
LEADS: Language for Exploiting Architectural and Design Specifications
Bharath Kumar M, Y N Srikant

Department of Computer Science and Automation,
Indian Institute of Science

{mbk, srikant}@csa.iisc.ernet.in

Abstract

Precise specification of the architecture and design of
software is a good practice. Such specifications contain a
lot of information about the software that can potentially
be exploited by tools, to reduce redundancy in software
writing by automating routine tasks, as well as giving
valuable feedback on the software. In LEADS, we propose
a language and environment that is designed to make
writing such tools a lot easier. LEADS is based on the
Pattern-Action approach, where one specifies the pattern
of information of interest and the actions to be taken when
it is found. LEADS decouples itself from the specification
environments/ formats thereby ensuring wide applicability.
Here we discuss the language features of LEADS that
make tool writing a lot more organized and modular.

Keywords:

Specifications, CASE Tools, Software Architecture,
Knowledge based software engineering.

1. Introduction

With the advent of many standard notations and practices,
many industry standard specification environments have
come up. The software specifications1 are typically stored
as an object hierarchy. Specification environments often
offer accessibility interfaces to the object hierarchy. The
accessibility interfaces allow for extensions and
customizations to the environment to suit specific needs,
and also allow third party tools and power users to exploit
the information content stored in them E.g.: [1]. In the
context of architectural and design specifications, we
highlight some of the possible ways in which such tools2
can exploit the information.
• Automatic Code Generation – This can be done when

we are dealing with small parts of the system that are
understood and specified sufficiently enough to
completely automate their code generation. This is
normally possible when domain specific components
and connectors are used, since such components and
connectors are well defined and known.
 Other examples include automatic code generation
for data structures; generation of IDL3 specifications

1 When we use the term ‘specifications’, we refer to
architectural and design specifications, unless mentioned
otherwise.
2 With ‘tools’ we refer to tools that exploit the information
content in specifications.
3 Interface Description Language for various Component
Technologies like CORBA, COM

from component diagrams; and application of the
singleton pattern over a class.

• Design Guidance – This can be done when we do not
have enough knowledge to completely automate the
generation of code, but have a good knowledge of the
concerns in design and popular solutions to the same.
 Tools that suggest usage of certain design patterns
to decouple change in the given contexts come under
this category. Some other examples include tools that
could assist the designer in identifying possible layers
in a complex system of classes; and tools that analyze
the design to give good test sequences.

• Analysis – The specifications act as a blue print for the
software that is going to be produced. So, an early
analysis could be very useful. Popular analysis
techniques include calculating metrics or conducting
simulations so as to give feedback about the
software’s robustness and feasibility.

Clearly, in all the above-mentioned means of

exploiting information in specifications, the tools have to
go through a two-phase process. They first search for
information of interest in the specifications, and then take
appropriate actions. The programming languages in which
the tools are written do not offer any special constructs
that make the search easy. Most often, the programs will
have to work in and out of the complex object hierarchy in
which the information is organized.

In LEADS, we use a Pattern-Action approach. In a
LEADS specification, a tool writer has to simply specify
the kind of information he is looking for, as a pattern, and
the action to be performed when the information is found
in a specification. The patterns are specified in a
declarative language, using which one specifies the
constraints that hold amongst the participants of the
pattern. This declarative language offers special primitives
that cater to the common needs of tools that work on
architectural and design specifications. Since the potential
ways of taking action on a pattern found could be very
extensive, we generalize the actions as bits of C++ code.
This approach is similar to that of yacc[2], where every
time a grammar rule is parsed, a piece of code is executed.

In our design of LEADS, decoupling from the
specification environment was of prime importance. Only
this would ensure the applicability of LEADS over a wide
domain of specification languages and environments. But
the specification environment is where the facts, that are
required for identifying the patterns, are provided. Hence
we provide the type library, by which a mapping, from the
types used in the LEADS specification to those present in
the specification environment can be provided. Essentially,
in a type library, one defines a new type of information
and a means of obtaining it. This decoupled nature of

LEADS allows it to act as glue across specification
environments thus helping exchange of information
amongst various specification languages and
environments.

The presence of the type library also ensures that
LEADS specifications are reusable across specification
environments that just differ in their syntax. Only the type
library needs to be changed to make the LEADS
specifications work with different specification
environments.

We now discuss the design and languages features of
LEADS through an example.

2. An Example

 Large designs often have a large number of classes. A
tool that could introduce some kind of organization and
hierarchy is useful. Say, the tool analyses the class
diagram, looks for dependencies amongst the classes,
organizes the classes into layers and then organizes these
layers themselves in a hierarchy based on relative
dependencies. The tool puts classes that are interdependent
to each other in the same layer. Then, the tool creates an
ordering based on the dependency graph amongst the
layers. We will now illustrate how this tool can be written
using LEADS. Assume that the types used in the following
script are from a specification environment that allows
class diagram specifications in UML[3].

import “UML.tlb”

relationship BidirectionalDependency(c1 : Class,

c2 : Class)
constraints
 (c2 in

transitive_closure(c1.associations.role2.class)
 and c1 in

transitive_closure(c2.associations.role2.class))
end

pattern Layer(m : Model)
participants
 classes : set(Class);
 position : integer
constraints
 range of classes = m.classes and
 classes = partition of m.classes based on

relationship BidirectionalDependency
end

relationship LayerDependency(l1 : Layer, l2 : Layer)
constraints
 (exists c1, c2 : Class;

 range of c1 = l1.classes and range of c2 =
l2.classes

 and c2 in
 transitive_closure(c1.associations.role2.class))

end

pattern LayeredSystem(m : Model)
participants
 layers : set(Layer)

constraints
layers = all Layer(m) and
order layers on layers.position suchthat

(l1,l2 : Layer; range of l1 = layers and
range of l2 = layers and
(l1.number < l2.number iff
 LayerDependency(l2,l1)))

action
 {
 // Code in C++ to list the layers

for (set<Layer>::const_iterator i = layers.begin();
 i != layers.end(); i++)

{
 Layer *l = *i;
 cout << Layer position << l->position;
 for (set<Class>::const_iterator j

= l->classes.begin(); j != l->classes.end(); j++)
 {
 Class *c = *j;
 cout << Class << c->name << endl;
 }

}
end

LEADS provides two constructs for organizing the
information searching. The pattern construct is used to
specify a pattern of information as per its participants, the
constraints that hold amongst them, and the action to be
performed when the pattern is identified. The relationship
construct is used to specify adequacy criteria for a
relationship to exist amongst some elements.

In the example, our aim is to organize all the classes in
a model into layers, and to number the layers based on
their relative dependencies. We first define a Layer, to
contain a set of classes and a number. This number
(position) will essentially indicate the layer’s position in
the hierarchy. All interdependent classes form a single
layer. So, each layer is essentially a partition of the entire
set of classes. This is specified by the statement “classes =
partition of m.classes based on relationship
BidirectionalDependency”. Here, classes is one of the
parts or sections created as a result of the partitioning of
m.classes. The relationship BidirectionalDependency is
used to partition the set of classes. The statement indicates
that the set of all classes in the model m, will be
partitioned in such a way that all individual classes that
fall into each partition will be related to each other by the
relationship BidirectionalDependency. classes can be any
of the partitions. Note that BidirectionalDependency
accepts two parameters, both of type Class, which is the
same type as the constituents of the partitions.

The relationship BidirectionalDependency between
two classes is defined to exist if the two are either directly
or indirectly dependent on each other. Indirect dependency
is specified using the transitive_closure construct.
c1.associations.role2.class is an expression that gives all
classes that are involved in associations with c1.
transitive_closure(c1.associations.role2.class) gives all
transitively (indirectly) dependent classes too. Thus,
BidirectionalDependency holds amongst two classes c1
and c2, if and only if, c1 is either directly or indirectly

dependent on c2, and c2 is either directly or indirectly
dependent on c1.

Thus, the two constructs Layer and
BidirectionalDependency enable us to partition the set of
all classes, into a set of layers.

We then define another relationship, LayerDependency
that will help us to determine if a layer is dependent on
another. A layer l1 is dependent on another layer l2, if and
only if, l1 contains at least one class which is either
directly or indirectly dependent on a class present in l2.
We again use the transitive_closure construct to specify
this.

Finally, in LayeredSystem, we group all the layers that
were obtained in a set. We then order this set based on the
relative dependencies between the layers. Clearly there
will be many instances of the pattern Layer. To group all
such instances into a set, we use the keyword all. Thus, the
statement “layers = all Layer(m)”, finds all possible
instances of Layer(m) and makes them elements of the set
layers. We then order the elements of the set layers based
on the relative dependencies between them. “order layers
on layers.position suchthat …” does exactly that. The
order construct is defined on sets, and a number is allotted
to each element in the set, based on some conditions that
determine how the numbering is done. In this example, the
condition states that a layer l1 gets a number less than
another layer l2, only if l1 is not dependent on l2. The
order construct serves two purposes. One, it states that an
ordering is done, explicitly. Two, since the possible
numbers assigned to each element can potentially be
infinite, the special construct allows the solver to constrain
the domain, and will assign a numbering that starts from 1
only. In the action section, the code written in C++,
simply generates a listing of each layer, and its position in
the hierarchy.

The LEADS parser, after semantic checking, will
generate classes (in C++) for each pattern. The following
is an example of the prototypes of the classes that are
generated.

#include “UML.h” // to provide the types Class, Model…

// (from the type library)

bool BidirectionalDependency(Class c1, Class c2);

class Layer
{
 public:
 set<Class> classes;
 int number;

 static set<Layer> & Match(Model m);
 void Action(Model m);
};

bool LayerDependency(Layer l1, Layer l2);

class LayeredSystem
{
 public:
 set<Layer> layers;

 static set<LayeredSystem> & Match(Model m);
 void Action(Model m);
};

Ultimately, LayeredSystem::Match(m) will find the
pattern in the input specification and execute the Action,
for each instance of the pattern that is identified. Match()
also returns the set of all instances of the pattern found.

3. The Language

The important requirements that have influenced the
design of LEADS are:
• Searching for patterns of information in the

specifications should be easier, organized and
modular.

As discussed earlier, an important aspect of
exploiting information, is to first identify the
information of interest. An intuitive means of
organizing this search, which would not require the
tool writers to recurse in and out of the complex
object hierarchies, is required. LEADS is based on the
Pattern-Action approach, which separates the search
from the action. Defining a pattern, which is
essentially a set of constraints that hold on the
participants of the pattern, specifies a search for
information. A pattern can be accompanied by some
actions that are to be taken when an instance of the
pattern is identified. The problem of searching for
information and subsequent actions to be taken can be
decomposed into many phases (as patterns-actions
and relationships) and each one tackled at a time. This
approach makes the searching more modular.

• The language should offer constructs that capture the
commonly encountered operations while exploiting
information in architectural and design specifications.

Exploiting architectural and design specifications
involve certain operations that are done repeatedly.
Checks for reachability, connectedness; operations
that partition collections into smaller groups based on
some desired properties; ordering collections based on
some properties occur quite frequently. Hence,
LEADS offers special primitives (see section 3.5) like
partition, order, and some statistical functions that
capture the typical needs of a tool that exploits
information in architectural and design specifications.

• The language should be decoupled from the
specification environment (which provides the data).

This has been a very important design issue in
LEADS. To maintain applicability over a wide range
of specification languages and specification
environments, the data types that can be used in the
patterns should not be constrained by the specification
environments. So, LEADS is designed in such a way
that it can potentially be used with any specification
environment. Types specific to a specification/
specification environment are defined in the type
library. The type library is essentially a means of
defining a new type of data, and a means of obtaining
the data (from the specification environment).

3.1 Patterns

Often, while searching for information in a specification,
the unit of information one is looking for, is not just a
basic entity but a group of entities that may interact with
each other in a desired way. Such groups of entities could
all be of the same type, or of different types. We refer to
these entities as participants of the pattern. The
relationships amongst the participants are specified as
constraints that need to be true for the participants to be
part of the pattern. In any given specification, there could
be several instances of a pattern. This essentially means
that different combinations of participants could satisfy the
constraints. For every such instance of the pattern, an
action (which is a piece of C++ code) is executed.
Patterns also take parameters to support communication
across patterns. This essentially reflects as a parameter that
is passed to the match function of the pattern when the
C++ code is generated.
 A pattern is also a type. This means that a pattern can
have instances of patterns as participants, or use an
instance in its constraints, or take an instance of a pattern
as parameter (to its match function).

3.2 Relationships

The relationship construct is used to specify adequacy
criteria for a relationship to exist amongst some elements.
A relationship is specified as a set of constraints that hold
amongst its parameters. A relationship always evaluates to
true or false. Relationships allow for reuse of commonly
occurring constraints amongst entities. Unlike a pattern, a
relationship does not have participants, and cannot be
instantiated. Relationships are also very useful when using
the special primitives like partition.

3.3 Constraints

Constraints are used in the specification of both patterns
and relationships. In general constraints are specified using
a simple declarative language based on first order logic.
Most of the common primitives like expressions;
conditional operators like implies, iff (if and only if); set
operations like union, intersection, negation, difference;
testing membership in sets; operations over collections
like forall, exists; are provided. The special primitives that
make the constraint specification more specialized towards
architectural and design specifications are discussed in a
subsequent section.

3.4 Basic Types

LEADS offers the following basic types; Bool, Integer,
Real, String, Character, Date. The vector types offered are
Collection, Set, Sequence and Bag. Set, Sequence and Bag
are essentially specializations of Collection with specific
properties for different contexts. Instances of Set,
Sequence and bag can be converted to each other type
using type casting.

3.5 Special Primitives

LEADS offers some special primitives that make the
specification of constraints easier, shorter and clearer.

range – Most of the variables used in LEADS are free
variables. Potentially, there can be infinite values that
these free variables can hold. To find instances of the
pattern more efficiently, the range keyword is used to
constrain the domain of the free variables. The range of a
free variable has to be specified before it is used in any
expression. Range constrains a free variable to contain
values that belong to the collection specified in the
expression.

all – A pattern can have many instances. When it is
required to put all the instances of a pattern into a set, the
all keyword is used. Thus “layers = all Layer(t)”, puts all
possible instances of Layer(t) into the set layers.

transitive_closure – Transitive closure is used to obtain
instances that are related to a particular instance through
transitivity (indirectly). In general, any expression that
maps an instance to another instance of the same type can
be given as a parameter to this function. The function will
eventually evaluate to a set that will comprise of the
largest set that is reachable either directly or indirectly
through the expression given as parameter.
 Consider the clause transitive_closure(c.parents).
 Say, parents is an attribute in type Class, which
aggregates all the parent classes of a particular class.
transitive_closure(c.parents) represents a set of Class
which contains the parents of c, the parents of the parents
of c and so on.

partition - This clause essentially defines a partition on a
collection based on certain conditions. The condition
based on which the partitioning is done could be a
relationship that exists amongst the members of each
partition, or based on a value of an expression involving
each member in the partition.
“classes = partition of m.classes based on relationship
BiDirectionalDependency”, (discussed in the example),
partitions the set m.classes such that members of each
partition are related to each other by the relationship
BiDirectionalDependency. classes can be any of the
possible partitions.
“classes = partition of m.classes based on valueof
m.classes.ClassKind”, says that the set m.classes is
partitioned, based on the value the expression
m.classes.ClassKind evaluates to. Thus, this will result in
partitioning of m.classes such that each category of class
(like NormalClass, ParameterizedClass, InstantiatedClass,
etc.) is placed in separate groups.

order - The order clause is used to impose an ordering on
the members of a set based on some conditions. Ordering
does not necessarily mean a total ordering. Thus, it is not
as simple as arranging a set as a sequence. To allow partial
orders too, the order clause is defined such that a number
is assigned to each member in the set that will denote its
position in the order. Thus the data object to which the
number is assigned is also specified in the order clause.
The other reason for advocating the use of the order clause
instead of using constraints directly is that, since the
ordering is done on a numeric data object, there will be

infinitely many assignments that will satisfy the
constraints. Through this special clause, a simple ordering
that starts from 1 is assigned always. Consider the
following example.
“order layers on layers.number suchthat (l1, l2 : Layer;
range of l1 = layers and range of l2 = layers and (
l1.number < l2.number iff count(l1.classes) < count(
l2.classes))”
Here, order will assign numbers in layers.number such
that the layer with the highest number of classes gets the
highest number and the layer with the least number of
classes gets the number 1.

Statistical primitives - In order to find and specify
metrics easily, certain statistical functions are defined over
collections, like count(), max(), min(), avg(), median(),
mode().

3.6 The type library

An important design goal of LEADS is to maintain
applicability over several specification languages and
specification environments. So, the data types offered by a
specification language cannot be part of the design of
LEADS itself. A means by which a data type, present in a
foreign environment, is declared and accessed needs to be
provided. The type library serves this purpose.
 The information provided by a specification
environment is typically organized as an information
structure, which is navigable from the top to the leaves. In
general, a node can compose of an attribute (of some basic
type), an instance of some aggregate type, collections of
attributes or entities, or some functions. Many
specification environments provide accessibility interfaces
to the information structure (sometimes called the tool
API).
 In the type library, one essentially defines the
information structure provided by the specification
environment. Its not just enough if the information
structure is declared. A means of obtaining this
information every time something is accessed in the
information structure needs to be provided too. This is
important since LEADS has no knowledge of the presence
of the specification environment, the kind of protocol it
requires for communication, etc. So, for every element in
the information structure, a get function has to be
provided. The get function could just be a single line of
code translating requests to the tool API, or could be
parsing a specification itself.
 LEADS requires to iterate through the collections
while matching patterns. LEADS uses predefined
collection types set, bag and sequence for this. So, if the
tool API provides or uses a different implementation of
collections, the collections have to be converted to the
ones defined in LEADS in the get functions.
 A type library needs to be written just once for every
specification environment. A LEADS specification can
use more than one type library at once, thus also allowing
for exchange of information between the environments.
With the OMG now standardizing the representation for
UML through the XMI[4], a type library that
understands/parses an XMI document will ensure LEADS

is usable with many specification environments that
support XMI. As part of the implementation of LEADS,
type libraries that allow communication with Rational
Rose[5], XMI aware tools, TriSL Architectural
Development Environment[6] and ACMEStudio [7] tool
will be provided.
 A type library essentially has the following structure.

{

/* Any C++ code, might be some Global
Declarations, #include statements etc. */

}

type <name> [extends <supertype> {, <supertype>}*]

internal
begin
/* Some declarations or functions(in C++) that are not

visible to LEADS specifications. Could be used to store
internal variables specific to the Specification
Environment */

end

external
begin
/* Attribute Definitions… */
 <Attribute name> : <Type>

 {
/* Get function (C++) should return object

of the same type */
 }

 /* Methods */

 <Method name>(<parameters>) : <Return Type>
 {
 /* Implementation */
 }
end

end

To illustrate how a type library is defined we’ll use some
of the classes provided by ACME’s tool API[7]. ACME
offers a class called ACMEParser which parses ACME
descriptions and organizes them into a Design. Each
Design consists of several Systems. Each System in turn
offers methods that enumerate all the Components,
Connectors, Ports, Roles and Attachments. The ACME
library offers a class hierarchy called Enumeration to
contain collections of each of these entities. These classes
differ from the collection types offered by LEADS. In the
ACME library, every class defines methods to access the
entities it aggregates. This is not suitable for LEADS
which defines set membership in its constraints. We shall
write a small piece of the type library that would make
LEADS applicable to ACME specifications.

/*---------------ACME.tlb--------------------------*/
{
#include <stdio.h>

namespace ACME
{
#include “ACME.h”
}
}

type Parser
 internal
 begin
 ACME::ACMEParser *p;
 end

external
begin

 getDesign(fname: String) : Design
 {
 FILE *fp = fopen(fname, "r");
 ACME::ACMEInputStream i(fp);
 p = new ACME::ACMEParser(&i);
 ACME::Design *d = p->parseDesign();
 Design * des = new Design;
 des->acmedesign = d;
 return(*des);
 }
 end
end

type Design
 internal
 begin
 ACME::Design * acmedesign;
 end
 external
 begin
 numSystems : Integer
 {
 return(acmedesign->getnumSystems());
 }
 systems : Set(System)
 {
 ACME::SystemEnumeration * allsys =

new ACME::SystemEnumeration;
 acmedesign->getSystems(allsys);
 set<System &> * allsystems =

new set<System &>;
 while (allsys->moreItems())
 {
 System *s = new System;
 s->acmesystem = allsys->getNextItem();
 allsystems->push_back(*s);
 }
 return(*allsystems);
 }
 end
end

type System
…

In the type library, we are essentially putting wrappers
over the existing classes provided by the tool API so that
the types are understandable to LEADS. Since, ultimately

the LEADS parser will be generating C++ code for the
type library too, there could be places where name
collisions can occur (as in the example). So, we make use
of namespaces and define all the types offered by
“ACME.h” in the namespace ACME.
 In the type Parser, we maintain a pointer to
ACME::ACMEParser to which the getDesign method is
delegated. ACME::ACMEParser::parseDesign() returns
“ACME::Design *” which cannot be used by LEADS.
Hence in Design, we maintain an internal variable which
holds a pointer to ACME::Design, to which all requests are
delegated.
 ACME::Design provides a method called getSystems().
This method returns a pointer to SystemEnumeration
which is a collection object defined in the ACME library
used to hold Systems. In the get function for systems (an
attribute in Design), since LEADS cannot use
SystemEnumeration as a collection type, we store all the
elements of SystemEnumeration in a set<System> and
return this set.
 The type library can be completed proceeding on the
same lines.

4. The Overall System Architecture

We now present a control flow diagram that depicts the
logical organization of various components in LEADS.

Specification Environment

Type Library

Pattern
Matcher

Pattern

Action

Indicates “uses” dependency

Figure 1

The Type Library is the interface between the LEADS
environment and the specification environment. Every
Pattern, to identify its instances uses the Pattern Matcher,
which in turn uses the Type Library. For every matched
instance, the Action is called, which could use the Type
Library.

5. On the expressiveness of the language

Through LEADS, we wanted to make the information
searching process easier and modular. Organizing the
process into patterns is the basic underlying principle. We
also took a declarative approach towards specifying the
patterns, since we felt this was intuitive and simple. The
patterns are specified as a set of constraints that hold on its
participants. The constraint language is based on First
Order Logic, and does not define relations over relations,

etc. However, since our aim is to make specifying patterns
easier, we have enriched the language by adding some
special primitives that don’t necessarily fall under First
Order Logic. This decision was driven by the fact that
certain operations were done repeatedly in many
exploitations. To name some, checks for reachability,
connectedness, which are captured by the
transitive_closure construct; ordering entities, so as to do
things like diagram layout, getting test sequences,
organizing the designs, which is captured by the order
construct; partitioning sets of entities based on some
properties of interest, which is captured by the partition
construct. These primitives also make the patterns easier to
express.

Newer primitives can be introduced into the language,
by defining them in the type library (as methods of types),
or by modeling them as patterns.

6. On the reusability of LEADS specifications

LEADS was designed keeping in mind that there are
several specification environments from different vendors
often supporting the same specification language. Scripts
that exploit the information content in one specification
environment, cannot be reused in another specification
environment, if the API provided by the specification
environment changed.
 In LEADS only the type library depends on the
specification environment. The same LEADS
specifications can be used with a different specification
environment, by simply altering the type library to suit the
specification environment.

7. Related Work

In LEADS we incorporate ideas that have been successful
in various domains, to exploit information in
specifications. In this section, we summarize the related
work in various domains that have influenced the design
of LEADS.

Specifications

UML has been adopted by OMG as a standard for
software specification. UML provides various views and
diagrams where in software can be diagrammatically
specified. The UML standard is obtainable from the OMG
web site [8]. Several industry strength tools have emerged
that support UML. A brief listing of various commercial
tools and the features they offer can be found at [9]. Many
of these tools offer extensibility interfaces by which one
can access the information structure and the tool’s
functionality (Eg: Rose Extensibility Interface from
Rational Rose Help).
 The academic community has been looking into
Software Architecture Description Languages. ACME[7]
has been proposed as a means of achieving interchange
across ADLs. ACME is supported by a tool, which
provides accessibility API..
 The OMG has recently proposed the XMI (XML
MetaData Interchange)[4], by which several tools that
implement UML can exchange information. OMG
recommends that all tools that support UML provide for
interchange using XMI. The XMI recommendation is
available at the OMG Web Site[8].

Extensibility in Specification Environments
Rational Rose[5] provides a scripting language called
Rose Scripts through which one can write scripts (in Basic
programming language) that can exploit the information
content in the specification being edited/ written in
Rational Rose. These scripts essentially access the API
provided by Rose. The script is coded in a programming
language that does not make the search process easy. One
has to work in and out of the information structure while
trying to search for information of interest. Rose Scripts
are also tightly bound to the Rational Rose tool. In
contrast, LEADS is specially designed to make
specification of searches easy. The patterns are specified
in a declarative language that is intuitive and simple to
use. LEADS is also designed in such a way that it
maintains applicability to a wide range of specification
environments and is not tightly bound to any single
specification environment.

Patterns in Specifications
 The SADL[10] architectural description language is
designed to facilitate Architectural Refinement, from an
abstract high level architecture to a more detailed concrete
architecture. In [11], Mark Moriconi et. al. talk about
Refinement Patterns that essentially provide mappings
from a high level, less detailed pattern to a lower level,
concrete pattern. Given such refinement patterns, the
SADL system parses specifications written in SADL,
looks for instances of the high level patterns and replaces
them with more concrete instances, as defined by the
refinement pattern. In LEADS, we try to generalize the
problem of Architecture Refinement, by allowing a piece
of C++ code to be written whenever a pattern is identified.
The mapping/refinement to the lower level architecture
can be implemented in the actions. This way Architectural
Refinement can be achieved across specification languages
and environments. So, potentially one could look at an
architectural description (in an ADL-based environment)
for high level patterns and refine them into a low level
(say Design) specification in a different design
environment.
 In [12], Rick Kazman and Marcus Burth describe
IAPR (Interactive Architecture Pattern Recognition) where
user defined patterns can be searched within a software
architecture. IAPR is described as a reverse engineering
tool that can be used to understand software architectures
by viewing them from higher levels of abstraction. IAPR
provides GUIs, an Architecture Modeler and a Pattern
Modeler for user specification of the software architecture
and patterns respectively. In LEADS, we build up on this
idea of identifying patterns in architectures, allow users to
specify actions to be performed when patterns are
identified, and define an interface (through the type
library) by which LEADS can be used in association with
any specification environment.

The Pattern-Action approach
 The Pattern-Action approach has been used in many
useful tools. yacc[2] allows users to associate actions with
production rules (conforming to LALR(1) grammars) that

are performed when the production rules are parsed. In
XML[13], the XSL style sheets are specified as patterns
and actions, and used to convert custom XML documents
to HTML or any other form.

 The design of LEADS has been influenced by the
Z[14] software specification language. Though LEADS
only offers a small subset of Z, it provides for some
primitives (not in Z) that make the pattern specification
process easier. Our concept of defining a pattern is very
similar to schemas in Z. Schemas in Z contain some
members and some invariants that hold amongst them.
Schemas in Z can be instantiated, as a member of another
schema.

8. Conclusions and Future Work

We present a Language for Exploiting Architectural and
Design Specifications. Our contribution through LEADS
is that we make tool writing faster, easier and modular.
The phases of exploiting information are separated, and
constructs are provided to make the information searching
process easier. With the type library, we decouple from the
specification environment and ensure the applicability of
LEADS over a wide range of specifications and
specification environments.

As we use the language to exploit the information
content in specifications, more primitives that will ease the
pattern searching process will be discovered. These
primitives will be included in the language in future
revisions.
 Since, we generate C++ classes for the patterns, they
can be extended easily to suit more specific requirements.
A repository of such patterns can be maintained and the
application of the exploitations can be integrated into the
specification environments itself. This would eventually
allow knowledge reuse.

9. References

[1] Rational Rose Extensibility Interface, Rational Rose
Help, Rational Rose 98i from Rational Corporation,
http://www.rational.com.
[2] S.C. Johnson, “YACC – Yet another compiler
compiler”. Technical Report 32, Murray Hill, NJ:
Computing Science Research Center, AT&T Bell
Laboratories, 1975.
[3] J. Rumbaugh, I. Jacobson, G. Booch, “The Unified
Modeling Language Reference Manual”, Addison-Wesley,
1999.
[4] XML Metadata Interchange, http://www.omg.org
[5] Rational Software, http://www.rational.com
[6] R. Lakshminarayanan, “TriSL – A Software
Architecture Description Language and Environment”,
M.Sc.(Engg) dissertation, Department of Computer
Science and Automation, Indian Institute of Science, May
1999
[7] ACME Web Site, http://www.cs.cmu.edu/~acme
[8] OMG Web Site, http://www.omg.org
[9] http://www.objectsbydesign.com/tools/

umltools_byCompany.html
[10] M. Moriconi, R. A. Riemenschneider, “Introduction
to SADL 1.0--A Language for Specifying Software
Architecture Hierarchies”, Technical Report SRI-CSL-97-

01, Computer Science Laboratory, SRI International,
March 1997, http://www.csl.sri.com/sadl/sadl-intro.ps.gz.
[11] M. Moriconi, X. Qian, and R. A. Riemenschneider,
“Correct Architecture Refinement”, IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995, pp. 356-
372.
[12] R. Kazman, M. Burth, “Assessing Architectural
Complexity”, 2nd Euromicro Working Conference on
Software Maintenance And Reengineering (CSMR ’98),
IEEE Computer Society Press, 1998.
[13] XML, http://www.w3c.org/XML
[14] J. Michael Spivey, “The Z Notation”, A Reference
Manual, Second Edition, Prentice Hall, 1992

