
An Object Oriented CAD Project Database

Hewijin Christine Jiau Kuo-Feng Ssu

Department of Electrical Engineering
National Cheng Kung University, Taiwan, R.O.C.

Email: fjiauhjc,ssug@ee.ncku.edu.tw

ABSTRACT

Long-lived transaction always causes the bottle neck
problem in different design work application domain. CAD
VLSI design transactions are typically of long duration with
frequently concurrent read-write and read-read accesses. A
single design transaction can last for hours, days, even
months before it completes. So a long duration trans-
action will cause long duration locks; we will have long
blocking when we use a common concurrency control al-
gorithm. Based on this analysis, we proposed a distributed
and open control mechanism with multilevel transaction
manager can be effectively used to drive the design process
while not restricting how the designer interacts with the
tools. As the design process becomes more automated, the
designer spends less time directly manipulating the design
data and more time managing CAD tools that manipulate
the design data. Overall, design data manipulation shifts
more towards the CAD tools and away from direct designer
intervention.

1 INTRODUCTION
From a lot of books [1, 2] and papers [3, 4] which ad-

dress the problems of the CAD VLSI design problem and
suggest the goals of the design, we found the CAD VLSI
design problem is to generate an acceptable design in lim-
ited time and with limited resources that conforms to the
chip cavity size and pad location. Especially, as we know,
VLSI design is an iterative process. So the CAD tools
must deal with the entire life-cycle of a design. The detail
steps are requirement, decomposition, specification, design
implementation choice, analysis and verification, real im-
plementation, testing, documentation, manufacturing, user
feedback, evaluation. There can be plenty of different ways
to do these steps. So there is no perfect answer for any de-
sign. Due to the changing nature of VLSI design, a design
system will never be “finished". In order to keep up with
the needs of the chip designers, the environment and the
data representations must be kept flexible and extensible.

To make the CAD VLSI design task of filling the void
on a VLSI chip manageable, an abstraction hierarchy is
widely accepted. From the latest design information we
have, the following list of design levels will be most rea-
sonable: system, behavioral, register transfer level (RTL),
logic and implementation as shown in Figure 1 [5]. There
are a lot of facilities needed in the whole design process,
like an extensive library of predefined parts, a chosen de-
sign style (step). In a simplistic view, the overall design
task (problem) can be structured in a top-down manner into
simpler subtasks with clearly defined functions. Then the
design task is finished. But in practice, there will be design-
ers who, familiar with the implementation technology, will
explore other good solutions for generic functions in a given
technology in a bottom-up fashion. So the complexity of
VLSI chips requires the use of both top-down and bottom-
up design approaches, which can meet in the middle and
permit completion of the design. However, for a design
framework system, it is unlikely that the design flow will
happen in this way. Because the natural building blocks
must first be defined or discovered, only then can the archi-
tecture be modified and partitioned by the synthesis tools
properly. It is the key reason why it is so important to keep
flexibility in the design framework, to add new technology
and to integrate new available tools [6].

In the whole CAD design process, in different hierar-
chical levels, there are different types of tools to help the
designer. Generally speaking, there are five different kinds
of design tools: high-level decision tools, analysis tools,
synthesis tools, optimization tools, checking and verifica-
tion tools [1]. There is another important element in VLSI
design which plays an important role in making design
decisions: constraints. Constraints limit the search for a
design by ruling out certain decision options at all steps of
the design process. These constraint changes usually cause
extensive back-tracking. Therefore, a design environment
must provide convenient data structures for recording and
propagating constraints. Because when more and more

1

System

Behavorial

RTL

Logic

Implementation

Level 1

Level 2

Level 3

Level 4

Level 5

State Machines, Logic

Technology Mapping
/translation

Scheduling, Allocation

and Register Transfer Level (RTL)

Partitioning, Pipelining

Figure 1. Design level hierarchies.

new technology comes to the market, the design should be
modified and new technology fitted into the new design.
Again in order to keep up with the needs of these expected
changes, the CAD framework must be kept flexible and
extensible. A modular set of tools coupled to an object-
oriented, integrated database is a good solution to base a
framework on [7, 8].

2 RELATED WORK
Many people have recognized the problems in integrat-

ing various existing CAD tools into a design environment.
This integration is important for several reasons. The
rapidly increasing transistor densities of IC’s have drasti-
cally increased the complexities of individual chips so that
the predominant life cycle cost for a chip is the design cost,
rather than the manufacturing cost. By further automating
the design process, the design time itself can be shortened.
However, such automation requires the development of a
design automation system in addition to computer-aided-
design tools.

Traditionally, the designer manually executes each CAD
tool individually and is responsible for managing the var-
ious design files used as inputs to these tools or created
as outputs by the tools. Then several systems used dif-
ferent strategies to relieve the designer of such detail.
ULYSSES [9] is the famous one that interprets descrip-
tions of various design tasks, automatically invokes CAD
tools to perform portions of these tasks, and manages the
various files associated with each tool. Cadweld [10, 11] is
presented as an extension of ULYSSES and forms the basis
for a new way to model and implement a distributed control
mechanism for a large population of heterogeneous CAD
tools.

One problem in Cadweld is that it does not consider the
hierarchical characteristic of CAD design flow. The tools

can be organized according to the hierarchy to get better
performance. Another problem we found in Cadweld is
that there is no transaction manager to help to make the
whole design framework work. Cadweld did not take ad-
vantage of the DBMS. Also as we know, only the teamwork
of tools within CAD-toolboxes, controlled from a design
flow manager and supported by a design database system,
makes large designs possible. Siepmann provides another
framework, the PLAYOUT design system [12, 13], which
supports hierarchical decomposition, multiple representa-
tions, realization alternatives, versioning and concurrency.
It includes a universal meta data schema,based on an object-
oriented data model. The design work is done by toolboxes.
This view motivates us to handle toolboxes instead of tools
inside of our framework.

3 SYSTEM MODEL
Transaction plays the key role in both traditional and

object-oriented world. The transaction is one of the main
reason we think it will be very helpful to introduce databases
into the CAD world. A so called long-lived transaction is a
typical problem that exists in a CAD design system [14, 15].
A long-lived transaction is an active transaction which per-
sists for hours, days or months, which is typical for a CAD
design, especially as the design becomes larger and larger.
In any CAD VLSI development, it is well-known that long-
lived and nested transactions are two main concerns for the
transaction management (TM) system in the framework.
The support of early decisions and adjustments provided
by the framework is important to help the whole design. In
our framework, the use of hierarchal design and multilevel
transactions can help to reach the design goal; of course,
coordinating with the blackboard structure using the object
specification [16].

Another key feature for the framework to provide is the
design environment that the user will be involved in when
the design work is in process. From the design engineer’s
perspective, the design environment consists of the set of
design tools used during the design process and a design
manager for managing these tools and their data. Because
design tools and design management capabilities evolve
over time, and because the set of design tools used within
a design process change over time, one of the primary re-
quirements on an environment is the rapid integration, ex-
tension, and modification of tools. So there is a need to
develop an open and distributed control mechanism for the
integrated design environment. The problem for the tradi-
tionally tightly integrated design environment is that new
tools are difficult to add, old tools are difficult to delete. So
the new approach should focus on handling the increasing
number and complexity of CAD tools used during the de-
sign process and allowing easy integration at either control
or data level.The communication between the toolboxes and
the blackboard is performed according to the client-server

2

Blackboard

User Interface

Design Methodology
Planner

Tool communication

Interface

CTO manager

Server2

Server1

Toolbox multilevel

Transaction Manager

CAD Toolbox Objects

Design log

Design data

(for recovery etc.)

(OID’s plus descriptions)

DB

Figure 2. Elements of the framework.

model, using the RPC (remote procedure call) mechanism,
also between the tools and the toolbox.

Because of the complexity of real VLSI-designs and the
NP-completeness of many design algorithms, a hierarchi-
cal design methodology is necessary. We will organize the
tools into toolboxes and handle the toolbox as an object for
the design work in the framework. The framework does
not make any assumptions about the actual detailed design
descriptions contained in those design objects (task, black-
board, tool and toolbox). A toolbox consists of a number
of algorithms (tools) and a common internal data struc-
ture, thus the tools in a toolbox can communicate very fast,
which is one of the basic reasons for structuring these tools
into a toolbox. Handling the toolbox as an object inside of
the framework not only can make a large design easier, it
can also reduce the heavy traffic problem in communicating
with the blackboard for every tool involved because com-
munication through the blackboard only happens between
toolboxes, not between every tool [17].

Our framework includes 2 servers. Figure 2 shows
the high level architecture. Server1 contains the design
methodology planner and the design tasks. A design task
can be in any format constructed by a hardware description
language, like VHDL [18, 19], VERILOG HDL [5, 20] or
by CFG (control flow graph)[MPC90], DFG (data flow
graph) [21] or CDFG (control data flow graph) [22] to
represent the CAD VLSI design problem. The problem
includes the preconditions and goal setting, etc. Inside
server2 are the CAD project database, toolbox transaction
manager, blackboard, design database, design log and the
CAD toolbox object manager.

Server 1 contains the design methodology planner, de-
sign tasks and some default and help information for the
tools and toolboxes. The planner will assist the designer
with the selection of CAD toolboxes. It will provide the
designer with information about toolbox usage, predictions
about the efficiency/performance of toolboxes, the avail-

User interface

User

Design task

Library

Help information

Default values

Set-up information

Blackboard

Tool-

box

Tool-

box

Tool-

box

Tool-

box

i: Communication between user/server1

ii: Communication between server1/server2

iii: Communication between user/server2

i

ii

iii

Server1 Server2

.

Figure 3. Communication between servers
and user.

ability of toolboxes, toolbox capabilities, existence of tool-
box communication problems, and a high-level mechanism
to match the designer’s needs with the abilities of the tool-
boxes. There might be a number of design tasks stored
in server1. These design tasks can include successful pre-
vious design developments which have been logged, then
stored back to server1 for the beginner to learn about how
the framework works. A design task can also be a real
design problem which is ready for the designer to solve or
a specified design work in some legal format.

4 COMMUNICATION SYSTEM

Now let’s discuss the communication between the main
elements in the framework when the design work is in
process. Figure 3 provides a clearer picture.

As we see in Figure 3, link i represents the communi-
cation between user and server1. Link ii represents the
communication between server1 and server2. Link iii rep-
resents the communication between server2 and user. Now
let’s see, when the process begins, how communication
works between those three.

We will analyze two different cases here. The first one
will start by choosing an existing task in server1. The
number in brackets indicates the communication link used.

� step A: User picks a design task from server1 (i). The
design task is passed to server2 (ii).

� step B: Design starts, blackboard works with toolboxes
and gets help or feedback from the user (iii).

� step C: During the design process, server1 is requested
to provide some default values or database help (ii).
(The database in server2 provides more local help

3

about tools or toolboxes. The database in server1 pro-
vides more global design help and some adjustment
policy rules etc.)

� step D: If the design fails, do nothing. If the design
succeeds, send the successful design sequence back
to the database in server1 (ii). Also write results to
the database of the results in server2 and report to the
user (iii).

The other case is that the user inputs a design task for a
special design.

� step A: User inputs the task specification by file or
other method to server2 directly (iii).

� step B: Design starts, blackboard works with toolboxes
and gets help or feedback from the user (iii).

� step C: During the design process, server1 is requested
to provide some default values, adjustment or database
help besides the database in server2 (ii).

� step D: Same as step D in previous case.

5 SERVER ANALYSIS
We look at the trade-offs between having two servers

vs. one. The main disadvantage of two servers is the added
communication between server1 and server2. But this com-
munication load depends on whether the design process can
rely on the CTO (CAD toolbox object) and blackboard to
get most of the design work done, instead of getting a lot of
help or information from server1. If little help from server1
is needed, the two-server system will probably have better
performance than the one-server. There will not be a lot of
traffic between the blackboard and CTOs. But if the design
needs a lot of information stored in server1 to help with the
design, one-server will have better performance than the
two-server system. Communication is a main considera-
tion when we try to organize the information about tools,
toolboxes, and databases for server1 and server2, as well as
the meta data for the blackboard. If we can get this infor-
mation organized well, the two-server system will have the
advantage of performance and flexibility [23].

Through the user interface, the designer can communi-
cate with the blackboard and the toolbox transaction man-
ager. The blackboard of server2 is the main part that com-
municates with the planner in server1, and it is in the black-
board that the CAD design task is stored, after a task is
chosen from server1 to start the design process. Inside
of server2, there is also the CAD toolbox object manager.
Toolboxes are handled instead of tools during the design
communication and interaction. No one can touch or use
tools directly without going through the toolbox to which
the tools belong. CTO contains detailed information about

the CAD tools, represented by a new abstract type that
is created in order for the existing CAD tools to interact
with the blackboard. We also apply the contract-net mech-
anism to the blackboard model because we want to keep
the same dynamically opportunistic control. The toolboxes
will be treated as objects in their own right, capable of being
modeled and manipulated flexibly by the CTO manager in
server2.

6 CAD FRAMEWORK
Figure 2 shows the interrelationship among main ele-

ments in the server2. There will be various goals and in-
termediate results stored on the blackboard [6]. They will
cause the execution of CAD toolboxes, the generation of
new internal data and the modification of information that
already exists on the blackboard. The designer can inter-
act with the blackboard through the user interface when
the designer wants to make decisions in cooperation with
the blackboard for the usage of toolboxes. After a spe-
cial toolbox is chosen by the initial agent, the blackboard
sends the CTO of the chosen toolbox to the transaction
manager to initiate processing. This kind of higher level
transaction might be a nested transaction inside a single
toolbox, but handling the inner nested transaction becomes
the responsibility of the transaction manager. Handling the
inner nested transaction this way will decrease the traffic
between the blackboard and the transaction manager. The
CAD project database refers to not only the central database
facility, but also to all files and artifacts produced through
the invocation of the CAD toolboxes. In the design log, we
would like to store all the choices of toolboxes, no matter
by the initial agent (toolbox), blackboard or the designer
(through the user interface with the help of the blackboard).

7 TOOLBOX MULTILEVEL TRANSAC-
TION MANAGER

Because of the characteristics of CAD VLSI design, the
hierarchical design process should be applied to all types
of chip designs. The traditional transaction will no longer
fit the CAD transaction requirement. The definition of the
traditional transaction manager can be found in [14].

The transaction manager here will handle design trans-
actions. Similar to traditional transactions, the definition
of a design transaction is “A sequence of database opera-
tions that maps a consistent version of a design into a new
consistent version” [24]. Because of the hierarchical na-
ture of VLSI design, we choose multilevel transactions to
represent the design transactions in our framework. Multi-
level transactions preserve two fundamental virtues of the
classical transaction concept [25]:

1. They are based on a rigorous theoretical foundation
that preserves the classical serializability theory as a
special case.

4

Toolbox Toolbox

tool tool tooltooltool

T 1->2

Figure 4. Transaction example.

2. They can reuse much of the well-proven implementa-
tion techniques that account for the high performance
of current transaction processing systems.

So the transaction manager here will handle design trans-
actions. In our framework, a transaction is invoked to take
the design from level n to level n+1. Each transaction will
be associated with several toolboxes. Every toolbox will
contain several tools. After every tool in a toolbox fin-
ishes its job, the toolbox can commit. After every toolbox
commits, the transaction can commit. So at every level a
committed transaction has created a design accessible to
other transactions, etc.. This follows the nested transac-
tion model. Because the transaction manager works with
the blackboard, it permits multiple individual queries to be
executed as a single atomic operation. For example, to
correctly implement a “reference" operation for the design
objects (blackboard, toolboxes), multiple queries have to
be performed atomically to check existence of those ob-
jects, check running design transactions on the object, and,
if allowed and necessary, administer the new design trans-
action.

See Figure 4 for a transaction example. “T 1 ! 2"
indicates that this is a transaction taking the design from
“level 1" to “level 2".

8 SIMULATION MODELS AND RESULTS
After we evaluated several possible simulation tools, we

chose UltraSAN for our modeling simulation tool because
it fits most of our requirements.

The one-server model was constructed as shown in Fig-
ure 5. Figure 6 shows the two-server model. Because the
purpose of the simulation is to study the blackboard and
other queue lengths to see if the two-server architecture
solves the bottleneck problem, we only modeled the sub-
tasks inside of the framework. UltraSAN is a very good tool
for this kind of simulation, but it also has a limit on task
size. When we ran the simulation model, we found that the
task size must be limited to 20 (i.e., 20 tasks are run in the
model initially). Otherwise the number of generated states

blackboard
task_process

tool_access

tool_processarrival

planner_access

collect

done

planner_help

user_help

I_O

subtask

Figure 5. One-server model.

blackboard

arrival
task_process

tool_access done

taplanner_help

user_help

I_O

collect

subtask

one_proc

tool_process

Figure 6. Two-server model.

exceeds the tool capacity. That’s why all of our results are
with the same initial task size.

In the one-server model, we have five “places" which
correspond to five different components of the modeled
system. These components are the blackboard (the place
represents a queue of subtasks waiting for blackboard post-
ing and help), planner help (the place represents a queue
of subtasks waiting for planner help), user help (the place
represents a queue of subtasks waiting for user input help),
tool access (the place represents a queue of subtasks wait-
ing to access the chosen toolbox) and done (the place repre-
sents a queue of subtasks waiting for I/O). In the one-server
model, we also have six activities, which represent actions
that take some specified amount of time to complete. Those
activities are “timed type" in UltraSAN, which means they
have durations which impact the performance of the mod-
eled system. In Figure 5, arrival (the activity represents
the time between arrivals of subtasks to the system), plan-
ner access (the activity represents the time for the system
to access the right planner for the subtask), collect (the ac-
tivity represents the time for the system to collect the user
input help for the subtask), task process (the activity repre-
sents the time to process the subtask according to different
cases), tool process (the activity represents the time for tool

5

processing requested for the subtask) and I O (the activity
represents the time to send the subtask to I/O (the storage
of results)) are timed activities. Each timed activity has an
activity time distribution function associated with its dura-
tion. Among these timed activities, two of them contain
case probabilities, represented graphically as circles on the
right side of the activity, which model uncertainty associ-
ated with the completion of the activity. Each case stands
for a possible outcome. In the one-server model, activity
task process has four cases. Each activity has a probability
distribution, called the case distribution associated with its
cases. With probability ta1 prob, case one is chosen, mean-
ing the task needs planner help to do further processing.
With probability ta2 prob, case two is chosen, meaning the
task cannot be done because of error or designer’s choice
in the controlled-automatic or manual design mode. With
probability ta3 prob, case three is chosen, meaning the task
finishes the task processing and is ready for the toolboxes to
start the design work. With probability ta4 prob, case four
is chosen, meaning the task needs user input help for the
task. The values we set for those probabilities are from the
analysis of the design flow and the experience when we tried
some of the CAD tools. That’s why we set the probability
for task to get the planner help is 0.2, the probability for
task to be dropped in the framework is 0.1, the probability
for task finishing the processing is 0.5 and the probability
for task to get user help is 0.2. For those activities where
no circles are shown on the right side, one case is assumed
with a probability of one. The activity tool process has five
cases as shown in Figure 5. With probability to1 prob, case
one is chosen, meaning the tool needs to get some informa-
tion from the planner help. With probability to2 prob, case
two is chosen, meaning the tool finishes the design work
and is ready for I/O. With probability to3 prob, case three
is chosen, meaning the tool cannot get the assigned work
done and needs to post the help on the blackboard. With
probability to4 prob, case four is chosen, meaning the tool
needs to get information or a decision from user help. With
probability to5 prob, case five is chosen, meaning the tool
has to access another tool for the design work. The setting
for those values are from the analysis and the experience.

The model also has one input gate (subtask) which con-
trols the enabling of activities and defines the marking
changes that will occur when an activity completes. On
the other side of the triangle indicating the input gate are a
set of arcs to the places upon which the gate depends, also
called input places. In the one-server model, blackboard,
planner help, tool access, user help and done are the input
places.

In Figure 6 is the model for the two-server structure. As
we can see, this model also has five places, blackboard,
taplanner help, user help, tool access and done. Also there
are six timed activities, arrival (same as one-server model),

one proc (the activity represents the time for the system to
process the plan from server1 for the subtask), collect (same
as one-server model), task process (the activity represents
the time to process a subtask according to different cases,
which are different from those of the one-server model on
account of the need to access server1), tool process (the
activity represents the time for tool processing) and I O
(same as one-server model). The two major differences
between one-server and two-server models are the activi-
ties, the task process and the tool process. Because of the
different architecture, the timed activity tool process has
only three cases instead of the five in the one-server model.
After the designer chooses the design task in server1 or
inputs the design task to the server1, some related infor-
mation in server1 will attach with the task when the design
task is posted on the blackboard in the server2. So there
is no need for planner help at this level. The task process
activity has four cases as in the one-server model, but for
case one, the system will go to server1 to get task plan-
ner help instead of searching inside of the system as in
the one-server model. Of course, the probability settings
are different for the one-server and two-server models be-
cause of their different architectures. For task process,
with probability ta1 prob, case one is chosen, meaning the
task needs the planner help to do further processing. With
probability ta2 prob, case two is chosen, meaning the task
cannot be done because of error or designer’s choice in the
controlled-automatic or manual design mode. With proba-
bility ta3 prob, case three is chosen, meaning the task fin-
ishes the regular processing and is ready for the toolboxes
to start the design work. With probability ta4 prob, case
four is chosen, meaning the task needs user input help for
the task.The activity tool process has three cases as shown
in Figure 6. With probability to1 prob, case one is chosen,
meaning the tool finishes the design work and is ready for
I/O. With probability to2 prob, case two is chosen, mean-
ing the tool needs to get information or a decision from
user help. With probability to3 prob, case three is cho-
sen, meaning the tool has to access another tool. In the
two-server model, planner help will be attached to the task
after the task is chosen in server1, so there is no need to
get planner help during the tool processing. Also the tool
will not go directly to the blackboard for the posting help
because of the server structure. That’s why the cases in the
two-server model for the tool process are three.

The main purpose for this simulation work is to com-
pare the queue lengths of the blackboard in the one-server
and two-server models. So we studied different situations
using different input and process rates for the activities and
compared the blackboard and other queue lengths. The
first part of our results is based on a high input rate with
fixed task size, task process probabilities and tool process
probabilities. Then we analyze the performance by test-

6

task_rate=2
tool_rate=30
planner_rate=2

task_rate=2
tool_rate=30

task_rate=2
tool_rate=2
planner_rate=10

task_rate=30
tool_rate=2
planner_rate=10

task_rate=20
tool_rate=20
planner_rate=10

task_rate=5
tool_rate=10
planner_rate=10

blackboard_len

Variance 0.7849

Mean 19.72

Variance 0.3022

Mean 17.26

Variance 8.623

Mean 0.1029

Variance 0.01135

Mean 6.0269

Variance 22.936

Mean 18.695

Variance 1.8119

19.37Mean

tool_len

0.050

0.0525

0.050

0.0525

2.480

8.345

19.521

0.5379

1.7176

4.4032

0.5555

0.8641

planner_len

0.08225

0.0606

0.3725

0.5113

0.0279

0.02867

0.0573

0.08901

0.9323

1.7689

0.1570

0.1816

user_len

0.1217

0.1366

0.1217

0.1366

0.1217

0.1365

0.1792

0.21137

9.9358

26.433

0.3725

0.51134

done_len

0.0670

0.07157

0.0670

0.07157

0.0670

0.07153

0.09649

0.1058

1.260

2.7613

0.1864

0.2212

planner_rate=20

arr_rate is the value set for arrival activity
task_size is the value set for the task size
task_rate is the value set for task_process activity
tool_rate is the value set for tool_process activity
planner_rate is the valus set for planner_access activity

Figure 7. Simulation results for one-server
model with high arrival rate. Table entries are
queue lengths with arr rate=50, task size=20.

ing different (high/low) values of task rate, tool rate and
planner rate. Figure 7 gives results for the one-server
model. Figure 8 shows comparable results for the two-
server model.

From Figure 7 and Figure 8 we get the following con-
clusions:

� Task rate plays a key role in the blackboard queue
length.

� When the task rate is either very high or very low,
blackboard queue lengths for one-server and two-
server behave almost the same.

1. When the task rate is very high, one-server and
two-server have no obvious accumulation in the
blackboard queue.

2. When the task rate is very low, one-server and
two-server models both develop a blackboard
queue bottleneck.

� But when the task rate is medium, the two-server
model has smaller queue length than the one-server
model. We believe this should be the most common
case for CAD design. So the two-server model wins
when the situation is normal.

To test and support our conclusion that the two-server
model is much better for the normal case, we fix the ar-
rival rate to normal (because the task size is 20, when

task_rate=2
tool_rate=30

task_rate=2
tool_rate=30

task_rate=2
tool_rate=2

task_rate=30
tool_rate=2

task_rate=20
tool_rate=20

one_rate=2

one_rate=10

one_rate=10

one_rate=20

one_rate=10

task_rate=5
tool_rate=10
one_rate=10

blackboard_len

Mean

Variance 0.7487

Mean 19.60

Variance 0.457

19.37

Mean 17.15

Variance 8.754

Mean 0.1029

Variance 0.1135

Mean 1.060

Variance 2.184

Mean 18.17

Variance 3.078

tool_len

0.050

0.0525

0.050

0.0525

2.479

8.333

19.349

0.8136

0.5813

0.9193

0.555

0.8641

planner_len

0.250

0.3125

0.0204

0.0208

0.0416

0.04338

0.05932

0.06284

0.2592

0.3264

0.111

0.1234

user_len

0.2411

0.2992

0.2411

0.2992

0.241

0.299

0.3736

0.5132

17.55

4.210

0.9444

1.836

done_len

0.067

0.0715

0.067

0.0715

0.0670

0.0715

0.0964

0.1058

0.7782

0.7069

0.1864

0.2212

arr_rate is the value set for arrival activity
task_size is the value set for task size

tool_rate is the value set for tool_process activity
one_rate is the value set for one_proc activity

task_rate is the value set for task_process activity

Figure 8. Simulation results for two-server
model with high arrival rate. Table entries are
queue lengths with arr rate=50, task size=20.

arr rate=20, the input rate matches the size) and run some
more simulations. Figure 9 shows results for the one-server
model and Figure 10 shows results for the two-server struc-
ture.

From these simulation results, we see that the two-server
model can really solve the bottleneck problem that arises
in the blackboard of the one-server model. Also, the two-
server model can usually provide faster service for task
planner help, but when we set one rate for the one proc
activity in the two-server model, we still set it the same as
the planner rate in the one-server model to avoid taking too
much advantage of this processing difference.

9 CONCLUSIONS

Because the reason for developing the two-server model
instead of the one-server model is the bottleneck problem
in the blackboard, as we mentioned earlier, we did sim-
ulate the alternatives to show that the two-server model
does get that problem solved. We also compare the per-
formance in different kind of situations, as different input
rate, different input task size, different tool process rate
and the task to subtask re-submitting, etc. We study the
queue lengths of blackboard components in different situ-
ations to evaluate our two-server model vs the one-server
model. When we constructed the model, we found that it
is not necessary to simulate the whole system if we only

7

task_rate=10
tool_rate=10 Mean

task_rate=5
tool_rate=10

planner_rate=20

planner_rate=10

15.342

Variance 11.863

Mean 18.643

Variance 1.8709

blackboard_len tool_len

2.459

8.046

0.555

0.8641

planner_len

0.37194

0.5099

0.1570

0.1816

user_len

1.1826

2.5644

0.3725

0.5113

done_len

0.4575

0.6662

0.1864

0.2212

Figure 9. Simulation results for one-server
model with normal arrival rate. Table en-
tries are queue lengths with arr rate=20,
task size=20.

task_rate=10
tool_rate=10
one_rate=20

Mean 9.410

task_rate=5
tool_rate=10
one_rate=10

Mean 18.11

Variance 3.137

Variance 29.96

blackboard_len tool_len

2.088

5.977

0.555

0.8641

planner_len

0.1056

0.1167

0.1111

0.1234

user_len

7.790

28.89

0.9444

1.8361

done_len

0.4284

0.6091

0.18644

0.2212

Figure 10. Simulation results for two-server
model with normal arrival rate. Table en-
tries are queue lengths with arr rate=20,
task size=20.

want to compare the performance of the blackboard, so
we removed the multiple-user input part and only model
the subtasks which are processed in the framework. We
think this simplification is reasonable for the purpose of the
simulation.

In this paper, we gave a brief introduction to a CAD
design framework that contains two servers. The main
element in server1 is the design methodologyplanner which
can provide help with a design in process. In server2,
the main elements can be the blackboard, CAD project
database, CTO manager, multilevel transaction manager,
which are responsible for the design. We can apply this kind
of similar framework model in any design work application
domain to take all the advantage which we specify in this
paper.

REFERENCES

[1] W. Fichtner and M. Morf, VLSI CAD Tools and Applications.
Kluwer Academic Publishers, 1987.

[2] D. D. Hill and D. R. Coelho, Multi-level Simulation for VLSI
Design. Kluwer Academic Publishers, 1987.

[3] J. Granacki et al., “The ADAM Advanced Design Automa-
tion System: Overview, Planner, and Natural Language In-
terface,” Proceedings of 22th DAC, 1985.

[4] B. Mitchang, “Towards a Unified View of Design Data and
Knowledge Representation,” Proceedings of 2nd Interna-

tional Conference on Expert Database Systems, pp. 33–49,
1988.

[5] E. Sternheim, R. Singh, R. Madhavan, and Y. Trivedi, Digital
Design and Synthesis with Verilog HDL. Kluwer Academic
Publishers, 1994.

[6] S. R. Schach, Classical and Object-oriented Software Engi-
neering. Mc Graw-Hill, 1999.

[7] R. J. Muller, Database Design for Smarties. Morgan Kauf-
mann, 1999.

[8] E. G. Mallach, Decision Support and Data Warehouse Sys-
tems. Mc Graw-Hill, 2000.

[9] M. Bushnell and S. W. Director, “VLSI CAD Tool Inte-
gration Using the ULYSSES Environment,” Proceedings of
23th DAC, pp. 55–61, 1986.

[10] J. Daniell and S. W. Director, “An Object Oriented Ap-
proach to CAD Tool Control Within a Design Framework,”
Proceedings of 26th DAC, pp. 197–202, 1989.

[11] J. Daniell and S. W. Director, “An Object Oriented Approach
to CAD Tool Control,” IEEE Transactions on Computer-
Aided Design, pp. 698–713, 1991.

[12] E. Siepmann, “A Data Management Interface as Part of the
Framework of an Integrated VLSI-Design System,” Pro-
ceedings of ICCAD, pp. 284–287, 1989.

[13] E. Siepmann and G. Zimmermann, “An Object-Oriented
Datamodel for the VLSI Design System PLAYOUT,” Pro-
ceedings of 26th DAC, pp. 814–817, 1989.

[14] J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[15] R. Ramakrishnan and J. Gehrke, Database Management Sys-
tems. Mc Graw-Hill, 2000.

[16] H. C. Jiau, K. F. Ssu, J.-M. Lin, and Y.-P. Ko, “Reusing CAD
Tools in Object Oriented Based Framework,” Proceedings
of 24th COMPSAC, pp. xxx–xxx, Oct. 1999.

[17] R. J. Muller, Productive Objects. Morgan Kaufmann, 1998.

[18] Standard VHDL Language Reference Manual. IEEE, Mar.
1988.

[19] R. Camposano, L. F. Saunders, and R. M. Tabet, “High-level
Synthesis from VHDL,” IEEE Design and Test of Comput-
ers, Mar. 1991.

[20] D. E. Thomas and P. Moorby, The Verilog Hardware De-
scription Language. Kluwer Academic Publishers, 1991.

[21] S. Note, F. Catthoor, G. Goossens, and H. De Man,
“Computer Hardware Selection and Pipelining in High-
performance Data-path Design,” Proceedings of Interna-
tional Conference on Computer Design, Oct. 1990.

[22] J. S. Lis and D. D. Gajski, “Synthesis from VHD,” Pro-
ceedings of International Conference on Computer Design,
pp. 378–381, 1988.

[23] B. R. Preiss, Data Structures and Algorithms. Wiley, 1999.

[24] R. H. Katz, Information Management for Engineering De-
sign. Spring-Verlag, 1985.

[25] A. Elmagarmid, ed., Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann, 1993.

8

