

THE VIRTUAL ADAPTER – AN ABSTRACTION MECHANISM FOR
WEAVING COMPUTING ASPECTS

Chao-Hsin Lin

Department of Risk Management and Insuracne,
National Kaohsiung First University of Science and Technology, Taiwan, R.O.C.

Email:linchao@ccms.nkfu.edu.tw

ABSTRACT

Although the aspect-oriented technology allows aspect
weaver to weave aspect components across the function
boundary, it seems that current aspect-oriented technolo-
gies are not handling the hardwired linkage well. The
hardwired linkage can be typically found in reflec-
tion-based AOP approaches to date, and it may raise dif-
ferent issues regarding which kind of weavers (gen-
eral-purposed or domain-specific) is used. This paper con-
siders that the hardwired linkage is not a trivial issue, and
might restrict the aspect-oriented concepts to be further
practically applied to the large-scaled software develop-
ment. To deal with the hardwired linkage issues this paper
presents the adapter object model.

Keywords: AOP, Adapter, reflection computing, MOP

1. INTRODUCTION

By means of the link point the aspect-oriented technology
allows aspect weaver to weave aspect component across
the function boundary [9] and thus to reuse a group of
functionality. Currently, there are generally two kinds of
aspect weavers [12] – the domain-specific and the gen-
eral-purpose aspect weaver. For the domain-specific weav-
ers, its implementation cannot be further modified, but its
weaving behavior can be indirectly instructed by several
predefined keywords. In such an approach, it assumes that
by careful analysis of the intended computing aspect, a
well-predefined weaver can be enough to compose the
functional component and the intended aspect component
[10]. However, due to the closure of the domain-specific
weaver to adopt new weaving functions, programmers are
therefore again forced to interleave aspect code in relation
to other domains into functional components. On the con-
trary the general purposed aspect weaver can be considered
as open and allows programmers to manually customize
their own weaving methods. It thus gives programmers
better flexibility to compose different computing aspects.
However, we have observed that the weaving implementa-
tion that customized by programmers are actually ob-
ject-based (or object-specific), while the implementation of
the domain-specific weaver can be considered as lan-
guage-based since the composing implementation is care-
fully hidden from programmers and is able to be applied to
set of objects. With the object-based weavers, program-

mers are thus restricted in applying AOP to the large-scale
system developing, since programmers need to rewrite the
same composing algorithm or implementation for each
concerned object.

Based on the previous observation, the paper will examine
the adapter approach in the context of AOP terminology to
demonstrate its potential to be yet another approach to
support the concept of AOP and the way of composing
different concerned aspects.

The adapter approach was first experimentally imple-
mented in the language Adapter++ [8] and was mainly
proposed for object-oriented languages such as C++,
Smalltalk and Java in which objects are not capable of ex-
pressing certain computing aspects (especially the dy-
namical intra-object scheduling [3]) in the specification
time, such as defining the synchronization condition in the
object interface. It distinguishes from other as-
pect-composing technology by that programmers can ab-
stract and encapsulate the meta-level manipulation of cus-
tomizing the aspect implementation into a new language
construct, called virtual adapter. Conceptually, the adapter
programming paradigm is supported by such architecture
that consisting of two parts: 1) the meta level implementa-
tion, which allows programmers to customize the weaving
methods, and 2) the virtual adapter, which abstracts the
meta-level customization as a new aspect “type”, and from
which programmers can derive child aspect component for
composing different aspects.

In this adapter architecture, we are not concerned of the
detail of how to syntactically design the virtual adapter or
how to open the meta-level implementation – it can be
provided by completely opening the whole language or just
opening part of the language such as the interaction
mechanism among objects, as current Adapter++ do.

What we concern is the relationship between virtual
adapter and its supporting mechanism in the meta-level - in
which the meta-level weaving implementation that cus-
tomized by programmers can be modularized into a virtual
adapter, and then be served for various functional objects
to compose multiple aspects. In the following sections, the
adapter approach will be discussed in greater detail and
several Adapter++ examples will be presented to aid the
discussion, which are organized as follow: In section 2, we
will further investigate the hardwired linkage issue, which
we found non-trivial when applying the AOP towards the

practice of software development. Section 3 will present
the extend object model purposed in the adapter architec-
ture. And then several Adapter++ examples are used to il-
lustrate the weaving methodology in the purposed archi-
tecture. Finally, section 5 concludes this paper.

2. PROBLEM STATEMENTS

The reflective language also allows programmers to “indi-
rectly” compose different aspects – programmers can first
customize the language with new features via manipulating
the language syntax and semantics, and then use it to
compose new aspects and existing objects. However, one
of the reasons that the AOP concept emerges is that it
promises programmers a simplified method to compose
different aspects. Therefore, instead of directly employing
a reflective language for aspect composition, current ap-
proaches that supporting AOP are designated in a way, by
which without the necessary of firstly modifying the syntax
or semantics in the language level, programmers are able to
treat the actions of composing different aspects as first
class in the programming level.

With most of the AOP technologies to date, this paper
recognizes the “name reference” as one of the import
characteristics for aspect weavers to facilitate the simplifi-
cation of the aspect composition. The name reference al-
lows programmers to specify the link point by directly us-
ing names of different aspect components (such as the
modular names for various functionalities or other con-
cerns) for composition in the weaving component - in the
paper, the weaving component is the place where pro-
grammers instruct or direct the weaver how to compose
different aspect component.

Although direct name-reference have greatly facilitated the
simplification of the aspect composition, it might cause the
“hardwired linkage”, which is the one of the main issues
that the adapter approach is trying to deal with, and is dis-
cussed as follows.

Hardwired linkage. The hardwired linkage occurs when
programmers use the name reference to specify the link
point in the weaving component. The hardwired linkage
can be best illustrated in Figure 1 using the language
Sina/ST as an example. The language Sina/St provides
programmers with a dedicated interface construct in which

the conditions and methods that located in two different
sections can be linked in the composing filters. For exam-
ple, in Figure 1, the link point such as “notFull=>put” and
“notEmpty=>get” is hardwired in the implementation body
of the bufferSyn and popSyn respectively.

The hardwired linkage can be typically found in reflec-
tion-based AOP approaches to date, and it may raise dif-
ferent issues regarding which kind of weavers (gen-
eral-purposed or domain-specific) is used:

� With general purposed weavers, the weaving
components consist of two parts: the link point
specification and the weaving mechanisms. For
example, in Figure 1, the weaving components
(e.g. composing filters) implement the neces-
sary synchronization mechanism, where the
hardwired linkage is also specified. As a result,
although the objects BoundedBuffer and Stack
are using the same algorithm for synchroniza-
tion, further modularization and reuse of such
weaving components for objects with each
other is prohibited.

� On the contrary, with the domain-specific
weaver, its mechanism for supporting aspect
weaving of the intended computing domain is
hidden from programmers and is not enclosed
in the weaving components. For a do-
main-specific language example in Figure 2,
the language D [10] allows programmers to
associate the functional component (e.g.,
buffer) with the weaving component (e.g.,
bufferCoord), and the mechanism for the coor-
dination of threads is not implemented by pro-
grammers but taken cared by the hidden aspect
weaver. In this way, the domain-specific
weaver effectively modularizes the underlying
mechanism of the intended aspect that it can be
reused for various functional objects. Never-
theless, with such approaches the hardwired
linkage leads to another issues: It is difficult to
provide programmers with proper methods to
further customize their own domain-specific
weavers, since it might involve the lan-
guage-level manipulation of the syntax or se-
mantics within the reflective language.

class BoundedBuffer(limit : SmallInteger) interface
conditions

notFull;
notEmpty;

methods
put(object : Any) returns nil;

get returns Any;
inputfilters

bufferSync : Wait = {notFull => put, notEmpty => get};

dispatching : Dispatch = {inner.*};
end; // BoundedBuffer interface

class Stack(limit : SmallInteger) interface
 conditions
 notFull;
 notEmpty;

methods
push(object : Any) returns nil;
pop returns Any;

inputfilters
popSync : Wait = {notFull => push,
 notEmpty => pop};
dispatching : Dispatch = {inner.*};

end; // BoundedBuffer interface

The two weaving algorithm are
actually the same, except the linke
point (put, get) and (push, pop).

Figure 1 A bounded buffer example in Sina/ST

Based on the previous discussion, we identify that it is the
hardwired linkage phenomena that restricts the weaving
component to be modularized and to be reused for various
functional objects within the general-purposed weavers. It
also leads to the difficulty of purposing proper as well as
simplified methodology for programmers to design their
own domain-specific weavers without involving into the
language-level manipulation, syntactically or semantically.

We thus argue that by abstracting the hardwired linkage
away from the weaving component it might be possible for
providing programmers with yet another methodology to
support the AOP concept.

In this paper, we argue that in the lack of proper abstrac-
tion mechanism the aspect-composing programming sup-
ported by current general-purposed aspect weavers is dif-
ficult to be modularized for language-wise reuse. For ex-
ample, referring to

We also argue that, in the lack of proper abstraction
mechanism, providing programmers with the capability of
designing their own domain-specific weavers is also diffi-
cult to be relieved from directly manipulating the syntax in
the language level, which is inconsistence with the sim-
plicity issues that the domain-specific weavers try to deal
with.

3. THE ADAPTER OBJECT MODEL

This extended object model, called adapter object model in
this paper, consists of three parts: the object in base level,
the adapter in the adaptation level, and the meta object in
the meta level. The base-level object is mainly concerned
with the functional behaviors related to applications such
as the class in C++. The other two parts, adapter and meta
object, are coupled to provide the necessary mechanism in
the intended domains - when coupling the adapter and meta
object, the adapter is used to encapsulate and abstract the
meta-level manipulation in the meta object and it thus can
be seen as an extended interface to the base-level interface
construct.

Figure 3 shows the systematic way to exploit such an ex-
tended object model where the manipulation of the
meta-level implemented by programmers (the shadow
area) is abstracted to a virtual adapter (○1) and is also
dedicated to this adapter for implementing the necessary
mechanism in the intended computing domain. The virtual
adapter can be derived in order to associate with different
functional objects (○2)– with the purpose of introducing
new aspects into this functional object.

Currently, the adapter object model is implemented in the
language Adapter++, which is responsible to weave the

public class buffer {

private object slot [BUFFER_SIZE];
public put(object x) throw s full{

if ((in+1)% BUFFER_SIZE == out)
throw new full()

else{
in = (in+1)% BUFFER_SIZE;
slot[in] = x;

}
} // end of function put

public get() throw s em pty {
if (in == out)

throw new em pty();
else {

return slot[out];
out = our - 1

}
} // end of function get

} // end of class buffer

coordinator bufferCoord: buffer
{

selfexclusive { put };
}

New Syntax

aspect

component

Figure 2 A bounded buffer example in language D.

functional object
(traditional object)

2

This virtual adapter contains four
virtual attributes, which are
specified by programmers.

2

functional object
(traditional object)

run-tim e object
run-time object

compiler timerun time run time

weaving processing
(mainly supported by
the object linkage &
attribute attachement)

weaving processing
(mainly supported by
the object linkage &
attribute attachement)

3

3

1

specialization
 linkage

adaptation linkage

Figure 3 the extended object model

above three parts of specification into C++ objects (○3).
Two main weaving mechanisms are implemented to sup-
port weaving in such a model, the object linkage and the
attribute attachment.

Object Linkage. The object linkage is established when the
same name for base-level class, adaptation-level adapter,
and meta-level mclass is declared, which is used to direct
the Adapter++ where to find these three associated parts. In
the adapter model, the object linkage can be specified at
two different situations: one is for linking virtual adapter
with its meta object (the shadow area in Figure 3); the
other is for linking the functional objects with some con-
crete adapter, which is derived from some virtual adapter.
In this paper, such object linkages are called as “adaptation
linkage” and “specialization linkage” respectively:

� The adaptation linkage is for adding new fea-
tures into object model and to forming the vir-
tual adapter - the term “adaptation” is used to
reveal that each virtual adapter represents a
new extended object model.

� The specialization linkage is for traditional ob-
jects to adopting new features that encapsu-
lated in this virtual adapter – the term “spe-
cialization” is used to symbolize that end users
are able to specialize a generalized virtual
adapter by concrete the regarding virtual at-
tribute with respect to various functional ob-
jects.

Attribute Attachment. The attribute attachment mechanism
is for programmers to choose and impose the virtual attrib-
ute that declared in the virtual adapter onto the functional
behaviors while latter the specialization linkage is speci-
fied. Once the linkage is explicitly established, Adapter++
will weave these three associated parts across the separated
level to generate a real object for run-time purpose, and
such a weaving process is also aided by traveling through
the imposing relationship between the attribute and the
functional behavior that specified by programmers.

In the next section, an Adapter++ example is used to aid
the illustration of how to exploit such virtual adapter for
providing C++ objects with the synchronization capability.
More detailed discussion about meta-level customization
for such a synchronized adapter will be followed after pre-
senting the default specification of the meta object.

4. EXAMPLE: THE VIRTUAL ADAPTER -

SYNCHRONIZER

Although we choose the object-oriented language C++ for
programmers to specify objects for the functionality in the
application domain, this adapter approach is focused to be
applied to other OO languages as well. Figure 4 shows the
definition of the bounded buffer object (BoundedBuffer),
which comprises two functions - put() and get() - for plac-
ing items into a limited buffer and retrieving items from
the buffer respectively.

class BoundedBuffer {
 private:
 int in, out, max, buf(SIZE);
 public:
 void put(int x);
 int get();
 BoundedBuffer();
}

Figure 4 Bounded buffer object specification in base

label.

In Adapter++, the new language construct adapter consists
of three major components: namely the imposing section,
non-imposing section, and binding section. In the imposing
section, programmers declare virtual attribute functions for
which its linked meta object that explicitly specified in the
adaptation linkage is responsible to interpret. In the
non-imposing section, those functions that are not inter-
ested to be imposed to the functional behaviors are speci-
fied here. The above two sections are both designated to be
interpreted by its linked meta object in the adaptation link-
age. On the contrary, the binding section is to be used in
the specialization linkage. This binding section is for pro-
grammers to explicitly attach the virtual attribute function
(declared in the imposing section in a virtual adapter) to
the individual functional behavior of the associated host
functional objects. In the following, Figure 5 and Figure 6
will be used to illustrate the regarding usage of the adapter
in specialization linkage and adaptation linkage.

4.1. Specialization Linkage – Composing the Functional
Behavior and the Aspect Attribute

The virtual adapter synchronizer (referring to Figure 6) has
only one attribute that programmers can choose in the spe-
cialization linkage to impose onto the functional behaviors
that declared in the associated host functional object. As
shown in Figure 5, the adapter BoundedBuffer is derived
from the virtual adapter synchronizer and given the same
name as the class BoundedBuffer for the purpose of spe-
cialization linkage. To adopt the capability of synchroniza-
tion into the functional object BoundedBuffe, the attribute
guardian() is imposed onto each functional behavior - put()
and get() - and is to be concreted by specifying the guard-
ian attribute in the binding section for the non-full and
non-empty condition respectively.

adaptation{ //switched to adaptation level
 adapter BoundedBuffer : synchronizer{ // object linkage for
class BoundedBuffer & adapter BoundedBuffer
 binding:
 put(x) <- guardian();
 get () <- guardian ();
 } // end of adapter buffer
 BoundedBuffer :: put(x) <- guardian() {// guardian
attribute for put to detect the not “full” condition
 return (bthis->in+1)%max != bthis->out;
 }
 BoundedBuffer :: get() <- guardian() { //guardian
attribute for put to detect the not “empty” condition
 return (bthis->in != bthis->out) ;
 }

adaptation }

Figure 5 The specialization linkage and attribute attach-

ment.

4.2. Adaptation Linkage – Adding the Synchronization
Feature into Object Model

To introduce the synchronization capability into the object
model a new virtual adapter synchronizer is first defined,
in which a virtual attribute guardian is declared in the im-
posing section, and an associated meta object named syn-
chronizer is also derived from the default mclass default to
support this virtual adapter synchronizer, as shown in
Figure 6. In the following we will first present the mclass
default, and then discuss the mclass synchronizer.

adaptation{ //switched to adaptation level
 adapter synchronizer : default { //virtual adapter
 imposing:
 virtual guardian();
 non-imposing:
 // empty
 binding:
 // Empty until specialization phase.
 }
adaptation}

meta{ // switching to meta level
 mclass synchronizer :default {
 int getNextReadyOpId();
 }

 OperationId synchronizer::getNextReadyOpId() {
 OperationId behaviorId= Null;
 move2FirstEvent();
 behaviorId = qetCurrentBehId()
 for(; behaviorId;) {
 if (athis->gurdian(behaviorId))
 return behaviorId ;
 else
 behaviorId = getNextBehID();
 } // end for
 return behaviorId ;
 }

meta} //level switching

Figure 6 Adaptation linkage for adding synchronization
into object model.

In Adapter++, the mclass default (Figure 7) implements the
necessary Meta Object Protocol (MOP) for programmers to
customize the adapter object model. The MOP is typically
employed to specify a set of functions that represents the
underlying meta-level implementation, by which users can
customize the meta-level implementation. Adapter++,
however, differs from others by that such a customizing
process is encapsulated via the virtual adapter. In this way,
end users can consider each virtual adapter as a different
domain-specific weaver. Currently, the MOP functions in
mclass default are mainly relative to the manipulation of
the requesting events that are asking for services from an
object, but are possibly suspended in the waiting queue.
For example, functions move2FirstEvent(),
move2LastEvent(), move2NextEvent(),
move2PreviousEvent(), and deleteCurEvent() are all used

to manipulate the movement of the event pointer in the
waiting queue, and function getCurrentBehID() is used to
retrieve the behavior ID for that current examined event is
asking for.

The function getNextReadyBehID() plays an important role
in the meta object part - it is used to tell the Adapter++
how to determine which behavior of the host object will be
executed next by returning the behavior ID. In the mclass
default, the getNextReadyBehID() is implemented to make
the object process events in first in first out – as in most
traditional object models.

meta { // the default system specification of the meta object
typedef OperationId int;
mclass default {

 public:
 deleteCurEvent();
 move2PreviousEvent();
 move2NextEvent();
 move2FirstEvent();
 move2LastEvent();
 BehaviorID getCurrentBehID ();
 BehaviorID getNextBehID ();
 BehaviorID getNextReadyBehID () { //default is FIFO
 BehaviorID tempID;
 if (tempID = getNextBehID())
 return tempID;
 else
 return 0;
 };
 }
meta }

Figure 7 Specification of the Default meta object –
mclass default.

To customize the default meta object for supporting the
synchronization mechanism for virtual adapter synchro-
nizer, a new mclass synchronizer (in Figure 6) is declared
and implemented - which is accomplished by simply over-
riding the function getNextReadyBehId(). In the function
getNextReadyBehId(), the event pointer is first moved to
the first event in the waiting queue, and then functions
getCurrentBehID() and getNextReadyBehID() will be used
to retrieve the regarding behavior ID that current examined
event is asking for. This behavior ID will be passed into
guardian() as parameter that Adapter++ can dispatch the
attribute call to the regarding guardian attribute - if the at-
tribute function guardian() returns a value of 0 (false), the
request will be left in the waiting queue and postponed;
otherwise its ID is returned for execution by function
getNextReadyBehID() and is also removed from the wait-
ing queue. For example, when latter linked to object
BoundedBuffer, the real guardian attribute could be the one
that attached to function put() or get().

Note that the guardian attribute in the adapter synchronizer
(Figure 6) is referred by a new keyword “athis”. In C++,
the keyword “this” is used to point to the object itself. In
Adapter++, the keyword “this” is used to point to the ob-
ject, adapter, or the meta object respectively, which is de-
pendent on which level “this” is used. In addition,
Adapter++ has two other keywords, “athis” and “bthis”.
Keyword “bthis”, “athis” are used to refer to functional
object part and adapter part respectively. With such key-

words, programmers can design how the three linked ob-
jects are causally connected.

4.3. Reuse of the meta-level mechanism

As mentioned previously, the virtual adapter is aimed to be
used for modularizing and encapsulating the customization
manipulation in the meta level, and thus to support the re-
use of the customized meta-level mechanism. The main
advantage of such design is that it allows programmers to
avoid the hardwired linkage mentioned in section 2, and
still simplifies the aspect composition. For the example in
Figure 8, once the virtual adapter synchronizer is been pro-
vided, programmers can use it for object Stack to adopt the
synchronization feature, in which end users will not be dis-
tracted to the meta-level implementation. What end users
might concern is to 1) firstly specify the specialization
linkage and then 2) attach the necessary synchronization
condition for behavior push() and pop() respectively.

class Stack {
 private:

 int in, out, max, buf(SIZE);
 public:
 void push(int x); // place an item into the buffer
 int gop(); // remove an item from the buffer
 Stack(); // class constructor
}

adaptation{ //switched to adaptation level
 adapter Stack : synchronizer{
 binding:
 push(x) <- guardian();
 pop () <- guardian ();
 } // end of adapter buffer
 Stack :: push(x) <- guardian() {

/* guardian attribute for put to detect the not “full”
condition checking the full condition: if buffer full,
then return 0; otherwise return 1; */

 }
 Stack :: gop() <- guardian() {

/*guardian attribute for put to detect the not “empty”
condition checking the empty condition: if buffer
empty, then return 0; otherwise return 1;*/

 }
adaptation } //Switching back to base level.

Figure 8 Associating the virtual synchronizer adapter to

class Stack.

5. CONCLUSION AND OPEN ISSUES

Although the aspect-oriented concept points out another
possibility of code reuse by decomposing the software be-
yond the object functionality, it seems that, regarding to the
discussion in this paper, current AOP technologies are not
handling the hardwired linkage well. The hardwired link-
age raises two types of problem: for general purposed
weaver, the weaving component can not be modularized
for the purpose of reuse; for aspect specific weaver, desig-
nating a reflective framework that allowing to be custom-
ized for new specific weavers is difficult without first
opening a complex meta-level implementation in the lan-
guage level – in other words, programmers can not directly
focus on the aspect composition at first class, but need to

first deal with the language-level syntax and even seman-
tics for customize new weavers.

This paper considers that the hardwired linkage is not a
trivial issue, and might restrict the aspect-oriented concepts
to be further practically applied to the field of software en-
gineering. To deal with the hardwired linkage issues this
paper present the adapter object model, which suggests
separating the object model into three parts, namely base
object as well as adapter and meta object. The base object
is used to define the functional behaviors as found in the
traditional objects - since originally the adapter object
model is designated to be applied in a number of traditional
object-oriented languages. The meta object is to be used
for defining the meta object protocol for communicating
with the language implementation. In addition, the adapter
is to be used as a new intermediate construct for encapsu-
lating the meta-level mechanisms that customized in the
meta object, and to be used for plugging into any base ob-
ject for adopting new concerned aspects.

We have experimentally implement the adapter object
model in the language Adapter++. In this paper, only one
example of adopting the synchronization control into the
functional object is presented. With this example, we be-
lieve that other instances of using such an adapter model
can be inspired: For example, to equip an traditional (or
functional) object with more complicated decision-policy
capabilities of scheduling the arriving events, programmers
can firstly implement the adapter-meta couple at the adap-
tation-linkage stage, in which the virtual attribute “prior-
ity” is declared in the adapter object and to be recognized
and interpreted by its coupled (or linked) meta object for
decision making; and then, at the specialization-linkage
stage, this virtual adapter can be viewed as an spe-
cific-domain weaver in that programmers can attach each
individual behaviors in the functional object to return dif-
ferent value, and thus support the aspect composition.

In conclusion, this paper presents the adapter object model
for not only dealing with the hardwired linkage, but also
having a higher-level goal - to support the application of
aspect oriented concept towards the large-scaled software
development. In this model, what we concern is not how to
build the meta-level implementation, or what kind of ob-
ject-oriented languages should be used as the base-level
language - Designers can choose to build their own
meta-object protocols in the meta level, and choose differ-
ent target object-oriented languages for the base-level lan-
guage. Rather, what we really concern is that how to pro-
vide programmers with the capability of abstracting and
encapsulating the meta-level customization that program-
mers can specify the object in two dimensions: one for
functional behavior, and the other for special computing
aspects such as synchronization conditions for concurrent
computing.

6. REFERENCES

[1] Aksit, M. and Tripathi, A., “Data abstraction and
mechanism in Sina/ST”, Proceeding of OOPSLA‘88,

volume 23, pages 207-275, SIGPLAN Notices, ACM
Press, 1988.

[2] Chiba, S., “A Metaobject Protocol for C++”, Pro-
ceedings of OOPSLA’95, SIGPLAN Notices, Vol. 30,
No. 10, Austin, TX, ACM, pp. 285-299, 1995.

[3] Elrad, T., “Comprehensive Race Controls: A Versatile
Scheduling Mechanism for Real-Time Applications,”
Proceedings of the Ada Europe Conference, n.pag.,
Madrid, Spain, June 1989.

[4] Frolund, S., “Inheritance of Synchronization Con-
straints in Concurrent Object-Oriented Programming
Languages,” ECOOP ‘92 Proceedings, pp.185-196,
June 1992.

 [5] Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte,
J., Tezka, H., and Kubota, K., “Design and Imple-
mentation of Metalevel Architecture in C++ - MPC++
Approach,” Reflection Symposium’96, San Francisco,
CA, n.pag, April 21-24, 1996.

[6] Kafura, D.G., Mukherji, M., and Lavender, G.,
“ACT++ 2.0: A Class Library for Concurrent Pro-
gramming in C++ Using Actors,” JOOP, Vol. 6, No.
6, pp. 47-55, 1993.

[7] Kiczales, G., “Beyond the Black Box: Open Imple-
mentation”, IEEE Software, pp. 137-142, 1996.

[8] C.H. Lin, E. Tzilla, “An Enhanced Reflective Archi-
tecture for Adaptation of Object-Oriented Lan-
guage/Software”, The proceeding of Asia-Pasific
Software Engineering Conference, IEEE, pp. 20- 27,
1998.

[9] Lopes, C. V. and Hürsch, W. L., “Separation of Con-
cerns”, Tech Report of College of Computer Science,
Northeastern University, Boston, MA 02115,
USA, Feb 24, 1995.

[10] Lopes, C.V., Kiczales G., “D: A Language Frame-
work for Distributed Programming”, Xerox PARC,
Palo Alto, CA. Technical report SPL97-010
P9710047, February 1997.

[11] Matsuoka, S., and Yonezawa, A., “Analysis of Inheri-
tance Anomaly in Object-Oriented Languages,” Re-
search Directions in Object-Based Concurrency ed. G.
Agha, P. Wegner, A. Yonezawa, The MIT Press,
Cambridge, MA, pp.107-150, 1993.

[12] Mens, K., Lopes, C.V., Tekinerdogan B., Kiczales G.,
“Aspect-Oriented Programming WorkShop Report”,
Proceeding of the Aspect-Oriented Programming
WorkShop at ECOOP’97, June, 1997.

[13] Papathomas, M., and Nierstrasz, O.N., “Supporting
Software Reuse in Concurrent Object-Oriented Pro-
gramming Language: Exploring the Language Design
Space,” Object Composition, ed., D. Tsichrizis,
pp.189-204, University of Geneva, 1991.

[14] Snyder, A., “Inheritance and the Development of En-
capsulated Software Systems,” Research Directions in
Object-Based Concurrency, eds., G. Agha, P. Wegner,
A. Yonezawa, The MIT Press, Cambridge, MA, pp.
165-188, 1993.

[15] Tomlinson, C., and Singh, V., “Inheritance and syn-
chronization with Enabled-Sets”, Proceeding of
OOPSLA ‘89, volume 24, pp. 103-112, SIGPLAN
Notices, ACM Press, 1989.

[16] Yonezawa, A., Shibayama, E., Takada, T., and
Honda, Y., “Modeling and Programming in an Ob-
ject-Oriented Language ABCL/1,” Object-Oriented
Concurrent Programming ed. A. Yonezawa and M.
Tokoro, The MIT Press, Cambridge, MA, pp. 55-90,
1993.

