that those 

messages have indeed been encrypted in the corresponding 

ciphertexts and can be decrypted by the recipients, 

respectively.  

First Alice randomly chooses k∈Zr to compute  

A = hk mod q. To avoid revealing mi , she computes  

Bi = mi
-1 Yi

kmod q to encrypt mi, where i = 1, 2, …, n  

(The recipient can get the message  by computing  

mi  = AXi /  Bi mod q). She computes Y1’ = gm1 mod p,  

Y2’ = gm2 mod p, …, Yn’ = gmn mod p. Then she sends Bob 

A, B1, B2,  … ,  Bn,Y1’,Y2’, … ,  Yn’. Thus, Alice can 

convince Bob that the correct messages are sent to the 

recipients by running the following Protocol ZP2 j times. 

Protocol ZP2:  

Step 1: Alice randomly chooses  w∈Z r  to  compute  

t 1  = h w  mod q  (5) 

and  t2 = g (Y1
w + Y2

w +…+Yn
w ) mod p.  (6) 

Then she sends t 1 and t2 to Bob. 

Step 2: After receiving t1 and t2, Bob randomly chooses C 

and sends it to Alice, where C = 0 or 1. 

Step 3: After receiving C, Alice computes R = w – Ck mod r 

and sends R to Bob.  

Step 4: After receiving R, Bob accepts that the message mi 

has indeed been encrypted in the ciphertext (A, Bi) 

by checking whether  

t1 = hRAC mod q  (7) 

and t2 = (g(1 – C)Y1’CB1)Y1
 R

) (g(1 – C)Y2’CB2)Y2
 R

) 

… (g(1 – C)Yn’CBn)Yn
 R

) mod p.  (8) 

 

To overview our PVBE scheme, Fig.2 is given. 

We analyze the security and the efficiency of our 

scheme as follows: First, we used ElGamal encryption to 

encrypt messages. Given the pair (A, Bi), the attacker 

cannot obtain the message mi without the recipient’s secret 

key because he must face the discrete logarithm problem. 

Second, if one of the recipients tries to obtain other 

recipient’s message from Yi’, he also face the discrete 

logarithm problem. Furthermore, Protocol ZP2 is a 

zero-knowledge protocol similar to Stadler’s Protocol ZP1 

that the sender can successfully cheat with a probability of 

2-j at most.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following, SPVEs denotes that ciphertexts are  

verified by running a single PVE scheme. We compare 

SPVEs with PVBE in Table 1. The comparison includes 

the number of modular exponentiations and multiplications, 

and the amount of transmitted data. In estimating the 

overhead of computations of n SPVEs and PVBE, mod p 

Fig.2 Public Verifiable Batch Encryption Scheme 

Alice                           Bob 

k∈Zr 

A = hk mod q  

m1, m2, …, mn∈ Zq 

i =1, 2, …, n 

Compute 

Bi = mi
-1Yi

k mod q 

Yi’ = gmi mod p 

             A, B1, B2, …, Bn,  

Y1’, Y2’, …, Yn’ 

 

Protocol ZP2 

Repeat j times 

w∈ Zr 

t1 = hw mod q 

t2 = g (Y1
w + Y2

w …+Yn
w ) mod q mod p 

 t1, t2 

                               C∈R {0, 1} 

 C 

R = w – Ck mod r 

 R 

              Check  

t1 = hRAC mod q 

           t2 = (g(1 – C)Y1’CB1)Y1
 R

)×  

            

 

 

(g(1 – C)Y2’
CB2)Y2

 R
)… 

(g(1 – C)Yn’
CBn)Yn

 R
) mod p 
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and mod q are viewed as the same modular operation. 

Besides, modular additions or subtractions are neglected. 

Note that 1 modular inverse can be viewed as 1 modular 

exponentiation. 1 modular exponentiation requires on the 

average i|p| modular multiplications [6], where |p| denotes 

the length of the modular p and 0< i ≤ 1.5. Fore example, 

i = 1.5 when the binary method is used. 

In Stadler’s scheme, Alice require 3 modular 

exponentiations, 1 modular multiplication and l modular 

inverse to compute A, B, and Y’. Thus, performing a single 

PVE scheme for n ciphertext s by running Protocol ZP1 j 

times, Alice and Bob require (3i|p|jn + 4i|p|n + n) and 

(3i|p|jn + jn) modular multiplications on the average, 

respectively. 

In our scheme, Alice requires (2n + 1) modular 

exponentiations, n modular multiplications and n modular 

inverses to compute A, B1, B2, … , Bn , Y1’,Y2’, … , Yn’. In 

Protocol ZP2, Alice requires (n + 2) modular 

exponentiations to compute t1 and t2. On the other hand, 

Bob must perform Equations (7) and (8). Equation (7) 

requires 1 modular exponentiation and 1 modular 

multiplication if C = 1, and 1 modular exponentiation if C 

= 0. However Equation (8) can be modified as follows:  

g (Y1
 R + Y2

 R +…+Yn
 R ) mod p  if C = 0 (9) 

t2 =  

          (Y1’
B1Y1

 R
) (Y2’

B2Y2
 R
) 

… (Yn’
BnYn

 R
) mod p if C = 1 (10) 

Performing Equation (9) requires (n + 1) modular 

exponentiations, while performing Equation (10) requires 

on the average n modular exponentiations and (n + ( |p| / 

w))modular multiplications at the cost of additional table 

by using the technique of the multi-exponentiation 

presented in [11]. Here w denotes the window size. Thus, 

performing our PVBE scheme for n ciphertext s by running 

Protocol ZP2 j times, Alice and Bob require ((3n + 1 + (n + 

2)j)i|p| + n) and ((n + 1.5)ji|p| + ((n + 1 + |p| / w) / 2)j) 

modular multiplications on the average, respectively. 

When j = 1, SPVEs requires on the average (10ni|p| 

+ 2n) modular multiplications which is close to (10ni|p|) 

modular multiplications. Then, our scheme needs on the 

average ((5n + 4.5)i|p| + 1.5n + p/2w + 0.5) modular 

multiplications which is close to (5ni|p|) modular 

multiplications. Thus, our scheme reduces the overhead of 

computations by 66%. Next, we consider the case that j is 

large. On the average, SPVEs and our scheme requires 

approximately (6jni|p|) and (2jni|p|) modular 

multiplications, respectively. Thus, our scheme also 

reduces the overhead of computations by 66%.  

 

Table 1 Comparison between SPVEs and PVBE 

EXP = the number of modular exponentiations. 

MUL = the number of modular multiplications. 

TOTAL = EXP×i|p| + MUL. 

Computational cost Various 
Scheme   EXP MUL TOTAL 

Sender 
 

(4+3j)n 
 

n 
 

(4+3j)ni|p|+n 
 

S 
P 
V 
ES 

Ver.ifier 
 

3jn     jn  3jni|p|+jn 

Sender 
 

3n+1+ 
( n+2)j 

 

    n 
 

((3n+1+(n+2)j)i|p|+
n 
 

P 
V 
B 
E Verifier 

 
(n+1.5)j ((n+1+|p|/

w) /2)j 
(n+1.5)ji|p|+ 

((n+1+|p|/w)/2)j 

 

4. Applications 

In [3, 9], they allow multiple coins can be 

withdrawn and spent using batch protocols, which are 

based on batch signatures schemes. The computing cost of 

withdrawal will be reduced for verifying large amount of 

coins.  

In this section, we construct a batch escrowed e-cash 

system, which combines the publicly verifiable batch 

encryption and the batch signatures scheme. 

In the batch escrowed e-cash system, there are four 

main participants: Alice (the bank), Tom (the employer), 

Bob (the escrowed agent  of  employees ) ,  and  Ui 

(employees), where i =1, 2, ..., n. The private key/public 

key pairs of Alice, Tom, Bob, and Ui are (XA, YA = gXA mod p), 

(XT,  YT = hXT mod q), (XB,  YB  = hXB  mod q), and (Xi,  

Yi  = hXi mod q), respectively. In a company (As illustration 

in Fig.3), Tom must withdraw the e-cash to pay employee’s 

salary from the bank. Then, Tom distributes money to 
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every employee via Bob. Bob must check that Tom has 

indeed encrypted e-cash honestly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Tom sends Alice the request for withdrawal. 

Then Alice generates signature on a batch of n messages 

m1, m2,  … ,  mn, where the message and the signature pair 

means a coin. Alice generates the signature as follows. 

First, Alice randomly chooses w’ to compute a = gw’ mod p, 

S  = H1(D1||D2| | … | |Dn||a), and R’ = XAS + w’ mod q,  

Di = H0(mi), i = 1, 2, …, n , where H1(⋅) and H0(⋅) are secure 

hash functions. Then she sends Tom m1, m2, … ,  mn, S, R’, 

D1, D2,…, Dn.  

After receiving m1, m2 ,  … ,  mn , S, R’, D1, D2,  … ,  Dn , 

Tom computes a’ = gR’YA
-S mod q and check whether 

H0(mi) = Di and S = H1(D1||D2 | | … | |Dn ||a’) for verifying the 

signature (S, R’, D1,  D2, ..., Dn, i) on message mi. To 

overview the batch signatures scheme, Fig.4 is given. 

After withdrawing the e-cash, Tom uses the PVBE 

scheme to dispense the e-cash to every employee. Tom 

computes the ciphertext pairs (A, Bi) to encrypt the 

messages and the signature pair, and the public values Yi’. 

Then he sends them to Bob by running Protocol ZP2 to 

convince Bob that Tom has indeed sent the e-cash to every 

employee.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this paper, we had presented a publicly verifiable 

batch encryption scheme. It allows a third party to verify 

some encrypted messages without revealing any 

information. Compared to the SPVEs  scheme, the PVBE 

scheme can on the average reduces the overhead of 

computations by 66% . Furthermore, The PVBE scheme 

can be applied to the escrowed e-cash system by using the 

batch protocol.  
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