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Abstract

In this paper, we proposed a heuristic -scheduling algorithm,
called Competence Based Method (CBM), to dynamically
distribute workload for task allocation problem ina
Web/Java-based computing environment. CBM is designed
to meet four properties of Web computing: heterogeneity,
scalability, centralization, and non -dedication host. CBM
can be applied 1o some independent/dependent links
scheduling problems. Compared with the competing
algorithms, the experimental results show that the proposed
CBM performs faster in parallel time and is closed to the
optimal one.
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1. Introduction

As the Web connects rich computational resources in an
unprecedented scale for easy access, it has become an
important infrastructure for parallel/distributed computing
(PDC). Simultaneously, the Java [1]has gained an
important role for the support of Web-based
parallel/distributed computing. As one of many types of
distributed computing, the Web/Java-based computing
involves various issues, such as dynamic execution,
heterogeneity and portability, security, load balancing, task
scheduling, and fault tolerance, etc. These traditional issues;,
however, should be concerned further with a span opinion
due to the properties of the Web/Java-based run-time
environment [3,5,13]. The following sketches illustrate the
environment-dependent properties of the Web/Java-based
computing.

Property 1. The machines in the Web/Java-based
computing environment are heterogeneous.
Even the same task, if executed on different
machines, requires different execution time.

Property 2. The number of machines in the environment
is not fixed A remote machine may
participate or depart via theWeb.

Property 3. The scheme of the Web/Java-based computing
isbased on a centralized control. Thisis
limited by the security consult of Java-enabled
Web browser.

Property 4. Some no -deterministic natures exist in such
an environment. As we know, anetwork
system is usually non -dedicated, thus the

remote site could be a multi-users, time
sharing or multitasking sysiemand its
computing power could be adjusted according
to local circumstances. Additionally, network
transmission rate is also no n-deterministic
because of the communication contention.

Based on the properties, the methodology of the
Web/Java-based computing has attracted many researchers.
For example, Charlotte [2] raised many key issues about
Java computing, like dynamic execution, heterogeneity and
portability, and security. With respect to load balancing and
fault tolerance, Charlotte also proposed an eager scheduling
and two-phase idempotent execution strategy. DAMPP [3]
is another Web-based system. It claims that
supercomputing can be attained by leaguing a swarm of
client machines all over the world together. Javelin [4], a
Java-based infrastructure for global computing, permits
users to upload applet for extending the serviceability of
Web-based Java computing. Although uploa ding applet
raises the security problem, it stands for indispensability of
dynamic loading and execution. The same issue is
addressed as soft-installation in IceT [5]. This project
incorporates sophisticated techniques of Java and has the
ability to dynamically merge virtual machines belonging to
multiple users. In addition, Keren and Barak [6] focus on
parallel computing in scalable computing cluster using Java
agents and use asynchronous invocations to propose a
scheme for adaptive placement of multiple a gents (load
index and migration decision).

While these studies provide fundamental paradigms for
Web/Java-based computing, Ettle attention has been paid to
task allocation problem. The task allocation problem
involves job partition and scheduling. The job partition
problem deals with how to dig out parallelism and
determine grain size (trade-off between granularity and
overhead). Although partitioning is imperative in PDC, we
don't pursue this issue in this paper. Unlike partitioning, the
scheduling problem assumes that a set of target machines
are available and there exist a set of tasks to be served by
these target machines according to certain scheduling
policy. The scheduling policy is not only to determine
which tasks are to be allocated to which machines, but also
to determine the execution order of each task such that the
tasks can be completed in the shortest time.

There are many approaches, such as queuing theory, graph
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theoretic approaches, mathematical programming, and
state-space search, that can be employed for the scheduling
problem solution. The existed scheduling algorithms are
not all suitable in 2 Web/Java-based run-time environment.
For instance, the list scheduling, a classical approach, is to
make ordered lists by priority assignment an d then
repeatedly executes the designated steps until schedule is
finished. Many algorithms are based on list scheduling
heuristic so that they simply think about which task should
be scheduled first except where a task should be scheduled
on [7-9]. Such scheduling methods may not be good
enough because of the mentioned Property 1. Furthermore,
they often finish overall tasks scheduling first and then to
distribute tasks [10-12]. This approach may suffer some
losses due to Properties 2 and 4 (e.g. machines’ slowdown
or crash). These all potentially make the scheduling worse
and system inefficiency.

In this paper, we propose a heuristic scheduling algorithm:
Competence Based Method (CBM) to distribute tasks on a
heterogeneous, scalable, non -dedicated, and centralized
Web/Java-based run-time environment. The remainder of
this paper is organized as follows. In Section 2, we define a
mathematical model for Web/Java-based computing by

covering our basic assumptions and definitions. In Section
3, Web/Java-based distributed scheme for PDC is presented.
Section 4 introduces a heuristic algorithm for scheduling
called Competence Based Method (CBM). The results of
performance evaluation that related to different scheduling
schemes are presented in Section 5. In the last section, we
give conclusions.

2. Framework and Definitions

In this section, we briefly discuss the conceptual model of
the Web/Java-based computing used to study our proposed
scheduling problem first. As illusirated in Figure 1, the
conceptual model is divided into three participating entities
coordinator, clients, and hosts. A coordinator is a server
that offers some service to clients and coordinates suppl ies
and demands for computing resources. It can connect any
kind and any number of idle machines a cross the Internet.
A client demands and receives service from a coordinator.
A host H joins with others in a distributed computing
environment and devotes its computing resources o a
computing environment via the Web browser . It isa
non-dedicated machine and could be a PC or a workstation.
We denote the number of hosis b h, which is assumed to
be finite. We also use the notation H = {H;, H,, ... H,} to
represent a set of hosts joining in a distributed computing
environment.

D Coordinator 0777 service sewver
O Client m Job partition
D Host B Tasks distrivbution

——p Task flow

Figure 1. The conceptual model of the Web/Java-based
distributed computing used for the proposed scheduling
problem.

The coordinator receives requests from clients, called job,
and distributes sub-jobs, called tasks, to hosts. We denote
tasks as T = {Ty, Ty, ... T} and the number of tasks by t,
that is assumed to be finite too. As shown in Figure 1, the
coordinator should partition the job into several tasks
before distributing the jobs to the hosts . We assume that a
Jjob has been presented in the form of task graph.

We consider two kinds of task graphs in this paper. One is

dependent task graph, the other is independent task graph.

A dependent task graph is called a directed acyclic task

graph (DAG) generally. A DAG is defined as a three tuple,

G=(T, —, WL).

@ — is a partial order, or precedence relation, on a set of
tasks T which specifies that if T)—T, then T, is a parent
of T, in other words T is a child of T;, and T; must be
finished before T, can be scheduled to start. A task is
said to be a “mature” task if it has no parent or if all of
its parents have been finished.

® WL is a workload function, which is associated with the
set of tasks T and is written as

WLGob) =WL(T) =} WL(T) -
=

Furthermore, the height of a DAG is the maximum level of
all tasks. The level of a task T is the length of the longest
path from T; to an “exit task™ and an exit task is a task that
has no child. In addition, the recursive definition of tasks’
level is

Max  {L(T)}+1>

L(Tx) =
Tie Children(Tx)

where Children(T;) is the set of all children of T, and the

level of an exit task is equal to one. Taking Figure 2 as an

example, the nodes L J, K, L, M, N, and O are exit tasks

and the level of node B is equal to four.

Figure 2. A sample of directed acyclic task graph.

The definition of DAG is slightly different from other
literature. The communication cost parameter usually is
considered in the literature, but can’t be determined before
schedule (Property 4). Because the execution time can’t be
determined before s chedule (Properties 2 & 4), we used
workload instead. Before we explain how to obtain the
workload of a task latter, we still have to define the other
type of task graph: independent task graph. Independent
task graph is somehow similar to Single Program M ultiple
Data (SPMD) model or can be viewed as a special case of
DAG, when its “height” is equal to one. Therefore it is
called “independent” task graph.
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3. Distributed Scheme of the Web/Java -based
Computing

The goal of scheduling is to minimize the overall finishing
time of the computation on either dependent task graph or
independent one (e.g. the finishing time of the last task
completed). The execution time of the entire job is called
the “parallel time” or schedule length. A scheduling
algorithm takest wo inputs: H and T for different
distribution schemes. Some other parameters may be
derived from H and T. Figure 3 illustrates the conceptual
model of the distribution scheme in this paper. The main
theme to be discussed here is how to predict task execution
time. Thoughit is based wupon traditional
distributed/parallel system techniques and paradigms; it
brings up several novel properties as stated in Section 1 due
to the characteristics of Java programming technologies
like: spawning processes on remote hosts, sandbox of
security, Javabyte -code crossing platform, and
merging/splitting hosts dynamically We predict tasks'
execution time by estimating tasks' workload, evaluating
hosts' computing power, and predicting communication

delay between a coordinator and a host. For tractability w

define some symbols first.

@ CP is an execution speed function. CP(H;) represents
the computing power of the i-th host. In this paper, w
use H; to stand for an arbitrary host.

@ CD is a communication cost function. CD(H;) represents
the communication dela  coefficient between the
coordinator and the i-th host

® RET is a time function. The real execution time of a task
T; on ahost H; is defined as: RET(H;,Tj). In this paper
we use T; to stand for an arbitrary task.

©® PET is a prediction function of possible execution time.
We use PET(H;,T;) to denote the predicted execution
time that H; finishes Tj.

LI Workload l u'askscheduling Lcnmpuling power
D
*__predict execution timé®;

I:' Static input data O Compute result
L:' Method Faal
\\,.~r“

Figure 3. The conceptual distribution scheme.
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The basic idea in Figure 3 consists of three stages: (1)
information collection phase, (2) scheduling and allocating
phase, and (3) feedback phase. In the information collection
phase, the information about the related “agent” and “data”
of tasks, and the hosts in the Java computing pool are used
to generate a set of parameters including WL, CP, and CD.
We present several procedures for the evaluation of

computing power and the estimation of task load. The term
“agent” is often used in Java computing to indicate a Java
class byte -code. A Java distributed computing environment
is treading toward an object world, which composes of

distributed agents. Those agents are blobs of intelligence
that can live anywhere on the Intemnet and have some
special functions. Hosts can download agents via the

Internet and then invoke some functions of them to finish
tasks that the coordinator assigned. This technology wa
named soft-installation. The end-users may extend the
functions of environment by adding a distributed agent
across networks. Hence, a task is associated with an a gent
and correspondent computation data. We denote a task as T;
= {agent, data}, where T}, j = 1...t, is atomic. In other
words, a fask Tj is indivisible, so that we don’t partition a
task while scheduling. Additionally, once a task is assigned
to a host, ot her hosts cannot preempt the same task ( no
preemption). Both duplication of task in separate hosts and
computation migration are also not taken into
consideration.

In order to predict the time consumption that machines
spend on a task, we have to estimate task load and
computing power. Many researches about task load
estimation can be found in [13]. Generally, it is difficult to
estimate the execution time before running a task due to
conditional statements and loop constructs whose iteration
counts and conditional values are run-time variables. There
are two ways about load estimation in PDC: instruction
counting and profiling. Here we use profiling, because it’s
hard for an agent or a compiled program to count
instructions.

For tractabilit , we assume that a virtual task T, is a fixed
task with known workload and is taken as a baseline of
workload estimation; a virtual machine H, is a fixed and
dedicated machine with known computing power and is
taken as a baseline of computing power evaluation. H , also
can be a server for task profiling. Then the computing
power of an arbitrary host H; can be calculated as follows

RET (H., Tv) |

CP(Hi) =
RET (Hi, Tv)

(0

where RET(H;,T,) means the real execution time of T , on
the host H;. When a host joins into a distributed co mputin

pool, the coordinator assigns T , to measure its initial
computing power using Eq. (1). And when a distributed
agent “A” is added to the distributed computing
environment, we can generate a task T; = {“A”, “Data”},
where “Data” depends upon the profiling methods.

Regarding the profiling method, we classify it into three
kinds: random sample, incremental sample, and
characterizing matching. But no matter how exact we do,
there are still man factors to affectthe accuracy of
predicted execution time. For example, the attenuation of
computing power, the deviation of estimated workload, and
network contention are all uncontrollable. The results they
generated are always incorrect, however as long as we
know which task is heavy, which is light, it will help us in
scheduling. Thus and so, an estimation method is
alternative within an acceptable error rate. In [14], Yan
pointed out that the prediction errors of 10 -20% are
acceptable since the predictions need not to be
quantitativel * accurate. In what follows, three kinds of
reasonable approaches are described.

The first approach, random sample, is to generate sample
data randomly. Feeding an agent with the sample data, we
can estimate the computation density of an agent “A”
according to the execution time. Suppose T; = {*A”,
sample data}, the workload of T; can be calculated by the
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following equation

RET(H.,T)

WL(T;) =
RET(H.,T»)

@

Eq. (2) means that a task, T;, with unknown workload can
be estimate by executing it on H,. After we obtain every
task's relative workload and every host's computing power,
we can define the predicted execution time.

WL(T))

PET(H;, Ty = * RET (Hy, Tv)-
(H;, Ty) P ( ) 3

In this approach, we omit the influence of input data and so
there is no difference among each pair {agent, data}. For
example, let a task T pemine = {agent “A”, sample data}, a
task Traim = {agent “A”, runtime data}, RET(H,, Tyrofting)
= 50 sec., RET(H;,T,) = 5 sec. and RET(H,,T,) = 10 sec.,
then PET(Tpnime, Hi) equals twenty five seconds, because
WL(Tprofiing)  €quals WL(Tunime) in a random sample
approach. The prediction error of random sample approach
is

Error <

(Max—‘ Min), @

Min

where Max and Min are the maximum and minimum of
RET(H;,T)), respectively.

The profiling server in the second approach - incremental
sample, will execute every task, T; = {agent “A”, runtime
data}, unless the profiling of agent “A” converges in the
range being defined. Every time the profiling server
executes Tj, we compute the computation density of an

agentby averaging the execution t ime. Before sampling in
real cases, an initial value of an agent's computation density
is indispensable. The initial value of computation density of
an agent can be generated by the random sample approach.

Once we get a practical sample point, the logical sample
point generated by the random sample approach can be
kicked out. For example, let T, = {agent “A”, runtime data},
WL(T,) = 2, averaged times = 1, RE (H,,T,) = 50 sec. and
RET(H,,T}) = 150 sec., then WL(T) -equals
(2+150/50)/(1+1) = 2.5. This approach is better than the

first one, but has larger overhead. In general, every logical

possible input data occurred evenl Ultimately the

computation density of an agent equals Jb F(x) /(b— a)s

where b is the upper bound of logical input data and a is the
lower bound of logical input data, after being executed
enough times. It is trivial about prediction error, which is
restricied to

(Max - Min)

E < .
rror @+ Min)

&)

To avoid increasing the complexity of the analysis,

sometimes we tackle a big problem using a simple way.
When dealing with computationally intensive problems, it
becomes data insensitive problems, hence two approaches
mentioned above may be efficient enough. However, for
better accuracy, the third approach isused , but more
complicated. Before proceeding to discuss the
characterizing matching method, we briefly classify agents'
parameters into three categories in accordance with their

~ smoothing operati

influences on execution time (1) Quantity: Since the matrix
multiplication complexity is O(n’), the matrix size has a
direct ratio on execution time. (2) Value: Threshold is on
behalf of it. Some applications need a thresholdto
determine when it should be ended. (3) QV: In the field of
image processing, it is common for a parameter to
influence execution efficiency on both quantity and value.
Using a smoothing operation as an example, ho much
time it takes depends upon the image size and the degree of
on the image. The rudiment of the
third approach is to quantify the types of parameters, so we
have to define somerules for quartying agents'
characteristics that are necessary for estimating task load.
The typical and simplest means is equal-space. For every
parameter, its data-type is known, but both its data-type and
data-size may be limited within some range. So it divides
parameter's value-space equally if it is classified as Value
and divides its size-space equally if it is classified as
Quantity. For example, let therange of an integral
parameter be equal to or greater than O and less th an 100
and distance equal 10. Hence, the sampling points are 0, 10,
20, 30 --- 90,

In the scheduling and allocating phase, the coordinator
allocates a task to an appropriate host at pertinent time
based on those parameters generated by previous phase.
When some hosts' CP or CD changes, even crashes, it
should adjust itself to reflect the real status. As to the
scheduling method, we will discuss it in Section 4.

Eventually, in the feedback phase, because CP(H;) and
CD(H)) have dynamic behavior, and load esti mation cannot
be precise, the predicted execution time is not always equal
to real execution time. They must be tuned to real change
dynamically for each interval. We re-calculate the
computing power b

PET (Hi, Tj)

CP(Hi) =
RET (H;, T;)

* CP(H:)- ©6)

Using the information of physical execution, we estimate
computing power, communication delay, and task load
repeatedly. As aresult, we can use the discrepancy between
previous state and current state to make a better schedule.

4. The Competence-based Scheduling
Algorithm

The fundamental concepts of CBM are that we must
schedule the task to have the most impact on the parallel
time first and incorporate the properties mentioned in
Section 1. Hence, there are two strategies to be involved:
task selection and host selection. We trace the scheduling
step by step owing to some dynamic factors of Property 4
mentioned in Section 1. In other words, we don’t decide the
next task to assign until the hosts finished the tasks. At the
same time, we also re-calculate relative scheduling
parameters. In the following, we introduce the CBM and
explain how it works on independent task graph and then
adapt it to dependent task graph. Ultimately, the adapted
CBM can tackle independent/dependent task graph.

As stated in Section 2, in the scheduling problem of
independent task graph, we assume that a job has been
decomposed into a number of tasks, T = {T,, Ty, ... T\}, that
can be executed in any order in a number of hosts, H = {H,,
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H,, -+ Hy}. The goal is to minimize the overall finishing

time oft he computation. We now introduce a set of

definitions to be used in the description and analysis of our

proposed scheduling method

@  Teeo Let Teyec denote that a task has been scheduled
but not finished, Teyec i5 @ st Of Texee-

@ Timewe Lot Tunmauwe denote that a task is not mature,
Tunmatwre 18 @ set Of Tunmarure-

@ T, Let Ty denote that a task is already mature
and yet to be scheduled, Ty is a set of Ty

@  Towwiea: Let Toccupica denote that a task can’tbe
assigned to one host because of a nother host with
more competence, Toceupicd 18 @ 5€t OF Toccupied-

@ “’L(Hi:Texec)-—'
|WaitTime(H:, Texe) + PET (Hi, Texee) — SpentTime(T)|

RET(H.,Tv)

where WaitTime(H;, Texec) is waiting time from the
moment that a coordinator starts scheduling T to the
moment thatH ; starts executing Teg. And
SpentTime(T) is the time from start-up time of
scheduling to current time. If T o is not yet executed,
WaitTime(H;, Texec) equals SpentTime(T).

@  Balancing(Hy)=

CP(H) *(
h

Y cP(Hy)

=l

where agnHost(T;) is the host that is assigned by T;.
@  Competence(H;, T yui)=
Z WL(Hi, Texec) +WL(Twait) + Z WL(Toccupica)

V' Teasc assigned to Hi ¥ Tocopledoccupied by Hi .

CP(H)

*CP(H)

Y WL(T)+ ¥ WL(agnHost(T),T) |
'§€ Twait T)€ Taec

Before discussing the scheduling method to minimize
parallel time required to execute a task graph, we state two
facts for a task to be scheduled to a host.
Fact 1.
Necessary -condition for scheduling a task to a host:
Assume that a task Ty is considered to be scheduled to a
host H;. If it satisfies any of the following conditions
@ WL(Tws)+ Y WL(H; Texee) < Balancing (Hs)
V Tevec assigned to Hi

(b) Competence(H;, T )=

Min(Vhost € H, Competence (host, Twai))

then T, can be assigned to H;.

Fact 2.

Necessary condition for scheduling atas k to ahost:
Assume that a host H; consider to select a task for
execution. For each task in Ty, if there is a task T, that
satisfied Fact 1, then H; could select T,y for execution.

The general idea behind this heuristic is touse two
parameters for the tasks’ allocation to the hosts. The
Competence parameter is used to evaluate the competence
of one host H; for one task T} It takes the current load of H;,
the workload of T ;, and the summation workload of
occupied tasks into account totally. If the host H; has the
best competence to do the task T, it implies that RET(H;, Tj)
is minimum compared with other hosts. This is a standard
greedy strategy to find minimum but with high time
complexity. As a result, we need another parameter to fast
judge whether the assignment is valid. The reason to use
the Balancing parameter is to make the tasks scheduling
faster. We take it as a kind of loose competence. If the total

load of host H; is below the Balancing itself, it means that
H; couldn’t be the encumbrance for minimizing the parallel
time. Consequently, we can assign the task T} to the host H;
in constant time if the sum of current load of H ; and the
workload of T is equal to or less than the Balancing of H;.
The competence-based method algorithm for ind ependent
task graph is as follows

The CBM Algorithm

Input: A set of tasks, T = {T, T, ... T\}, and a group of hosts,

H={H H,. .H}

Output: A task schedule of T on H.

1. Initidly, every T;is a member of Ty

2. Use workload and computing power as the pri ority of
tasks and hosts respectively, and ties are broken
arbitrarily.

3. Ifhis greater or equal to the number of Ty, g0 to
Step 6, else use Fact 2 to select a task for each host to
execute.

4. For each host that has been allocated a task in Step 3,
if those hosts amount is greater or equal to the
number of Tya, g0 to Step 6, else use Fact 2 1o select
one more task to execute on those hosts.

5. If a host finishes a task, select another task to execute
using Fact 2. Repeat Step 5 until Ty, is empty.

6.  For each task in Ty, schedule Ty using Fact 1(b).
If the host has been allocated more than two tasks,
defer schedule time. ’

We present CBM that finds a solution when H is
non-dedicated and using communication and computation
hiding technology. Balancing(.) and Competence(.)
functions are computed repeatedly for making schedule
decision. It responses possible variation of hosts'status.
Whenever ahost joins or departs, or whenever the
computing power gains or loses, it works. If t > h, CBM
seeks to reduce computation complexity by the threshold
function, Balancing(.). This is because we thinlk that the
dominate function to minimize the overall finishing time of
the computation is in tuning and balancing the terminal
stage of scheduling.

Now we extend the previous analysis of CBM to DAG.
Suppose that a job has been decomposed into a number of
tasks, T = {T;, Ta .. T, and with some
precedence-constrained among tasks and there area
number of hosts, H = {H,, H, +* Hy}, in the distributed
computing environment . The problem of scheduling a
weighted directed acyclic graph to a set of hosts is called
dependent tasks scheduling problem. The objective is to
assign the tasks of the DAG to the hosts such that the
schedule length is minimized without violating the
precedence constraints. We can modify the CBM to adapt it
to DAG. Because a computation of independent tasks can
be viewed as a DAG with one level, the CBM can be
applied to independent/dependent tasks scheduling problem.
Of course, the adapted CBM is as efficacious as the original
one. We redefine Balancing(.) and Competence(. ) functions
before discuss the adapted CBM.

©® The recursive definition of tasks’ accumulated workload

is
acWL(Tj) =

WL(T;) + Max{V Task € Children(T;), acWL(Task)} ’
where acWL(Texit_si) 15 equal 10 WL(Texi_ast) -
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® Balancing(Hi) =
havi *[ Y acWL(T)+ Y WL(agnHosT;), T,-)]
Y cPH,) \Pe T
n=l
where agnHos«(T;) is the host, which is assigned by
T;.
® Competence(Hi, Toar) =
ZWL(Hi,Tcu:) +acWL(Twan ) + ZWL (Toccupiea)
V Taezassigned 1o Hi 7 Toorupied occupied by Hi

CP(Hi)
Based on the definitions above, the adapted CBM
algorithm for dependent tasks scheduling problem is
presented as follows

The adapted Competence Based Method

Input: Tasks of DAG, T = {T; T, ... T;}, and a group of
hosts, H= {H; H, ...H,}.

Output: A task schedule of T on H.

1. Initidly, every Tjis a member of Tyumate-

2. Use accumulated workload and computing power as
the priority of tasks and hosts respectively, and ties
are broken arbitrarily.

Add each mature task into Tyq.

Schedule those tasks in T, by CBM.

If a host finishes a task, go to Step 3 until T, and
Tunmature ar€ €Mpty.

oW

5. Performance Evaluation

So far, we have presented a distribution paradigm in Java
computing with scalable, heterogeneous, web -based
distributed environment and analyzed tasks scheduling
problem. In this section, we conducted several simulations
to evaluate the performance and efficiency of CBM. Firstly,
we examine whether the CB M is efficiency enough for the
scheduling problem of independent task graph. This part
involves another heuristic algorithms: Heavy First Method
(see appendix [I]) , which uses WL(T;) and CP(H;) as a
task's and a host's priorities, respectively. Moreover, t o
evaluate the performance of the heuristic algorithms under
independent task graph case, we use a brute-force approach,
which searches all possible schedules exhaustively to
obtain the optimal result for the purpose of comparison. We
compare the results obtained from the heuristic algorithms
with the optimal one. The simulation patterns used to
evaluate the algorithms are listed in Figure 4.

i} CP = {15,30,45}; i1 random saed for CP
int} WL = {15,30,45); {f random seed for WL
int{] HostNum = {2,3,4,5,6,7) i1 No. of hosts
int]] TaskNum={15,10,8,7,6.6}; 1 No. of tasks
ran = new ran); 1 & user defined class

for(lnti=0;i < CP.lengthis+)
for {Int j= 0;j < WL.lengthji+)
for (int & = 0sk < HostNum.langthk++)
{

r.genHos{HostNun{k},CP[){5° CP])IT); H randomize CP
r.genTasKTaskNuajk] WL WL, I randomize WL
BruteFores); it obtain the oplimal schedule E
3 11 Competence Based Method
HF ), 11 Heavy First Method
}

Figure 4. The simulation patterns for independent task
graph (part 1).

In Figure 4, there are fifty-four groups including a wild
variety of CP, WL, h, and t matchmaking. For each new test,
anew set of test data randomly is generated. The genHost
function randomizes a set of computing power according to

appointed quantity and random seed. To avoid generating
illogically data, we restrict the ratio of maximu  CP over
that of minimum CP to be less than six among randomizing

CP. We believe that six is reasonable because the speed of
the latest PC, Pentium III, is about six times better than th at
of the primitive Pentium machine.

Similarly, the ratio of maximu WL minus minimu WL is
also constrained to be less or equal 20% of minimum WL in
the function genTask. This is because we want to observe
the influence that both heavier and lighter tasks lefi on
hosts. Assuming that WL and CP of test patterns are

~ divided into minimum, medium, and maximum,

respectively, there are nine kinds of matchmaking like
{minimum CP, minimum WL}, {minimum CP, medium
WL}, and so on.

After the evaluation of the finishing time over all test cases
under various conditions of all scheduling algorithms, we
define function Efficiency(.) for an algorithm as follows

. Panalle] timeunder Competence. Based Methad (CRM)
Effciency (5= Parallel timeunder the scheduling algorithm S (D
The above equation indicates the efficiency of algorithm
“S” is defined as the ratio of parallel time ratio of the CBM
to that of the algorith “S”. Asshown in Figure 5 and
Figure 6, the efficiency for the brute force is about one for
all test data, in other words, the performance of the CBM
algorithm is close to the performan ce of the brute force. On
the contrary, the efficiency for the HFM algorithm is less
than one for more than one half of test data. Hence, it is
obvious that the proposed CBM algorithm performs better
than HFM for independent tasks scheduling problems.

Eiliciency (bruleforce methor
cERERBR BB B-ER

Cases of test data (total 54 groups)

Figure 5. The efficiency of the brute-force method in the
first simulation.

Effictancy GiFM)
&§S5§%

PO ERPPER ==
CSHEOX0ESE8 -2

°

1 i 2 31 41 5t
Cases of test data (total 54 groups)

Figure 6. The efficiency of HFM in the first simulation.

The experiment in Figure 4, h raises to the t power is within
the limits of 117,649 because the brute -force approach is
very time consuming. Hence, we compare HFM wit CBM
alone in the next experiment. Figure 7 presents the test
patterns of the second experiment. The amount of t asks and
hosts listed in Figure 7 is more than that in Figure 4. The
results are illustrated in Figure 8. We use Eq.(7) to measure
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the efficiency of HFM. Similarly, the experiment result
shows that CBM performs betier than HFM even if tasks
and hosts are increased.

int[] CP = {15,30,45); 1t random seed for CP

intf) WL = {15,30.45}; i1 random seed for WL

intf) Hosts = {3,4,5,6,7,8.9); 1 No. of hosts

int[] Tasks= {10.20,30}; il Ho. of tasks

ran = new ran(), 11 a user defined class

for {int i = 0;i < CP langtir;i++)
for (int j = 0;j < WL.lengthj++)
for (int m = 0;m < Hosts.lengthim++}
for {int n = 0;n < Tasks.longth;n++)

r.genHost{Hosts[m.CP,(8 CPNT); 1! randomize CP
r.genTask Taskdnl WL WLIFMI): 1 randomize WL
CBM{); I Competence Based Method
HFM(); ! Heavy First Method

}

Figure 7. The simulation patterns for independent task
graph in the second simulation.

Efficieacy (HFM)

| 20 4 6 8 100 121 M6l 18
Cases of test data (total 189 groups)

Figure 8. The result of the second simulation.

The efficiency, as we can see for most of test cases, is less
one, that means the parallel time for CBM is less than that
for HFM. The linchpin of scheduling is the consideration of
which host is suitable for the task. As a result, sometimes
the CBM defers a task with higher priority, in other words,
the CBM would rather make an available host idled. The
only disadvantage for CBM is that its scheduling overhead
is heavier than that of HFM. The worst case for CBM’s
time complexity is O(N%), where N is the number of tasks.
It happens when the Fact.I(b) is used for all comparisons.

Another experiment is to examine the performance about
CBM for the scheduling problem of dependent task graph.
In [17], it presented three heuristic methods: Heavy Nod
First (HN ), Critical Path Method (CPM), and Weighted
Length Algorithm (WLA). We study eight DAGs and
replace CB M in Eq. (7)byCPM . Figure 9 depicts the
experiment parameters. We run 189 cases (3*3*7*3 = 189)
for each DAG. Figure 10 and Figure 11 show all DAGs for
simulation. These DAGs can be found in the literature.
Figure 10-(2), Figure 10-(b), and Figure 10-(c) are example
task graphs from [7]; Figure 10-(d) and Figure 11-(e) can
be found in [10}; Figure 11-(f) is used in [11-12]; Figure
11-(h) is taken from [9], respectively; we found the same
DAG in Figuwe 11-(g) in [8, 17). Figure 12 shows the
simulation results. We compute the efficiency of 189
conditions and then obtain their average efficiency. As one
can see that the average efficiency for CBM, HNF, and
WLA are all less than one. It means that the performance of
CBM is better than all of CPM, HINF, and WL  for
dependent task graph scheduling problem.

int[j hosts = {15,30,45};
Int[] tasks = {15,30,45);
intf] basic = (3,4.5.6,7,8.8:
Int taskNum;
ran r = new ranl);
main m = new main(*data.dag™+aigs[O));
dagp d = new dagp(*.",* data.dag’+args{0), dagp. HNF);
taskNum = d.size{);
tor (Int = 0;f < hosts.tengtiiis+}
for {Int } = 05 < tasks.lengthijs+)
tor {Int k = 03k < basic.lengthik++}
tor (Int 1= 0;l< 3h4)
{

i randam seed for CP
1 random seed for WL
i No. of hosts

1 a uger detined class

if read a DAG hom a file
i a DAG parser

# Ho. of tasks

r.gentost{basidk) hosts{]{5° hosts{illiT);
I, tasks])

i randomize CP
1.4 tasks( 1)) ize WL

mHNF; 1 Heavy Node First
m.CBM(); 1t proposed method
m.CPM(); # Crilical Path Method
m.WLA(: 1 Weighted Lengih Atgo.

_ distributed workload in a

Figute 9. The simulation parameters for DAGs.

() ()

>

[5)
f=}

15}

3

an::'" E1CBMICPM
3 B CBM/HNF
o(é) DCBMWLA
=
5]
>

<

a b c d e
8 kinds of simulation DAGs

f g h

Figure 12. The average efficiency on eight kinds of DAGs.

6. Conclusions

In this paper, we have proposed a heuristic scheduling
problem, called Competence Based Method to dynamically
distributed ~ computing
environment using Java. It isdesigned to meet four

properties of Web computing: heterogeneity, scalability,
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centralization, and non  -dedication host. CBM befits
non-deterministic  natures of  distributed computing
(Property 4 mentioned in Section 1). Compared with the
competing algorithms, the simulation results show the
proposed CBM performs faster in parallel time and closer
to the optimal one for both independent and dependent task
scheduling problems.
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Appendix [

The Heavy First Method (HFM) Algorithm

Input: A set of tasks, T={T T, ... T}, and a group of hosts,

H={H H,. H}

Output: A task schedule of T on H.

1. Initidly, every T; is 2 member of Tyy.

2. Use workload and computing power as the priority of
tasks and hosts, respectively, and ties are broken
arbitrarily. }

3. For each host, repeat 3.1-3.3.

3.1 Let H; be the host with highest priority among
current available hosts.

3.2 Let Tyq be the task with highest priority in Ty
Allocate T, to H;.

3.3 Move Ty to Teye and H; becomes unavailable.

4. Whenever a host becomes available, assi gn it with the
highest priority task in Ty,

In this algorithm, load balancing is achieved through
assigning the heaviest node first and the similar algorithm
can be found in [7, 15-16). Step 2 may use a max -heapora
sorted list to accomplish and complexity is O(t log(t) + h
log(h)). Suppose that we use a sorted list for storing those
inputs, Step 3 and Step 4 require t repetitions totally and the
computation complexity of every repetition is about log(1).
Thus the total time complexity of HFM is O(t log(t) + h
log(h)).
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