
THE COLLABORATION OF PATTERNS – A CASE STUDY
Ku-Yaw Chang1, Lih-Shyang Chen2, and I-Ning Chang3

Department of Electrical Engineering, National Cheng-Kung University
No. 1, University Rd., Tainan 701, Taiwan, R.O.C.

Email:{canseco1, mol3}@mirac.ee.ncku.edu.tw, chens@mail.ncku.edu.tw2

ABSTRACT

Patterns are a promising technique for achieving
widespread reuse of software architectures. They document
existing, well-proven design experience and help you find
appropriate solutions to design problems. Patterns, how-
ever, are usually interwoven with each other in a real-world
software system. It is challenging and also needs some ex-
perience to compose patterns to a large structure in a
meaningful way. In this paper, we take a medical imaging
application as an example to describe how we combine a
collection of patterns and organize them into a large soft-
ware architecture. Instead of repeating each individual
pattern in detail, we focus on how its constituent patterns
are connected with each other. We also address some les-
sons learned from applying a pattern-based strategy to de-
veloping such a large application system.

1. INTRODUCTION

Patterns[1][2] are a promising technique for achieving
widespread reuse of software architectures. Each pattern
deals with a specific, recurring problem in the design or
implementation of a software system. They document ex-
isting, well-proven design experience and help you find
appropriate solutions to design problems. However, pat-
terns do not exist in isolation. The architecture of a real-
world software system usually consists of a collection of
patterns – there are many interdependencies between them.
Generally speaking, when we apply more patterns in a
software system, the resulting design becomes more diffi-
cult to understand and to implement. To use patterns effec-
tively is not a mechanical task. It needs some experience to
compose them to a large structure in a meaningful way.

At National Cheng-Kung University, we have developed an
interactive system called Discover[3] for scientific visuali-
zation. Although Discover is suitable for many areas, we
have concentrated on medical imaging analysis and gen-
eration – one of the most rapidly growing applications for
scientific visualization. Although our domain algorithms
are very important, we believe that a well-structured sys-
tem architecture is also a key element of continuous growth
of our system. In fact, the system architecture of Discover
consists of patterns. Over the past years, more and more
patterns are integrated into our system and outdated pat-
terns are removed if they are no longer used. This paper

describes what patterns we use and how they connected
together to complement each other. We also address some
lessons learned from applying a pattern-based strategy to
developing such a system.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief review of pattern categories and their
relationships; Section 3 describes how we ties individual
patterns together in Discover; Section 4 summarizes our
experiences (both positive and negative) applying a pat-
tern-based strategy to the development of Discover; and
Section 5 presents our concluding remarks.

2. BACKGROUND

The idea of a design pattern originated with Christopher
Alexander, an architect who documented a pattern lan-
guage for the planning of towns and the construction of
buildings within towns[4]. In 1987, several leading-edge
software developers rediscovered Alexander’s work and
applied it to documenting design decisions in developing
software. It was not until 1994 that design patterns entered
the mainstream of the object-oriented software develop-
ment community. Since then, there has been an exponential
growth in the publication of design pattern literature. How-
ever, as the number of published patterns increases, it be-
comes another challenge for software developers to select a
suitable design pattern or pattern language to meet their
specific set of design concerns. If software developers must
understand every pattern in detail to find the ones they
need, the pattern system as a whole is helpless, even if its
constituent patterns are useful.

2.1 Pattern Categories

One possible solution to the above problem is to categorize
patterns by different criteria[5], such as granularity or
level[2], purpose or scope[1], functionality or subject[6],
and metalevel[7]. For example, according to different
ranges of scale (granularity) and abstraction (level), pat-
terns can be classified into three categories:

(1) Architectural patterns: Architectural patterns represent
the highest-level patterns. They express the fundamental,
system-wide structure for software systems. The selection
of an architectural pattern is the first step when designing
the architecture of a software system. However, a particular
architectural pattern, or a combination of several, is not a
complete software architecture. A detailed structural

framework must be further specified and refined.

(2) Design patterns: Design patterns are medium-level
patterns and smaller in scale than architectural patterns. A
design pattern provides a scheme for refining the subsys-
tems or components of a software system, or the relation-
ships between them. Design patterns are not language
specific and can be implemented in a variety of languages.

(3) Idioms: Idioms are the lowest-level and language-
specific patterns. They describe how to implement par-
ticular aspects of components or the relationships between
them using the features of the given language. In other
words, they address both design and implementation is-
sues.

In the above classification scheme, each category consists
of patterns having a similar range of scale or abstraction.
They are related to important software development activi-
ties. With the help of classification schemes like the above
example, designers are able to search the currently existing
catalogues for patterns in a more efficient way.

2.2 Pattern Relationships

Most well-structured systems are full of patterns that are
tied together effectively. The relationships between patterns
can put into the following categories[8]:

(1) Refinement: Applying a pattern solves a particular
problem, but its application may raise new problems. Some
of these can be solved by other patterns, which are usually
smaller in scale. In other words, the latter pattern(smaller)
refines the former(larger). Christopher Alexander puts this
in somewhat idealistic terms: ‘Each pattern depends on the
smaller patterns it contains and on the larger patterns in
which it is contained’[9]. For example, in the MVC
(Model-View-Controller) pattern[2], the consistency be-
tween the components must be maintained: whenever the
state of the model changes, all its dependent views and
controllers must be updated. The Publisher-Subscriber
pattern[2] can help us to solve this problem – the model
takes the role of the publisher, while views and controllers
play the roles of subscribers.

(2) Variants: A pattern may be a variant of another. In
general, a pattern and its variants provide solutions to
similar problems, which usually vary only in some of the
forces involved. For example, the Document-View pattern
[2] [10] is a variant of the MVC pattern. Its view compo-
nent combines the view and controller functionality of the
MVC pattern. The Document-View pattern is suitable for
GUI (graphical user interface) platforms where window
display and event handling are closely interwoven.

(3) Combination: Several patterns at the same level of ab-
straction can combine together to form a more complex
structure. This happens when your original problem in-
cludes many forces that cannot be handled by a single pat-
tern. This kind of relationship occurs often in practical
complex systems.

3. SYSTEM ARCHITECTURE OF DISCOVER

3.1 The Architectural Pattern

3.1.1 Document-View-Presentation Pattern

The fundamental system-wide architecture of Discover is
built on the Document-View-Presentation pattern (DVP)
[11], which is a variant of the Document-View pattern[2]
[10]. The DVP pattern is especially suitable for interactive
application systems with computationally expensive ren-
dering algorithms, such as computer graphics or image
processing systems. This pattern divides an interactive
system into the following three components.

(1) Document: The document component contains data
and core functionality manipulating the data. It is indepen-
dent of any specific input and output methods. The docu-
ment component contains data and core functionality ma-
nipulating the data. It is independent of any specific input
and output methods.

(2) View: View components contain the rendering algo-
rithms of the application and maintain their respective ren-
dering results. They are hidden behind the presentation
components and do not interact with end users directly.
They accept requests and fulfill the corresponding services
by calling the core functionality provided by the document
or its own rendering algorithm. They also obtain data from
the document and use different algorithms to render (repre-
sent) the data. There can be multiple views of a document.

(3) Presentation: Presentation: Presentation components
are the representatives of their views for input and output.
They receive user events or messages from other compo-
nents, and turn them into service requests. They do not im-
plement these services directly. Instead, they forward these
requests to their associated views. In addition, they also
obtain the rendering result from their views and output the
rendering result to different devices, such as the screen or
the disk. Each presentation component could be for input
only, output only, or both input and output simultaneously.
They can be visible or invisible to users. The user can di-
rectly interact with the system through those visible pre-
sentation components.
The relationships between these components are illustrated
in Fig. 1. Note that we adopt Unified Modeling Language
(UML) [12] notation for all the figures in this paper.

3.1.2 Publisher-Subscriber Pattern

The Publisher-Subscriber[2] pattern helps to keep the state
of cooperating components synchronized. One dedicated
component embodies the role of the publisher. All compo-

Fig. 1 The class diagram of the DVP pattern.

Document View Presentation
1 1..* 1 1..*

nents dependent on changes in the publisher are its sub-
scribers. Whenever the publisher changes state, it sends a
notification to all its subscribers. This pattern is also known
as the Observer pattern[1].

In the DVP architectural pattern, when the data of the
document changes, the document must notify all its depen-
dent view components. Similarly, a view component needs
to notify all its dependent presentation components
whenever its rendering result changes. These two one-way
change-propagation mechanisms can be specified with help
of the Publisher-Subscriber pattern: a) the document plays
the role of the publisher while its views are subscribers; b)
the view plays the role of the publisher while the presenta-
tion components are subscribers. Note that the view plays
both the roles – publisher and subscriber at the same time.
Fig. 2 shows the collaboration between these two patterns.

In i
betw
appl
tails.

3.2 D

We
skele

(1)
esso
Its m

ecution by encapsulating these requests into objects,
known as command objects. A command processor com-
ponent manages command objects, schedules their execu-
tion, and provides additional services such as the storing of
command objects for later undo or redo.
As mentioned in Section 3.1, the views in the DVP pattern
are in charge of both input and output simultaneously. As
far as the input is concerned, views accept requests and ful-
fill the corresponding services by calling the core functions
provided by the document. Such relationships between the
document and its views can be refined by applying the
Command Processor pattern[2]. As shown in Fig. 3, the
document plays the role of the supplier and the view plays
the role of the client, which sends requests to the controller.
The more details can be obtained by further unfolding the
Command Processor, as illustrated in Fig. 4. Instead of di-
rect calling functions provided by the document to fulfill a
request, the view component forwards the request to the
controller. The controller creates a new concrete command
object and then transfers the new command object to the
processor for execution and further handling. Each com-
mand object delegates the execution of its task to the
document, which provides most of the required functional-
ity.

Command
Processor

Client
Controller
Processor
Command
Supplier

Processor

Controller

Document
Supplier

Controller

ThresholdCommand

Command

ProcessorView
Client

View Document

<<framework>>
Document-View-Presentation

Document-View
-Presentation

Publisher-Subscriber

Document
View
Presentation

View

Presentation

Document
Document

View

Presentation2

Publisher1

Subscriber1

Subscriber

Publisher
Subscriber

Publisher2
Fig. 2 The DVP pattern can be refined by the

Publisher-Subscriber pattern.
mplementation, the change-propagation mechanism
een the document and its views can be provided by the
ication framework. Please see Section 4 for more de-

esign Patterns

further unfold the details of the above architectural
ton with the following design patterns.

Command Processor Pattern[2]: The command proc-
r pattern builds on the Command design pattern in [1].
ain idea is to separate a service request from its ex-

(2) Singleton Pattern[1]: This pattern ensures a class only
has one instance and provides a global point of access to it.
In order to have strict control over command objects and
monitor how and when views deliver requests to the con-

Fig. 3 The collaboration between the Command

Processor pattern and the DVP pattern.

Fig 4. The class diagram of the Command Processor pattern with their collaborators.

Processor

Document Uses
supplie

Command Execute
1*

Transfer

1

ControllerCreate

Singleto

Viewclien

1
Threshold
Command

Document-View
-Presentation

Document
View
Presentation

PresentationPresentation

troller, we apply the singleton pattern for the controller.

(3) Composite Pattern[1]: The Composite pattern com-
poses objects into tree structures to represent part-whole
hierarchies. We apply this pattern to the command class
hierarchy to provide macro commands, which combine
several successive primitive commands. As shown in Fig. 5,
a new macro command class is added to embody the role
of the composite. The abstract command plays the role of
the component and other primitive commands are the
leaves. In this way, a macro command can contain several
primitive commands or other macro commands. More im-
portantly, the command processor can ignore the difference
between compositions of command objects and individual
command objects, and treat all command objects in the
composite structure uniformly.

(4) Memento Pattern[1]: A memento is an object that
stores a snapshot of the internal state of another object - the
memento's originator. Only the originator can store and re-
trieve information from the memento. In other words, the
memento is "opaque" to other objects. A caretaker will ask
the originator to create a memento and is responsible for
the memento's safekeeping. It never operates on or exam-
ines the contents of a memento. Later, the caretaker can use
the memento to restore the originator's internal state. Thus
when it is necessary to record the internal state of an object,
we can capture and externalize the object's internal state
without violating encapsulation by using a memento. This
pattern is helpful in supporting the undo mechanism in an
application.
In collaboration with the Command Processor pattern, the
command object takes the role of the caretaker while the
document plays the role of the originator, as shown in Fig.
6. The execution of a command object begins with re-
questing a memento from the document and then holds it
for a time. When the undo function is applied, the com-
mand object will pass the memento back to the document
to restore the internal state of the document.

(5) Visitor Pattern[1]: Visitor pattern allows us to define a
new operation without changing the classes of the elements
on which it operates. A visitor is a package of related op-
erations from each class.

In our application, the structure of the document classes
rarely changes, but we often need to add new operations
over the structure. In order to avoid ‘polluting’ these
document classes with new operations, we adopt the visitor
pattern and package related operations from each document
into a visitor. As shown in Fig. 7, the document takes the
role of element and the command object plays the role of
the client. When a command object starts its execution
(usually after creating a memento), it first creates a visitor
of the operation and passes it to the document. When the
document "accepts" the visitor, it sends a request to the
visitor. The visitor will then execute the operation for that
document – the operation that used to be in the class of the
document in a general object-oriented programming para-
digm.

(6) Wrapper Facade Pattern[13]: The intent of this pattern
is to encapsulate low-level functions and data structures
within higher-level object-oriented class interfaces. As
mentioned above, we package related operations into a
visitor, but we do not implement their algorithms inside the
visitor directly. Instead, we organize the algorithms into the

Fig. 5 The class diagram of the Command Processor pattern after applying the Composite

pattern to the command class structure.

Fig. 6 The collaboration between the Command

Processor pattern and the Memento pattern.

Processor

Document Uses

supplier
Threshold
Command

Command
Executes 1*

Transfers

1

Controller
Creates

Singleton

Viewclient

1

Macro
Command

compositeleaf

component

Command
Processor

Client
Controller
Processor
Command
Supplier

Processor

Controller

Document

Supplier

Controller

ThresholdCommand

Command

Processor

Memento

Originator
Memento
Caretaker

Memento

View

Memento

Client

Caretaker Originator

generic functions. As shown in Fig. 8, the visitor functions
as a wrapper facade, which generally forward client invo-
cations (from the document) to one or more generic func-
tions. Please see the section for more discussion about this
arrangement.

4. DISCUSSION

(1) Patterns do more good than harm. The introduction of
patterns has a great impact on the development of Discover.
One of the negative effects is the striking increase of sys-
tem complexity - being full of much more classes than
without patterns. To complete a specific task, the required
steps and involved classes often duplicate or even more.
Although patterns complicate our system, the relationships
between classes and their behavior (especially the invoca-

tion sequences) are well defined by patterns. Developers
can capture the whole system easily if they know the con-
stituent patterns well. If not, unfortunately, it is also pos-
sible to provide a guide to help them add new functions
step by step. This is because the execution sequences of all
operations follow a specific “pattern.” We believe that it is
important for medical imaging researchers to keep efforts
on their expert domain, i.e. developing algorithms, without
getting involved too much with the system architecture and
underlying mechanisms.

(2) Reuse of command objects. In the medical imaging
domain, we often need to process different image formats,
such as gray-level images and true-color images. In terms
of the DVP architecture, they represent different kinds of
documents, which may need different arguments for the
same operation. This makes it difficult for a command ob-
ject to treat different documents uniformly. For example,
when we apply a Threshold operation to a gray-level image,
part of the execution codes inside the command object may
look like this:Fig. 7 The collaboration between the Command

Processor pattern and the Visitor pattern.

Visitor

Visitor
Element
Client

Document

ElementVisitor

ThresholdCommand
Client

Wrapper Facade

Client
Wrapper Façade
Functions

Wrapper Facade

ThresholdVisitor
Client

Functions
ThresholdFunction

Fig. 8 The collaboration between the Visitor pattern

and the Wrapper Facade pattern.

Command
Processor

Client
Controller
Processor
Command
Supplier

Processor

Controller

Document

Supplier

Controller

ThresholdCommand

Command

Processor

Visitor

Visitor
Element
Client

Visitor

View

ThresholdVisitor

Client

Client Element
// pSupplier: a pointer to the document, i.e. the supplier
// nLow, nHigh: two threshold parameters
pSupplier->Threshold(nLow, nHigh);
or like this when applying to a true-color image:
// nRLow, nRHigh: threshold values for Red color
// nGLow,nGHigh: threshold values for Green color
// nBLow, nBHigh: threshold values for Blue color
pSupplier->Threshold(nRLow, nRHigh, nGLow,

 nGHigh, nBLow, nBHigh);

In this case, we may need to provide more than one kind of
command objects for the same operation, each kind for a
document. A better solution to this problem is that a com-
mand object can be applied to different document types
without any change, i.e. to reuse a command object.
The above goal can be achieved by using the Visitor pat-
tern. The command object provides two different con-
structors: one for gray-level images and the other for true-
color images. According to the different document types
the command object is going to apply, different construc-
tors will be invoked to create the corresponding visitors.
When the execution function is actually invoked, the com-
mand object simply passes the visitor to its associated
document. When the document "accepts" the visitor, it will
automatically execute the correct operation of the visitor.
The execution function of the Threshold command object
may look like this (no matter what kind of the document
is):

void CCmpCmdThreshold::Do()
{ // 1. get and store the memento
 m_pMemento = m_pSupplier->CreateMemento();
 // 2. apply the algorithm
 m_pSupplier->Accept(&m_VisitorThreshold);
}

(3) Procedural paradigm is also important. Over the last
few years, object-oriented paradigm has been promoted as
a major panacea for the software development. However,
the object-oriented paradigm is a hybrid that builds on the
paradigms that preceded it, among them modularity, ab-
stract data types, procedures, and data structures. It is a
hidden danger to regard the term “object-oriented” as a
synonym for “good”, and use the pure object-oriented
paradigm only. Since not everything in nature or business
is best seen as an object, we must look for opportunities to
apply other paradigms. James Coplien called such a con-
cept the “multi-paradigm design”[14].
In our medical-image analysis and generation domain, the
development of domain algorithms also plays a vital role.
Most of these algorithms exist better in the procedural form
than as objects. In this way, we can develop and test these
algorithms (functions) more independently. And further, we
can also reuse these algorithms in other applications that do
not necessarily use the Visitor pattern. The application of
the Wrapper Façade pattern helps us obtain the advantages
of the procedural programming without sacrificing benefits
of the object-oriented paradigm.

(4) Easy to implement DVP using modern window appli-
cation frameworks. The DVP is, in essence, a variant of the
Document-View pattern. Several frameworks for develop-
ing window applications, such as MFC of Visual C++,
adopt the Document-View pattern as their default applica-
tion architecture[10]. The development platform of Dis-
cover is Microsoft Windows with the Visual C++ compiler.
About the DVP architecture’s implementation, we use all
the Document-View related classes provided by the MFC
framework, including their communication mechanism.
The extra efforts we need to do include 1) suppressing the
input/output functions of views in the framework; 2)
providing additional presentation components and the
communication mechanism between the view and its pre-
sentation components.

5. CONCLUSIONS

Patterns are already being successfully applied in many dif-
ferent domains. They are an important vehicle for con-
structing high-quality software architectures. Patterns are
usually interwoven with each other in a real-world soft-
ware system. In addition to knowing individual patterns to
a certain extent, it is also important to know how to com-
pose patterns to a large structure in a meaningful way. At
the same time, object-oriented paradigm is not the silver
bullet for the software development. We cannot ignore oth-
er paradigms such as the procedural paradigm that is possi-
ble more suitable for your application domain.

In this paper, we describe how we combine a collection of
patterns and organize them into a large software architec-
ture successfully. The patterns we use to construct the sys-
tem and how they are tied together could be of help to tho-
se who are interested in developing other similar applica-
tions. Our experience shows that the application of patterns
does increase the complexity of our Discover system.

However, patterns also help us add new functions in a sys-
tematic way and reduce our maintenance efforts. This
benefit is especially important to those development groups
like our laboratory on campus whose members change
constantly. In addition, we also propose the concept of
reusing a command object and emphasize the importance
of multi-paradigm design.

6. REFERENCES

[1] E. Gamma, E. Helm, R. Johnson and J. Vlissides,
Design Patterns - Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley,
1995.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal, A System of Patterns - Pattern-Oriented
Software Architecture, John Wiley & Sons, New York,
1996.

[3] P. W. Liu, L. S. Chen, S. C. Chen, J. P. Chen, F. Y.
Lin, and S. S. Hwang, "Distributed Computing: New
Power for Scientific Visualization," IEEE Computer
Graphics and Applications, Vol. 16, No. 3, May 1996,
pp.42-51.

[4] C. Alexander, A Pattern Language, Oxford: Oxford
University Press, 1977.

[5] L. Rising, The Patterns Handbook: Techniques,
Strategies, and Applications, Cambridge University
Press, 1998.

[6] J. O. Coplien and D. C. Schmidt, Pattern Languages of
Program Design, Addison-Wesley, 1995.

[7] W. Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1994.

[8] W. Zimmer, “Relationships Between Design Patterns,”
Proceedings of PLoP’94, 1994.

[9] C. Alexander, The Timeless Way of Building, Oxford:
Oxford University Press, 1979.

[10] D. Kruglinski: Inside Visual C++, Microsoft Press,
1996.

[11] K. Y. Chang, L. S. Chen and C. K. Lai, "Document-
View-Presentation Pattern," Proceedings of PLoP'99,
1999.

[12] G. Booch, J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley,
1999.

[13] D. C. Schmidt, “Wrapper Facade: A Structural Pattern
for Encapsulating Functions within Classes,'' C++
Report, Vol. 11, No 2, February, 1999.

[14] J. O. Coplien, Multi-Paradigm Design for C++,
Addison-Wesley, 1999.

