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ABSTRACT 

Although the aspect-oriented technology allows aspect 
weaver to weave aspect components across the function 
boundary, it seems that current aspect-oriented technolo-
gies are not handling the hardwired linkage well. The 
hardwired linkage can be typically found in reflec-
tion-based AOP approaches to date, and it may raise dif-
ferent issues regarding which kind of weavers (gen-
eral-purposed or domain-specific) is used. This paper con-
siders that the hardwired linkage is not a trivial issue, and 
might restrict the aspect-oriented concepts to be further 
practically applied to the large-scaled software develop-
ment. To deal with the hardwired linkage issues this paper 
presents the adapter object model.  
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1. INTRODUCTION 

By means of the link point the aspect-oriented technology 
allows aspect weaver to weave aspect component across 
the function boundary [9] and thus to reuse a group of 
functionality. Currently, there are generally two kinds of 
aspect weavers [12] – the domain-specific and the gen-
eral-purpose aspect weaver. For the domain-specific weav-
ers, its implementation cannot be further modified, but its 
weaving behavior can be indirectly instructed by several 
predefined keywords. In such an approach, it assumes that 
by careful analysis of the intended computing aspect, a 
well-predefined weaver can be enough to compose the 
functional component and the intended aspect component 
[10]. However, due to the closure of the domain-specific 
weaver to adopt new weaving functions, programmers are 
therefore again forced to interleave aspect code in relation 
to other domains into functional components. On the con-
trary the general purposed aspect weaver can be considered 
as open and allows programmers to manually customize 
their own weaving methods. It thus gives programmers 
better flexibility to compose different computing aspects. 
However, we have observed that the weaving implementa-
tion that customized by programmers are actually ob-
ject-based (or object-specific), while the implementation of 
the domain-specific weaver can be considered as lan-
guage-based since the composing implementation is care-
fully hidden from programmers and is able to be applied to 
set of objects. With the object-based weavers, program-

mers are thus restricted in applying AOP to the large-scale 
system developing, since programmers need to rewrite the 
same composing algorithm or implementation for each 
concerned object. 

Based on the previous observation, the paper will examine 
the adapter approach in the context of AOP terminology to 
demonstrate its potential to be yet another approach to 
support the concept of AOP and the way of composing 
different concerned aspects.  

The adapter approach was first experimentally imple-
mented in the language Adapter++ [8] and was mainly 
proposed for object-oriented languages such as C++, 
Smalltalk and Java in which objects are not capable of ex-
pressing certain computing aspects (especially the dy-
namical intra-object scheduling [3]) in the specification 
time, such as defining the synchronization condition in the 
object interface. It distinguishes from other as-
pect-composing technology by that programmers can ab-
stract and encapsulate the meta-level manipulation of cus-
tomizing the aspect implementation into a new language 
construct, called virtual adapter. Conceptually, the adapter 
programming paradigm is supported by such architecture 
that consisting of two parts: 1) the meta level implementa-
tion, which allows programmers to customize the weaving 
methods, and 2) the virtual adapter, which abstracts the 
meta-level customization as a new aspect “type”, and from 
which programmers can derive child aspect component for 
composing different aspects.  

In this adapter architecture, we are not concerned of the 
detail of how to syntactically design the virtual adapter or 
how to open the meta-level implementation – it can be 
provided by completely opening the whole language or just 
opening part of the language such as the interaction 
mechanism among objects, as current Adapter++ do.  

What we concern is the relationship between virtual 
adapter and its supporting mechanism in the meta-level - in 
which the meta-level weaving implementation that cus-
tomized by programmers can be modularized into a virtual 
adapter, and then be served for various functional objects 
to compose multiple aspects. In the following sections, the 
adapter approach will be discussed in greater detail and 
several Adapter++ examples will be presented to aid the 
discussion, which are organized as follow: In section 2, we 
will further investigate the hardwired linkage issue, which 
we found non-trivial when applying the AOP towards the 



 

practice of software development. Section 3 will present 
the extend object model purposed in the adapter architec-
ture. And then several Adapter++ examples are used to il-
lustrate the weaving methodology in the purposed archi-
tecture. Finally, section 5 concludes this paper. 

2. PROBLEM STATEMENTS 

The reflective language also allows programmers to “indi-
rectly” compose different aspects – programmers can first 
customize the language with new features via manipulating 
the language syntax and semantics, and then use it to 
compose new aspects and existing objects. However, one 
of the reasons that the AOP concept emerges is that it 
promises programmers a simplified method to compose 
different aspects. Therefore, instead of directly employing 
a reflective language for aspect composition, current ap-
proaches that supporting AOP are designated in a way, by 
which without the necessary of firstly modifying the syntax 
or semantics in the language level, programmers are able to 
treat the actions of composing different aspects as first 
class in the programming level.  

With most of the AOP technologies to date, this paper 
recognizes the “name reference” as one of the import 
characteristics for aspect weavers to facilitate the simplifi-
cation of the aspect composition. The name reference al-
lows programmers to specify the link point by directly us-
ing names of different aspect components (such as the 
modular names for various functionalities or other con-
cerns) for composition in the weaving component - in the 
paper, the weaving component is the place where pro-
grammers instruct or direct the weaver how to compose 
different aspect component. 

Although direct name-reference have greatly facilitated the 
simplification of the aspect composition, it might cause the 
“hardwired linkage”, which is the one of the main issues 
that the adapter approach is trying to deal with, and is dis-
cussed as follows.   

Hardwired linkage. The hardwired linkage occurs when 
programmers use the name reference to specify the link 
point in the weaving component. The hardwired linkage 
can be best illustrated in Figure 1 using the language 
Sina/ST as an example. The language Sina/St provides 
programmers with a dedicated interface construct in which 

the conditions and methods that located in two different 
sections can be linked in the composing filters. For exam-
ple, in Figure 1, the link point such as “notFull=>put” and 
“notEmpty=>get” is hardwired in the implementation body 
of the bufferSyn and popSyn respectively. 

The hardwired linkage can be typically found in reflec-
tion-based AOP approaches to date, and it may raise dif-
ferent issues regarding which kind of weavers (gen-
eral-purposed or domain-specific) is used:  

� With general purposed weavers, the weaving 
components consist of two parts: the link point 
specification and the weaving mechanisms. For 
example, in Figure 1, the weaving components 
(e.g. composing filters) implement the neces-
sary synchronization mechanism, where the 
hardwired linkage is also specified. As a result, 
although the objects BoundedBuffer and Stack 
are using the same algorithm for synchroniza-
tion, further modularization and reuse of such 
weaving components for objects with each 
other is prohibited.  

� On the contrary, with the domain-specific 
weaver, its mechanism for supporting aspect 
weaving of the intended computing domain is 
hidden from programmers and is not enclosed 
in the weaving components. For a do-
main-specific language example in Figure 2, 
the language D [10] allows programmers to 
associate the functional component (e.g., 
buffer) with the weaving component (e.g., 
bufferCoord), and the mechanism for the coor-
dination of threads is not implemented by pro-
grammers but taken cared by the hidden aspect 
weaver. In this way, the domain-specific 
weaver effectively modularizes the underlying 
mechanism of the intended aspect that it can be 
reused for various functional objects. Never-
theless, with such approaches the hardwired 
linkage leads to another issues: It is difficult to 
provide programmers with proper methods to 
further customize their own domain-specific 
weavers, since it might involve the lan-
guage-level manipulation of the syntax or se-
mantics within the reflective language. 

class BoundedBuffer(limit : SmallInteger) interface
conditions

notFull;
notEmpty;

methods
put(object : Any) returns nil;

get returns Any;
inputfilters

bufferSync : Wait = {notFull => put, notEmpty => get};

dispatching : Dispatch = {inner.*};
end; // BoundedBuffer interface

class Stack(limit : SmallInteger) interface
      conditions
            notFull;
            notEmpty;

methods
push(object : Any) returns nil;
pop returns Any;

inputfilters
popSync : Wait = {notFull => push,
                     notEmpty => pop};
dispatching : Dispatch = {inner.*};

end; // BoundedBuffer interface

The two weaving algorithm are
actually the same, except the linke
point (put, get) and (push, pop).

 
Figure 1 A bounded buffer example in Sina/ST 



 

Based on the previous discussion, we identify that it is the 
hardwired linkage phenomena that restricts the weaving 
component to be modularized and to be reused for various 
functional objects within the general-purposed weavers. It 
also leads to the difficulty of purposing proper as well as 
simplified methodology for programmers to design their 
own domain-specific weavers without involving into the 
language-level manipulation, syntactically or semantically. 

We thus argue that by abstracting the hardwired linkage 
away from the weaving component it might be possible for 
providing programmers with yet another methodology to 
support the AOP concept.  

In this paper, we argue that in the lack of proper abstrac-
tion mechanism the aspect-composing programming sup-
ported by current general-purposed aspect weavers is dif-
ficult to be modularized for language-wise reuse. For ex-
ample, referring to   

We also argue that, in the lack of proper abstraction 
mechanism, providing programmers with the capability of 
designing their own domain-specific weavers is also diffi-
cult to be relieved from directly manipulating the syntax in 
the language level, which is inconsistence with the sim-
plicity issues that the domain-specific weavers try to deal 
with.  

3. THE ADAPTER OBJECT MODEL  

This extended object model, called adapter object model in 
this paper, consists of three parts: the object in base level, 
the adapter in the adaptation level, and the meta object in 
the meta level. The base-level object is mainly concerned 
with the functional behaviors related to applications such 
as the class in C++. The other two parts, adapter and meta 
object, are coupled to provide the necessary mechanism in 
the intended domains - when coupling the adapter and meta 
object, the adapter is used to encapsulate and abstract the 
meta-level manipulation in the meta object and it thus can 
be seen as an extended interface to the base-level interface 
construct. 

Figure 3 shows the systematic way to exploit such an ex-
tended object model where the manipulation of the 
meta-level implemented by programmers (the shadow 
area) is abstracted to a virtual adapter (○1 ) and is also 
dedicated to this adapter for implementing the necessary 
mechanism in the intended computing domain. The virtual 
adapter can be derived in order to associate with different 
functional objects (○2 )– with the purpose of introducing 
new aspects into this functional object.  

Currently, the adapter object model is implemented in the 
language Adapter++, which is responsible to weave the 

public class buffer {

private object slot [BUFFER_SIZE];
public  put(object x) throw s full{

if ((in+1)%  BUFFER_SIZE == out )
throw  new  full()

else{
in = (in+1)%  BUFFER_SIZE;
slot[in] = x;

}
} // end of function put

public  get() throw s em pty {
if (in == out)

throw  new  em pty();
else {

return slot[out];
out = our - 1

}
} // end of function get

} // end of class buffer

coordinator bufferCoord: buffer
{

selfexclusive { put };
}

New Syntax

aspect

component

 

Figure 2 A bounded buffer example in language D. 
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Figure 3 the extended object model  



 

above three parts of specification into C++ objects (○3 ). 
Two main weaving mechanisms are implemented to sup-
port weaving in such a model, the object linkage and the 
attribute attachment.  

Object Linkage. The object linkage is established when the 
same name for base-level class, adaptation-level adapter, 
and meta-level mclass is declared, which is used to direct 
the Adapter++ where to find these three associated parts. In 
the adapter model, the object linkage can be specified at 
two different situations: one is for linking virtual adapter 
with its meta object (the shadow area in Figure 3); the 
other is for linking the functional objects with some con-
crete adapter, which is derived from some virtual adapter. 
In this paper, such object linkages are called as “adaptation 
linkage” and “specialization linkage” respectively: 

� The adaptation linkage is for adding new fea-
tures into object model and to forming the vir-
tual adapter - the term “adaptation” is used to 
reveal that each virtual adapter represents a 
new extended object model. 

� The specialization linkage is for traditional ob-
jects to adopting new features that encapsu-
lated in this virtual adapter – the term “spe-
cialization” is used to symbolize that end users 
are able to specialize a generalized virtual 
adapter by concrete the regarding virtual at-
tribute with respect to various functional ob-
jects.  

Attribute Attachment. The attribute attachment mechanism 
is for programmers to choose and impose the virtual attrib-
ute that declared in the virtual adapter onto the functional 
behaviors while latter the specialization linkage is speci-
fied. Once the linkage is explicitly established, Adapter++ 
will weave these three associated parts across the separated 
level to generate a real object for run-time purpose, and 
such a weaving process is also aided by traveling through 
the imposing relationship between the attribute and the 
functional behavior that specified by programmers. 

In the next section, an Adapter++ example is used to aid 
the illustration of how to exploit such virtual adapter for 
providing C++ objects with the synchronization capability. 
More detailed discussion about meta-level customization 
for such a synchronized adapter will be followed after pre-
senting the default specification of the meta object.  

4. EXAMPLE: THE VIRTUAL ADAPTER - 

SYNCHRONIZER  

Although we choose the object-oriented language C++ for 
programmers to specify objects for the functionality in the 
application domain, this adapter approach is focused to be 
applied to other OO languages as well. Figure 4 shows the 
definition of the bounded buffer object (BoundedBuffer), 
which comprises two functions - put() and get() - for plac-
ing items into a limited buffer and retrieving items from 
the buffer respectively.   

 
class BoundedBuffer { 
  private:  
  int  in, out, max, buf(SIZE);  
 public: 
  void  put(int x);   
  int get( );    
  BoundedBuffer( );    
} 
 
Figure 4 Bounded buffer object specification in base 

label. 

 

In Adapter++, the new language construct adapter consists 
of three major components: namely the imposing section, 
non-imposing section, and binding section. In the imposing 
section, programmers declare virtual attribute functions for 
which its linked meta object that explicitly specified in the 
adaptation linkage is responsible to interpret. In the 
non-imposing section, those functions that are not inter-
ested to be imposed to the functional behaviors are speci-
fied here. The above two sections are both designated to be 
interpreted by its linked meta object in the adaptation link-
age. On the contrary, the binding section is to be used in 
the specialization linkage. This binding section is for pro-
grammers to explicitly attach the virtual attribute function 
(declared in the imposing section in a virtual adapter) to 
the individual functional behavior of the associated host 
functional objects. In the following, Figure 5 and Figure 6 
will be used to illustrate the regarding usage of the adapter 
in specialization linkage and adaptation linkage. 

4.1. Specialization Linkage – Composing the Functional 
Behavior and the Aspect Attribute 

The virtual adapter synchronizer (referring to Figure 6) has 
only one attribute that programmers can choose in the spe-
cialization linkage to impose onto the functional behaviors 
that declared in the associated host functional object. As 
shown in Figure 5, the adapter BoundedBuffer is derived 
from the virtual adapter synchronizer and given the same 
name as the class BoundedBuffer for the purpose of spe-
cialization linkage. To adopt the capability of synchroniza-
tion into the functional object BoundedBuffe, the attribute 
guardian() is imposed onto each functional behavior - put() 
and get() - and is to be concreted by specifying the guard-
ian attribute in the binding section for the non-full and 
non-empty condition respectively.  

 
adaptation{  //switched to adaptation level  
 adapter  BoundedBuffer : synchronizer{ // object linkage for 
class BoundedBuffer & adapter BoundedBuffer 
  binding: 
  put(x) <- guardian( );  
  get ( ) <- guardian ( ); 
 } // end of adapter buffer 
 BoundedBuffer :: put(x) <- guardian( ) {// guardian 
attribute for put to detect the not “full” condition  
  return (bthis->in+1)%max != bthis->out; 
 } 
 BoundedBuffer :: get( ) <- guardian( )  { //guardian 
attribute for put to detect the not “empty” condition 
  return (bthis->in != bthis->out) ;  
 } 



 

 
adaptation }   
 
Figure 5 The specialization linkage and attribute attach-

ment. 

4.2. Adaptation Linkage – Adding the Synchronization 
Feature into Object Model 

To introduce the synchronization capability into the object 
model a new virtual adapter synchronizer is first defined, 
in which a virtual attribute guardian is declared in the im-
posing section, and an associated meta object named syn-
chronizer is also derived from the default mclass default to 
support this virtual adapter synchronizer, as shown in 
Figure 6. In the following we will first present the mclass 
default, and then discuss the mclass synchronizer. 

adaptation{  //switched to adaptation level 
 adapter  synchronizer : default { //virtual adapter 
  imposing:  
   virtual guardian();    
  non-imposing:  
   // empty  
  binding:   
   // Empty until specialization phase. 
  }  
adaptation}   
 
meta{  //  switching to meta level 
 mclass synchronizer :default {  
  int getNextReadyOpId(); 
 } 
 
 OperationId synchronizer::getNextReadyOpId() {  
  OperationId behaviorId= Null; 
  move2FirstEvent(); 
  behaviorId = qetCurrentBehId() 
  for( ; behaviorId; ) { 
   if (athis->gurdian(behaviorId) )  
    return behaviorId ;  
   else  
    behaviorId = getNextBehID();  
  } // end for 
  return behaviorId ;  
 } 
 
meta}  //level switching 
 

Figure 6 Adaptation linkage for adding synchronization 
into object model. 

In Adapter++, the mclass default (Figure 7) implements the 
necessary Meta Object Protocol (MOP) for programmers to 
customize the adapter object model. The MOP is typically 
employed to specify a set of functions that represents the 
underlying meta-level implementation, by which users can 
customize the meta-level implementation. Adapter++, 
however, differs from others by that such a customizing 
process is encapsulated via the virtual adapter. In this way, 
end users can consider each virtual adapter as a different 
domain-specific weaver. Currently, the MOP functions in 
mclass default are mainly relative to the manipulation of 
the requesting events that are asking for services from an 
object, but are possibly suspended in the waiting queue. 
For example, functions move2FirstEvent(), 
move2LastEvent(), move2NextEvent(), 
move2PreviousEvent(), and deleteCurEvent() are all used 

to manipulate the movement of the event pointer in the 
waiting queue, and function getCurrentBehID() is used to 
retrieve the behavior ID for that current examined event is 
asking for.  

The function getNextReadyBehID() plays an important role 
in the meta object part - it is used to tell the Adapter++ 
how to determine which behavior of the host object will be 
executed next by returning the behavior ID. In the mclass 
default, the getNextReadyBehID() is implemented to make 
the object process events in first in first out – as in most 
traditional object models.  

meta {      // the default system specification of the meta object 
typedef OperationId int; 
mclass default {   

 public: 
 deleteCurEvent( );  
 move2PreviousEvent( ); 
 move2NextEvent( ); 
 move2FirstEvent( );   
 move2LastEvent( );   
 BehaviorID getCurrentBehID ( );   
 BehaviorID getNextBehID ( );   
 BehaviorID getNextReadyBehID ( ) { //default is FIFO 
  BehaviorID tempID; 
  if (tempID = getNextBehID( )) 
   return tempID; 
  else 
   return 0; 
  }; 
 } 
meta } 

Figure 7 Specification of the Default meta object – 
mclass default.  

To customize the default meta object for supporting the 
synchronization mechanism for virtual adapter synchro-
nizer, a new mclass synchronizer (in Figure 6) is declared 
and implemented - which is accomplished by simply over-
riding the function getNextReadyBehId(). In the function 
getNextReadyBehId(), the event pointer is first moved to 
the first event in the waiting queue, and then functions 
getCurrentBehID() and getNextReadyBehID() will be used 
to retrieve the regarding behavior ID that current examined 
event is asking for. This behavior ID will be passed into 
guardian() as parameter that Adapter++ can dispatch the 
attribute call to the regarding guardian attribute - if the at-
tribute function guardian() returns a value of 0 (false), the 
request will be left in the waiting queue and postponed; 
otherwise its ID is returned for execution by function 
getNextReadyBehID() and is also removed from the wait-
ing queue. For example, when latter linked to object 
BoundedBuffer, the real guardian attribute could be the one 
that attached to function put() or get().  

Note that the guardian attribute in the adapter synchronizer 
(Figure 6) is referred by a new keyword “athis”. In C++, 
the keyword “this” is used to point to the object itself. In 
Adapter++, the keyword “this” is used to point to the ob-
ject, adapter, or the meta object respectively, which is de-
pendent on which level “this” is used. In addition, 
Adapter++ has two other keywords, “athis” and “bthis”. 
Keyword “bthis”, “athis” are used to refer to functional 
object part and adapter part respectively. With such key-



 

words, programmers can design how the three linked ob-
jects are causally connected. 

4.3. Reuse of the meta-level mechanism 

As mentioned previously, the virtual adapter is aimed to be 
used for modularizing and encapsulating the customization 
manipulation in the meta level, and thus to support the re-
use of the customized meta-level mechanism. The main 
advantage of such design is that it allows programmers to 
avoid the hardwired linkage mentioned in section 2, and 
still simplifies the aspect composition. For the example in 
Figure 8, once the virtual adapter synchronizer is been pro-
vided, programmers can use it for object Stack to adopt the 
synchronization feature, in which end users will not be dis-
tracted to the meta-level implementation. What end users 
might concern is to 1) firstly specify the specialization 
linkage and then 2) attach the necessary synchronization 
condition for behavior push() and pop() respectively.  

class Stack { 
 private:  

 int  in, out, max, buf(SIZE);  
 public: 
  void  push(int x);  // place an item into the buffer 
  int gop( ); // remove an item from the buffer 
  Stack( );   //  class constructor     
} 
 
adaptation{  //switched to adaptation level  
 adapter  Stack : synchronizer{  
  binding: 
  push(x) <- guardian( );  
  pop ( ) <- guardian ( ); 
 } // end of adapter buffer 
 Stack :: push(x) <- guardian( ) { 

/* guardian attribute for put to detect the not “full” 
condition  checking the full condition: if buffer full, 
then return 0; otherwise return 1; */ 

 } 
 Stack :: gop( ) <- guardian( )  {  

/*guardian attribute for put to detect the not “empty” 
condition checking the empty condition: if buffer 
empty, then return 0; otherwise return 1;*/ 

 } 
adaptation }  //Switching back to base level. 
 
Figure 8 Associating the virtual synchronizer adapter to 

class Stack. 

5. CONCLUSION AND OPEN ISSUES 

Although the aspect-oriented concept points out another 
possibility of code reuse by decomposing the software be-
yond the object functionality, it seems that, regarding to the 
discussion in this paper, current AOP technologies are not 
handling the hardwired linkage well. The hardwired link-
age raises two types of problem: for general purposed 
weaver, the weaving component can not be modularized 
for the purpose of reuse; for aspect specific weaver, desig-
nating a reflective framework that allowing to be custom-
ized for new specific weavers is difficult without first 
opening a complex meta-level implementation in the lan-
guage level – in other words, programmers can not directly 
focus on the aspect composition at first class, but need to 

first deal with the language-level syntax and even seman-
tics for customize new weavers.  

This paper considers that the hardwired linkage is not a 
trivial issue, and might restrict the aspect-oriented concepts 
to be further practically applied to the field of software en-
gineering. To deal with the hardwired linkage issues this 
paper present the adapter object model, which suggests 
separating the object model into three parts, namely base 
object as well as adapter and meta object. The base object 
is used to define the functional behaviors as found in the 
traditional objects - since originally the adapter object 
model is designated to be applied in a number of traditional 
object-oriented languages. The meta object is to be used 
for defining the meta object protocol for communicating 
with the language implementation. In addition, the adapter 
is to be used as a new intermediate construct for encapsu-
lating the meta-level mechanisms that customized in the 
meta object, and to be used for plugging into any base ob-
ject for adopting new concerned aspects. 

We have experimentally implement the adapter object 
model in the language Adapter++. In this paper, only one 
example of adopting the synchronization control into the 
functional object is presented. With this example, we be-
lieve that other instances of using such an adapter model 
can be inspired: For example, to equip an traditional (or 
functional) object with more complicated decision-policy 
capabilities of scheduling the arriving events, programmers 
can firstly implement the adapter-meta couple at the adap-
tation-linkage stage, in which the virtual attribute “prior-
ity” is declared in the adapter object and to be recognized 
and interpreted by its coupled (or linked) meta object for 
decision making; and then, at the specialization-linkage 
stage, this virtual adapter can be viewed as an spe-
cific-domain weaver in that programmers can attach each 
individual behaviors in the functional object to return dif-
ferent value, and thus support the aspect composition. 

In conclusion, this paper presents the adapter object model 
for not only dealing with the hardwired linkage, but also 
having a higher-level goal - to support the application of 
aspect oriented concept towards the large-scaled software 
development. In this model, what we concern is not how to 
build the meta-level implementation, or what kind of ob-
ject-oriented languages should be used as the base-level 
language - Designers can choose to build their own 
meta-object protocols in the meta level, and choose differ-
ent target object-oriented languages for the base-level lan-
guage. Rather, what we really concern is that how to pro-
vide programmers with the capability of abstracting and 
encapsulating the meta-level customization that program-
mers can specify the object in two dimensions: one for 
functional behavior, and the other for special computing 
aspects such as synchronization conditions for concurrent 
computing.  
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