
 1

Publicly Verifiable Batch Encryption
Po-Wen Ko, Jong-E Hsien, and Chien-Yuan Chen

Department of Information Enginerring,

I-Shou University, Kaohsiung County, Taiwan, 840 R.O.C.

E-mail: {m883317m, m883311m, cychen}@ isu.edu.tw

Abstract

In this paper, we propose a publicly verifiable batch

encryption scheme, which allows a third party to verify

some encrypted messages without revealing any

information at the same time. These encrypted messages

can also be verified by running a single PVE scheme many

times. However, it is less efficient than our scheme.

According to our analysis, our scheme can reduce the

overhead of computations by 66%. Furthermore, our

scheme can be applied to batch escrowed e-cash systems.

Keyword: public verifiable encryption, escrowed e-cash.

1. Introduction

Since its invention [4], verifiable secret sharing

(VSS) is a cryptographic primitive to achieve security

against cheating participants. In [10], Stadler presented a

publicly verifiable encryption (PVE) technique of discrete

logarithms, that allows the prover to convince the verifier

that the ciphertext C hinds a message m under someone’s

public key without revealing the message. For example,

Alice places a piece of paper in a translucent envelope and

sends it to Bob. Bob can verify that there is a piece of

paper in the envelope without opening it.

PVE can be used for e-commerce-related

cryptographic protocols such as escrow-cryptosystems [7,

8] and fair exchange of digital signatures [1, 2]. In some

cases, the sender must send several ciphertexts using the

PVE scheme at the same time. Thus, the overhead of

computations for running a single PVE scheme to verify

these ciphertext s is more expensive. That motivates us to

present a publicly verifiable batch encryption to reduce the

overhead.

In this paper, we present a new publicly verifiable

encryption that allows a trusted entity to verify batch

encryption at the same time. For example, if the sender

Alice wants to send several ciphertexts C1, C2, …, Cn to a

group of participants via the verifier Bob. Bob can verify

these encrypted messages without seeing the messages.

Instead of running a single PVE scheme for every

ciphertext, our publicly verifiable batch encryption (PVBE)

scheme is more efficient.

Based on our PVBE scheme, we combine the batch

signature [3, 9] to construct batch escrowed electronic cash

systems. Batch signatures allow many coins to be

withdrawn once. The cost is reduced for verifying many

coins together. As introduced in [9], it allows multiple

coins can be withdrawn and spent by using batch protocols.

In this paper, we will construct a batch escrowed electronic

cash system, which allows the user Tom to withdraw coins

one time, later he can dispense each coin to other

participants via Bob, who acts on behalf of recipients to

verify that Tom has indeed sent the e-cash to every

recipient.

The remainder of this paper is organized as follows.

In the next section we review Stadler’s PVE scheme. We

present a PVBE scheme in Section 3. Furthermore, our

presented PVBE scheme can be applied to e-cash systems

in Section 4. Finally, Section 5 concludes the work of this

paper.

2. Review of Stadler’s Scheme

Before the introduction of Stadler’s scheme, some

parameters should be defined, that will be used throughout

this paper.

 2

Let p, q, and r be large primes, where q = 2 × r + 1,

p = k × q + 1. Here k is any even number. Let further G be

a group of order q generated by g and H be a group of

order r generated by h. Then computing discrete logarithms

to the bases g or h is difficult.

According to the double discrete logarithm from

x∈Zr to y∈G with bases g and h, we have

Y = ghx mod q mod p.

Here Zr denotes the ring of integers modulo r.

Stadler’s scheme uses ElGamal’s public key system

[5] to encrypt the message and a zero-knowledge protocol

to convince the verifier that the ciphertext hinds the

message m without revealing the message.

There are three participants: Alice (the sender), Bob

(the verifier), and Nancy (the recipient). The private/public

key pairs of Alice, Bob and Nancy are (XA, YA = gXA mod p),

(XB , YB = hXB mod q) and (XN, YN = hXN mod q),

respectively. To encrypt a message m ∈Zq
, where Zq

denotes the ring of integers modulo q except zero, Alice

randomly chooses k ∈Zq to calculate A = hk mod q and

B = m-1 YN
k mod q. Nancy can decrypt the ciphertext (A, B)

by computing m = AXN / B mod q.

In Stadler’s scheme, Alice sends A, B, Y’ to Bob

and convinces Bob that the pair (A, B) hinds the message

m without revealing the message under a public value

Y’ = gm mod p by running Protocol ZP1 j times for some

integer j. Protocol ZP1 is listed as follows:

Protocol ZP1:

Step 1: Alice randomly chooses w∈Zr to calculate

t1 = hw mod q (1)

and t2 = g (YN)w
mod p. (2)

Then she sends Bob t1, t2.

Step 2: Bob randomly chooses C, where C =1 or 0, and

sends it to Alice.

Step 3: After receiving C, Alice computes R = w – Ck mod r,

and she sends R to Bob.

Step 4: Finally, Bob checks whether

t1= hR AC mod q (3)

and t2 = (g(1 - C)Y’CB)(YN)R mod p. (4)

If they are correct, Bob accepts that the message

has indeed been encrypted in the ciphertext (A,

B).

To overview Stadler’s scheme, Fig.1 is given.

If Alice wants to send several encrypted messages to

different recipients at the same time and convince Bob that

those ciphertexts hind the corresponding messages . She

must construct a single PVE scheme for each ciphertext

with Bob, thus the overhead will be heavy. In next session,

we will present our solution to reduce the overhead.

3. Publicly Verifiable Batch Encryption Scheme

There are three roles in our scheme: Alice (the

sender), Bob (the verifier), Ui (a group of recipients). The

private key/ public key pairs of Alice, Bob, and Ui are

 (XA, YA = gXA mod p), (XB , YB = hXB mod q), (Xi,

Yi = hXi mod q), respectively.

Assume that Alice wants to send some messages to

other participants (Ui) by using ElGamal encryption via

Fig.1 Stadler’s Scheme

Alice Bob

Compute

A = hk mod q

B = m-1YN
k mod q

Y’ = gm mod p

 A, B, Y’

Protocol ZP1

Repeat j times

w∈ Zr

Compute

t1 = hw mod q

t2 = g(YN)w mod p t1, t2

 C C∈R {0, 1}

R = w – Ck mod r R

 Check

t1 = hRAC mod q

t2 = (g(1 – C)Y’CB) (YN)R mod p

 3

Bob. Bob must verify that those ciphertexts hind the

correct messages without revealing messages. For example,

assume that Alice wants to send the message m1 to U1, m2

to U2, … , mn to Un. Alice must convince Bob that those

messages have indeed been encrypted in the corresponding

ciphertexts and can be decrypted by the recipients,

respectively.

First Alice randomly chooses k∈Zr to compute

A = hk mod q. To avoid revealing mi , she computes

Bi = mi
-1 Yi

kmod q to encrypt mi, where i = 1, 2, …, n

(The recipient can get the message by computing

mi = AXi / Bi mod q). She computes Y1’ = gm1 mod p,

Y2’ = gm2 mod p, …, Yn’ = gmn mod p. Then she sends Bob

A, B1, B2, … , Bn,Y1’,Y2’, … , Yn’. Thus, Alice can

convince Bob that the correct messages are sent to the

recipients by running the following Protocol ZP2 j times.

Protocol ZP2:

Step 1: Alice randomly chooses w∈Z r to compute

t 1 = h w mod q (5)

and t2 = g (Y1
w + Y2

w +…+Yn
w) mod p. (6)

Then she sends t 1 and t2 to Bob.

Step 2: After receiving t1 and t2, Bob randomly chooses C

and sends it to Alice, where C = 0 or 1.

Step 3: After receiving C, Alice computes R = w – Ck mod r

and sends R to Bob.

Step 4: After receiving R, Bob accepts that the message mi

has indeed been encrypted in the ciphertext (A, Bi)

by checking whether

t1 = hRAC mod q (7)

and t2 = (g(1 – C)Y1’CB1)Y1
 R

) (g(1 – C)Y2’CB2)Y2
 R

)

… (g(1 – C)Yn’CBn)Yn
 R

) mod p. (8)

To overview our PVBE scheme, Fig.2 is given.

We analyze the security and the efficiency of our

scheme as follows: First, we used ElGamal encryption to

encrypt messages. Given the pair (A, Bi), the attacker

cannot obtain the message mi without the recipient’s secret

key because he must face the discrete logarithm problem.

Second, if one of the recipients tries to obtain other

recipient’s message from Yi’, he also face the discrete

logarithm problem. Furthermore, Protocol ZP2 is a

zero-knowledge protocol similar to Stadler’s Protocol ZP1

that the sender can successfully cheat with a probability of

2-j at most.

In the following, SPVEs denotes that ciphertexts are

verified by running a single PVE scheme. We compare

SPVEs with PVBE in Table 1. The comparison includes

the number of modular exponentiations and multiplications,

and the amount of transmitted data. In estimating the

overhead of computations of n SPVEs and PVBE, mod p

Fig.2 Public Verifiable Batch Encryption Scheme

Alice Bob

k∈Zr

A = hk mod q

m1, m2, …, mn∈ Zq

i =1, 2, …, n

Compute

Bi = mi
-1Yi

k mod q

Yi’ = gmi mod p

 A, B1, B2, …, Bn,

Y1’, Y2’, …, Yn’

Protocol ZP2

Repeat j times

w∈ Zr

t1 = hw mod q

t2 = g (Y1
w + Y2

w …+Yn
w) mod q mod p

 t1, t2

 C∈R {0, 1}

 C

R = w – Ck mod r

 R

 Check

t1 = hRAC mod q

 t2 = (g(1 – C)Y1’CB1)Y1
 R

)×

(g(1 – C)Y2’
CB2)Y2

 R
)…

(g(1 – C)Yn’
CBn)Yn

 R
) mod p

 4

and mod q are viewed as the same modular operation.

Besides, modular additions or subtractions are neglected.

Note that 1 modular inverse can be viewed as 1 modular

exponentiation. 1 modular exponentiation requires on the

average i|p| modular multiplications [6], where |p| denotes

the length of the modular p and 0< i ≤ 1.5. Fore example,

i = 1.5 when the binary method is used.

In Stadler’s scheme, Alice require 3 modular

exponentiations, 1 modular multiplication and l modular

inverse to compute A, B, and Y’. Thus, performing a single

PVE scheme for n ciphertext s by running Protocol ZP1 j

times, Alice and Bob require (3i|p|jn + 4i|p|n + n) and

(3i|p|jn + jn) modular multiplications on the average,

respectively.

In our scheme, Alice requires (2n + 1) modular

exponentiations, n modular multiplications and n modular

inverses to compute A, B1, B2, … , Bn , Y1’,Y2’, … , Yn’. In

Protocol ZP2, Alice requires (n + 2) modular

exponentiations to compute t1 and t2. On the other hand,

Bob must perform Equations (7) and (8). Equation (7)

requires 1 modular exponentiation and 1 modular

multiplication if C = 1, and 1 modular exponentiation if C

= 0. However Equation (8) can be modified as follows:

g (Y1
 R + Y2

 R +…+Yn
 R) mod p if C = 0 (9)

t2 =

 (Y1’
B1Y1

 R
) (Y2’

B2Y2
 R
)

… (Yn’
BnYn

 R
) mod p if C = 1 (10)

Performing Equation (9) requires (n + 1) modular

exponentiations, while performing Equation (10) requires

on the average n modular exponentiations and (n + (|p| /

w))modular multiplications at the cost of additional table

by using the technique of the multi-exponentiation

presented in [11]. Here w denotes the window size. Thus,

performing our PVBE scheme for n ciphertext s by running

Protocol ZP2 j times, Alice and Bob require ((3n + 1 + (n +

2)j)i|p| + n) and ((n + 1.5)ji|p| + ((n + 1 + |p| / w) / 2)j)

modular multiplications on the average, respectively.

When j = 1, SPVEs requires on the average (10ni|p|

+ 2n) modular multiplications which is close to (10ni|p|)

modular multiplications. Then, our scheme needs on the

average ((5n + 4.5)i|p| + 1.5n + p/2w + 0.5) modular

multiplications which is close to (5ni|p|) modular

multiplications. Thus, our scheme reduces the overhead of

computations by 66%. Next, we consider the case that j is

large. On the average, SPVEs and our scheme requires

approximately (6jni|p|) and (2jni|p|) modular

multiplications, respectively. Thus, our scheme also

reduces the overhead of computations by 66%.

Table 1 Comparison between SPVEs and PVBE

EXP = the number of modular exponentiations.

MUL = the number of modular multiplications.

TOTAL = EXP×i|p| + MUL.

Computational cost Various
Scheme EXP MUL TOTAL

Sender

(4+3j)n

n

(4+3j)ni|p|+n

S
P
V
ES

Ver.ifier

3jn jn 3jni|p|+jn

Sender

3n+1+
(n+2)j

 n

((3n+1+(n+2)j)i|p|+
n

P
V
B
E Verifier

(n+1.5)j ((n+1+|p|/

w) /2)j
(n+1.5)ji|p|+

((n+1+|p|/w)/2)j

4. Applications

In [3, 9], they allow multiple coins can be

withdrawn and spent using batch protocols, which are

based on batch signatures schemes. The computing cost of

withdrawal will be reduced for verifying large amount of

coins.

In this section, we construct a batch escrowed e-cash

system, which combines the publicly verifiable batch

encryption and the batch signatures scheme.

In the batch escrowed e-cash system, there are four

main participants: Alice (the bank), Tom (the employer),

Bob (the escrowed agent of employees) , and Ui

(employees), where i =1, 2, ..., n. The private key/public

key pairs of Alice, Tom, Bob, and Ui are (XA, YA = gXA mod p),

(XT, YT = hXT mod q), (XB, YB = hXB mod q), and (Xi,

Yi = hXi mod q), respectively. In a company (As illustration

in Fig.3), Tom must withdraw the e-cash to pay employee’s

salary from the bank. Then, Tom distributes money to

 5

every employee via Bob. Bob must check that Tom has

indeed encrypted e-cash honestly.

First Tom sends Alice the request for withdrawal.

Then Alice generates signature on a batch of n messages

m1, m2, … , mn, where the message and the signature pair

means a coin. Alice generates the signature as follows.

First, Alice randomly chooses w’ to compute a = gw’ mod p,

S = H1(D1||D2| | … | |Dn||a), and R’ = XAS + w’ mod q,

Di = H0(mi), i = 1, 2, …, n , where H1(⋅) and H0(⋅) are secure

hash functions. Then she sends Tom m1, m2, … , mn, S, R’,

D1, D2,…, Dn.

After receiving m1, m2 , … , mn , S, R’, D1, D2, … , Dn ,

Tom computes a’ = gR’YA
-S mod q and check whether

H0(mi) = Di and S = H1(D1||D2 | | … | |Dn ||a’) for verifying the

signature (S, R’, D1, D2, ..., Dn, i) on message mi. To

overview the batch signatures scheme, Fig.4 is given.

After withdrawing the e-cash, Tom uses the PVBE

scheme to dispense the e-cash to every employee. Tom

computes the ciphertext pairs (A, Bi) to encrypt the

messages and the signature pair, and the public values Yi’.

Then he sends them to Bob by running Protocol ZP2 to

convince Bob that Tom has indeed sent the e-cash to every

employee.

5. Conclusions

In this paper, we had presented a publicly verifiable

batch encryption scheme. It allows a third party to verify

some encrypted messages without revealing any

information. Compared to the SPVEs scheme, the PVBE

scheme can on the average reduces the overhead of

computations by 66% . Furthermore, The PVBE scheme

can be applied to the escrowed e-cash system by using the

batch protocol.

Reference

[1] N. Asokan, V. Shoup, and M. Waidner: "Optimistic fair

exchange of digital signatures," Advances in

Cryptology —Proceeding of EUROCRYPT’98,

pp.591-606, 1998.

[2] G. Ateniese: " Efficient Verifiable Encryption (and Fair

Exanchange) of Digital Signatures," 6th ACM

Conference on Computer and Communication Security,

pp. 138-146, 1999.

[3] C. Boyd, E. Foo, and C. Pavloski: "Efficient Electronic

Cash Using Batch Signatures," 4th Australasian

Fig.3 Escrowed Batch E-cash System

Bank Employer Employees

 Withdraw

PVBE

Bob

Tom

Alice

Fig.4 Batch Signatures Scheme

Bank Tom

mi∈ Zq, i =1,2,…, n

w’∈ Zq

Compute

a = gw’ mod p

Di = H0(mi)

S = H1(D1||D2||…||Dn||a)

R’ = XAS + w’ mod q

 m1, m2,…, mn, S,

R’ , D1, D2,…, Dn

Compute

a’=hR’YA
-S mod q

Check whether

S = H1(D1||D2||…||Dn||a’)

H0(mi) = Di

 6

Conference on Information Security and Privacy,

ACISP’ 99, pp.244-257, 1999.

[4] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch:

"Verifiable secret sharing and achieving simultaneity

in the presence of fault," Proceedings of the 26th IEEE

Symposium on the Foundations of Computer Science

(FOCS), pp.383-395, 1985.

[5] T. ElGamal: "A Public Key Cryptosystem and A

Signature Scheme Based on Discrete Logarithms,"

IEEE Transactions on Information Theory, IT-31 (4),

pp.469-472, 1985.

[6] D. M. Gordon: "A Survey of Fast Exponentiation

Methods," Journal of Algorithms, 27(1), pp.

129-146,1998.

[7] P. W. Ko, J. E Hsien, and C. Y. Chen: "Escrowed Blind

Signature and It’s Application," Proceedings of the

Tenth National Conference on Information Security,

ISC2000, pp.119-122, 2000.

[8] W. Mao: "Verifiable Escrowed Signature," Second

Australian Conference in Information Security and

Privacy, pp.240-248, 1997.

[9] C. Pavloski, C. Boyd, and E. Foo: "Detachable

Electronic Coins," Proceeding of Second International

Conference, Information and Communication Security,

ICICS’99, pp.54-70, 1999.

[10] M. Stadler: "Publicly Verifiable Secret Sharing,"

Advances in Cryptology — Proceeding of

EUROCRYPT’96, pp.190-199, 1996.

[11] S. M. Yen, C. S. Laih and A. K. Lenstra:

"Multi-exponentiation," IEE Proc. Comput. Digit.

Tech., Vol.141, No.6, pp.325-326, 1994.

