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Abstract 

Precise specification of the architecture and design of 
software is a good practice. Such specifications contain a 
lot of information about the software that can potentially 
be exploited by tools, to reduce redundancy in software 
writing by automating routine tasks, as well as giving 
valuable feedback on the software. In LEADS, we propose 
a language and environment that is designed to make 
writing such tools a lot easier. LEADS is based on the 
Pattern-Action approach, where one specifies the pattern 
of information of interest and the actions to be taken when 
it is found. LEADS decouples itself from the specification 
environments/ formats thereby ensuring wide applicability. 
Here we discuss the language features of LEADS that 
make tool writing a lot more organized and modular. 
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1. Introduction 

With the advent of many standard notations and practices, 
many industry standard specification environments have 
come up. The software specifications1 are typically stored 
as an object hierarchy. Specification environments often 
offer accessibility interfaces to the object hierarchy. The 
accessibility interfaces allow for extensions and 
customizations to the environment to suit specific needs, 
and also allow third party tools and power users to exploit 
the information content stored in them E.g.: [1]. In the 
context of architectural and design specifications, we 
highlight some of the possible ways in which such tools2 
can exploit the information. 
• Automatic Code Generation – This can be done when 

we are dealing with small parts of the system that are 
understood and specified sufficiently enough to 
completely automate their code generation. This is 
normally possible when domain specific components 
and connectors are used, since such components and 
connectors are well defined and known.  
 Other examples include automatic code generation 
for data structures; generation of IDL3 specifications 

                                                        
1 When we use the term ‘specifications’, we refer to 
architectural and design specifications, unless mentioned 
otherwise. 
2 With ‘tools’ we refer to tools that exploit the information 
content in specifications. 
3 Interface Description Language for various Component 
Technologies like CORBA, COM 

from component diagrams; and application of the 
singleton pattern over a class. 

• Design Guidance – This can be done when we do not 
have enough knowledge to completely automate the 
generation of code, but have a good knowledge of the 
concerns in design and popular solutions to the same.  
 Tools that suggest usage of certain design patterns 
to decouple change in the given contexts come under 
this category. Some other examples include tools that 
could assist the designer in identifying possible layers 
in a complex system of classes; and tools that analyze 
the design to give good test sequences. 

• Analysis – The specifications act as a blue print for the 
software that is going to be produced. So, an early 
analysis could be very useful. Popular analysis 
techniques include calculating metrics or conducting 
simulations so as to give feedback about the 
software’s robustness and feasibility. 

 
Clearly, in all the above-mentioned means of 

exploiting information in specifications, the tools have to 
go through a two-phase process. They first search for 
information of interest in the specifications, and then take 
appropriate actions. The programming languages in which 
the tools are written do not offer any special constructs 
that make the search easy. Most often, the programs will 
have to work in and out of the complex object hierarchy in 
which the information is organized. 

In LEADS, we use a Pattern-Action approach. In a 
LEADS specification, a tool writer has to simply specify 
the kind of information he is looking for, as a pattern, and 
the action to be performed when the information is found 
in a specification. The patterns are specified in a 
declarative language, using which one specifies the 
constraints that hold amongst the participants of the 
pattern. This declarative language offers special primitives 
that cater to the common needs of tools that work on 
architectural and design specifications. Since the potential 
ways of taking action on a pattern found could be very 
extensive, we generalize the actions as bits of C++ code. 
This approach is similar to that of yacc[2], where every 
time a grammar rule is parsed, a piece of code is executed. 

In our design of LEADS, decoupling from the 
specification environment was of prime importance. Only 
this would ensure the applicability of LEADS over a wide 
domain of specification languages and environments. But 
the specification environment is where the facts, that are 
required for identifying the patterns, are provided. Hence 
we provide the type library, by which a mapping, from the 
types used in the LEADS specification to those present in 
the specification environment can be provided. Essentially, 
in a type library, one defines a new type of information 
and a means of obtaining it. This decoupled nature of 



LEADS allows it to act as glue across specification 
environments thus helping exchange of information 
amongst various specification languages and 
environments. 

The presence of the type library also ensures that 
LEADS specifications are reusable across specification 
environments that just differ in their syntax. Only the type 
library needs to be changed to make the LEADS 
specifications work with different specification 
environments. 

We now discuss the design and languages features of 
LEADS through an example. 

2. An Example 

 Large designs often have a large number of classes. A 
tool that could introduce some kind of organization and 
hierarchy is useful. Say, the tool analyses the class 
diagram, looks for dependencies amongst the classes, 
organizes the classes into layers and then organizes these 
layers themselves in a hierarchy based on relative 
dependencies. The tool puts classes that are interdependent 
to each other in the same layer. Then, the tool creates an 
ordering based on the dependency graph amongst the 
layers. We will now illustrate how this tool can be written 
using LEADS. Assume that the types used in the following 
script are from a specification environment that allows 
class diagram specifications in UML[3]. 
 
import “UML.tlb” 
 
relationship BidirectionalDependency(c1 : Class,  

c2 : Class) 
constraints 
 (c2 in  

transitive_closure(c1.associations.role2.class) 
 and c1 in 

transitive_closure(c2.associations.role2.class)) 
end 
 
pattern Layer(m : Model) 
participants 
 classes : set(Class); 
 position : integer 
constraints 
 range of classes = m.classes and 
 classes = partition of m.classes based on  

relationship BidirectionalDependency 
end 
 
relationship LayerDependency(l1 : Layer, l2 : Layer) 
constraints 
 (exists c1, c2 : Class; 

 range of c1 = l1.classes and range of c2 = 
l2.classes 

  and c2 in 
 transitive_closure(c1.associations.role2.class)) 

end 
 
pattern LayeredSystem(m : Model) 
participants 
 layers : set(Layer) 

constraints 
layers = all Layer(m) and 
order layers on layers.position suchthat  

(l1,l2 : Layer; range of l1 = layers and 
range of  l2 = layers and  
(l1.number < l2.number iff 
 LayerDependency(l2,l1))) 

action 
 {  
  // Code in C++ to list the layers 

for (set<Layer>::const_iterator i = layers.begin(); 
 i != layers.end(); i++) 

{ 
  Layer *l = *i; 
  cout << Layer position << l->position; 
  for (set<Class>::const_iterator j  

= l->classes.begin(); j != l->classes.end(); j++) 
  { 
 Class *c = *j; 
 cout << Class << c->name << endl; 
   } 

} 
end 
 

LEADS provides two constructs for organizing the 
information searching. The pattern construct is used to 
specify a pattern of information as per its participants, the 
constraints that hold amongst them, and the action to be 
performed when the pattern is identified. The relationship 
construct is used to specify adequacy criteria for a 
relationship to exist amongst some elements. 

In the example, our aim is to organize all the classes in 
a model into layers, and to number the layers based on 
their relative dependencies. We first define a Layer, to 
contain a set of classes and a number. This number 
(position) will essentially indicate the layer’s position in 
the hierarchy. All interdependent classes form a single 
layer. So, each layer is essentially a partition of the entire 
set of classes. This is specified by the statement “classes = 
partition of m.classes based on relationship 
BidirectionalDependency”. Here, classes is one of the 
parts or sections created as a result of the partitioning of 
m.classes. The relationship BidirectionalDependency is 
used to partition the set of classes. The statement indicates 
that the set of all classes in the model m, will be 
partitioned in such a way that all individual classes that 
fall into each partition will be related to each other by the 
relationship BidirectionalDependency. classes can be any 
of the partitions. Note that BidirectionalDependency 
accepts two parameters, both of type Class, which is the 
same type as the constituents of the partitions.  

The relationship BidirectionalDependency between 
two classes is defined to exist if the two are either directly 
or indirectly dependent on each other. Indirect dependency 
is specified using the transitive_closure construct. 
c1.associations.role2.class is an expression that gives all 
classes that are involved in associations with c1. 
transitive_closure(c1.associations.role2.class) gives all 
transitively (indirectly) dependent classes too.  Thus, 
BidirectionalDependency holds amongst two classes c1 
and c2, if and only if, c1 is either directly or indirectly 



dependent on c2, and c2 is either directly or indirectly 
dependent on c1. 

Thus, the two constructs Layer and 
BidirectionalDependency enable us to partition the set of 
all classes, into a set of layers. 

We then define another relationship, LayerDependency 
that will help us to determine if a layer is dependent on 
another. A layer l1 is dependent on another layer l2, if and 
only if, l1 contains at least one class which is either 
directly or indirectly dependent on a class present in l2. 
We again use the transitive_closure construct to specify 
this. 

Finally, in LayeredSystem, we group all the layers that 
were obtained in a set. We then order this set based on the 
relative dependencies between the layers. Clearly there 
will be many instances of the pattern Layer. To group all 
such instances into a set, we use the keyword all. Thus, the 
statement “layers = all Layer(m)”, finds all possible 
instances of Layer(m) and makes them elements of the set 
layers. We then order the elements of the set layers based 
on the relative dependencies between them. “order layers 
on layers.position suchthat …” does exactly that. The 
order construct is defined on sets, and a number is allotted 
to each element in the set, based on some conditions that 
determine how the numbering is done. In this example, the 
condition states that a layer l1 gets a number less than 
another layer l2, only if l1 is not dependent on l2. The 
order construct serves two purposes. One, it states that an 
ordering is done, explicitly. Two, since the possible 
numbers assigned to each element can potentially be 
infinite, the special construct allows the solver to constrain 
the domain, and will assign a numbering that starts from 1 
only. In the action section, the code written in C++, 
simply generates a listing of each layer, and its position in 
the hierarchy. 

The LEADS parser, after semantic checking, will 
generate classes (in C++) for each pattern. The following 
is an example of the prototypes of the classes that are 
generated. 
 
#include “UML.h” // to provide the types Class, Model…  

// (from the type library) 
  

bool BidirectionalDependency(Class c1, Class c2); 
 
class Layer 
{ 
 public: 
    set<Class> classes; 
    int number; 
 
    static set<Layer> & Match(Model m); 
    void Action(Model m); 
}; 
 
bool LayerDependency(Layer l1, Layer l2); 
 
class LayeredSystem 
{ 
 public: 
    set<Layer> layers; 

  
    static set<LayeredSystem> & Match(Model m); 
    void Action(Model m); 
}; 
 
Ultimately, LayeredSystem::Match(m) will find the 
pattern in the input specification and execute the Action, 
for each instance of the pattern that is identified. Match() 
also returns the set of all instances of the pattern found. 

3. The Language 

The important requirements that have influenced the 
design of LEADS are: 
• Searching for patterns of information in the 

specifications should be easier, organized and 
modular. 

As discussed earlier, an important aspect of 
exploiting information, is to first identify the 
information of interest. An intuitive means of 
organizing this search, which would not require the 
tool writers to recurse in and out of the complex 
object hierarchies, is required. LEADS is based on the 
Pattern-Action approach, which separates the search 
from the action. Defining a pattern, which is 
essentially a set of constraints that hold on the 
participants of the pattern, specifies a search for 
information. A pattern can be accompanied by some 
actions that are to be taken when an instance of the 
pattern is identified. The problem of searching for 
information and subsequent actions to be taken can be 
decomposed into many phases (as patterns-actions 
and relationships) and each one tackled at a time. This 
approach makes the searching more modular. 

• The language should offer constructs that capture the 
commonly encountered operations while exploiting 
information in architectural and design specifications. 

Exploiting architectural and design specifications 
involve certain operations that are done repeatedly. 
Checks for reachability, connectedness; operations 
that partition collections into smaller groups based on 
some desired properties; ordering collections based on 
some properties occur quite frequently. Hence, 
LEADS offers special primitives (see section 3.5) like 
partition, order, and some statistical functions that 
capture the typical needs of a tool that exploits 
information in architectural and design specifications. 

• The language should be decoupled from the 
specification environment (which provides the data). 

This has been a very important design issue in 
LEADS. To maintain applicability over a wide range 
of specification languages and specification 
environments, the data types that can be used in the 
patterns should not be constrained by the specification 
environments. So, LEADS is designed in such a way 
that it can potentially be used with any specification 
environment. Types specific to a specification/ 
specification environment are defined in the type 
library. The type library is essentially a means of 
defining a new type of data, and a means of obtaining 
the data (from the specification environment). 



3.1 Patterns 

Often, while searching for information in a specification, 
the unit of information one is looking for, is not just a 
basic entity but a group of entities that may interact with 
each other in a desired way. Such groups of entities could 
all be of the same type, or of different types. We refer to 
these entities as participants of the pattern. The 
relationships amongst the participants are specified as 
constraints that need to be true for the participants to be 
part of the pattern. In any given specification, there could 
be several instances of a pattern. This essentially means 
that different combinations of participants could satisfy the 
constraints. For every such instance of the pattern, an 
action (which is a piece of C++ code) is executed.  
Patterns also take parameters to support communication 
across patterns. This essentially reflects as a parameter that 
is passed to the match function of the pattern when the 
C++ code is generated. 
 A pattern is also a type. This means that a pattern can 
have instances of patterns as participants, or use an 
instance in its constraints, or take an instance of a pattern 
as parameter (to its match function). 

3.2 Relationships 

The relationship construct is used to specify adequacy 
criteria for a relationship to exist amongst some elements. 
A relationship is specified as a set of constraints that hold 
amongst its parameters. A relationship always evaluates to 
true or false. Relationships allow for reuse of commonly 
occurring constraints amongst entities. Unlike a pattern, a 
relationship does not have participants, and cannot be 
instantiated. Relationships are also very useful when using 
the special primitives like partition. 

3.3 Constraints 

Constraints are used in the specification of both patterns 
and relationships. In general constraints are specified using 
a simple declarative language based on first order logic. 
Most of the common primitives like expressions; 
conditional operators like implies, iff (if and only if); set 
operations like union, intersection, negation, difference; 
testing membership in sets; operations over collections 
like forall, exists; are provided. The special primitives that 
make the constraint specification more specialized towards 
architectural and design specifications are discussed in a 
subsequent section. 

3.4 Basic Types 

LEADS offers the following basic types; Bool, Integer, 
Real, String, Character, Date. The vector types offered are 
Collection, Set, Sequence and Bag. Set, Sequence and Bag 
are essentially specializations of Collection with specific 
properties for different contexts. Instances of Set, 
Sequence and bag can be converted to each other type 
using type casting.   

3.5 Special Primitives 

LEADS offers some special primitives that make the 
specification of constraints easier, shorter and clearer.  
 

range – Most of the variables used in LEADS are free 
variables. Potentially, there can be infinite values that 
these free variables can hold. To find instances of the 
pattern more efficiently, the range keyword is used to 
constrain the domain of the free variables. The range of a 
free variable has to be specified before it is used in any 
expression. Range constrains a free variable to contain 
values that belong to the collection specified in the 
expression. 
 
all – A pattern can have many instances. When it is 
required to put all the instances of a pattern into a set, the 
all keyword is used. Thus “layers = all Layer(t)”, puts all 
possible instances of Layer(t) into the set layers.  
 
transitive_closure – Transitive closure is used to obtain 
instances that are related to a particular instance through 
transitivity (indirectly). In general, any expression that 
maps an instance to another instance of the same type can 
be given as a parameter to this function. The function will 
eventually evaluate to a set that will comprise of the 
largest set that is reachable either directly or indirectly 
through the expression given as parameter. 
 Consider the clause transitive_closure(c.parents). 
 Say, parents is an attribute in type Class, which 
aggregates all the parent classes of a particular class. 
transitive_closure(c.parents) represents a set of Class 
which contains the parents of c, the parents of the parents 
of c and so on. 
 
partition - This clause essentially defines a partition on a 
collection based on certain conditions. The condition 
based on which the partitioning is done could be a 
relationship that exists amongst the members of each 
partition, or based on a value of an expression involving 
each member in the partition. 
“classes = partition of m.classes based on relationship 
BiDirectionalDependency”, (discussed in the example), 
partitions the set m.classes such that members of each 
partition are related to each other by the relationship 
BiDirectionalDependency. classes can be any of the 
possible partitions. 
“classes = partition of m.classes based on valueof 
m.classes.ClassKind”, says that the set m.classes is 
partitioned, based on the value the expression 
m.classes.ClassKind evaluates to. Thus, this will result in 
partitioning of m.classes such that each category of class 
(like NormalClass, ParameterizedClass, InstantiatedClass, 
etc.) is placed in separate groups. 

order -  The order clause is used to impose an ordering on 
the members of a set based on some conditions. Ordering 
does not necessarily mean a total ordering. Thus, it is not 
as simple as arranging a set as a sequence. To allow partial 
orders too, the order clause is defined such that a number 
is assigned to each member in the set that will denote its 
position in the order. Thus the data object to which the 
number is assigned is also specified in the order clause.  
The other reason for advocating the use of the order clause 
instead of using constraints directly is that, since the 
ordering is done on a numeric data object, there will be 



infinitely many assignments that will satisfy the 
constraints. Through this special clause, a simple ordering 
that starts from 1 is assigned always. Consider the 
following example. 
“order layers on  layers.number suchthat ( l1, l2 : Layer; 
range of l1 = layers and range of l2 = layers  and ( 
l1.number < l2.number iff count(l1.classes) <       count( 
l2.classes))”  
Here, order will assign numbers in layers.number such 
that the layer with the highest number of classes gets the 
highest number and the layer with the least number of 
classes gets the number 1. 

Statistical primitives - In order to find and specify 
metrics easily, certain statistical functions are defined over 
collections, like count(), max(), min(), avg(), median(), 
mode(). 

3.6 The type library 

An important design goal of LEADS is to maintain 
applicability over several specification languages and 
specification environments. So, the data types offered by a 
specification language cannot be part of the design of 
LEADS itself. A means by which a data type, present in a 
foreign environment, is declared and accessed needs to be 
provided. The type library serves this purpose. 
 The information provided by a specification 
environment is typically organized as an information 
structure, which is navigable from the top to the leaves. In 
general, a node can compose of an attribute (of some basic 
type), an instance of some aggregate type, collections of 
attributes or entities, or some functions. Many 
specification environments provide accessibility interfaces 
to the information structure (sometimes called the tool 
API). 
 In the type library, one essentially defines the 
information structure provided by the specification 
environment. Its not just enough if the information 
structure is declared. A means of obtaining this 
information every time something is accessed in the 
information structure needs to be provided too. This is 
important since LEADS has no knowledge of the presence 
of the specification environment, the kind of protocol it 
requires for communication, etc. So, for every element in 
the information structure, a get function has to be 
provided. The get function could just be a single line of 
code translating requests to the tool API, or could be 
parsing a specification itself. 
 LEADS requires to iterate through the collections 
while matching patterns. LEADS uses predefined 
collection types set, bag and sequence for this. So, if the 
tool API provides or uses a different implementation of 
collections, the collections have to be converted to the 
ones defined in LEADS in the get functions. 
 A type library needs to be written just once for every 
specification environment. A LEADS specification can 
use more than one type library at once, thus also allowing 
for exchange of information between the environments. 
With the OMG now standardizing the representation for 
UML through the XMI[4], a type library that 
understands/parses an XMI document will ensure LEADS 

is usable with many specification environments that 
support XMI. As part of the implementation of LEADS, 
type libraries that allow communication with Rational 
Rose[5], XMI aware tools, TriSL Architectural 
Development Environment[6] and ACMEStudio [7] tool 
will be provided. 
 A type library essentially has the following structure. 
 
 
 
{ 

/* Any C++ code, might be some Global 
Declarations,  #include statements etc. */ 

} 
 
type <name> [ extends <supertype> {, <supertype>}* ] 
 

internal 
begin 
/* Some declarations or functions(in C++) that are not 

visible to LEADS specifications. Could be used to store 
internal  variables specific to the Specification 
Environment */ 

end 
 

external 
begin 
/* Attribute Definitions… */ 
 <Attribute name> :  <Type> 

  { 
/* Get function (C++) should return object 

of the same type */ 
 } 

 
 /* Methods */ 

 <Method name>(<parameters>) : <Return Type> 
 { 
  /* Implementation */ 
 } 
end 

end 
 
To illustrate how a type library is defined we’ll use some 
of the classes provided by ACME’s tool API[7]. ACME 
offers a class called ACMEParser which parses ACME 
descriptions and organizes them into a Design. Each 
Design consists of several Systems. Each System in turn 
offers methods that enumerate all the Components, 
Connectors, Ports, Roles and Attachments. The ACME 
library offers a class hierarchy called Enumeration to 
contain collections of each of these entities. These classes 
differ from the collection types offered by LEADS. In the 
ACME library, every class defines methods to access the 
entities it aggregates. This is not suitable for LEADS 
which defines set membership in its constraints.  We shall 
write a small piece of the type library that would make 
LEADS applicable to ACME specifications. 
 
/*---------------ACME.tlb--------------------------*/ 
{ 
#include <stdio.h> 



namespace ACME 
{ 
#include “ACME.h” 
} 
} 
 
type Parser 
 internal 
 begin 
  ACME::ACMEParser *p; 
 end 

external 
begin 

  getDesign(fname: String) : Design 
  { 
   FILE *fp = fopen(fname, "r"); 
   ACME::ACMEInputStream i(fp); 
   p = new ACME::ACMEParser(&i); 
   ACME::Design *d = p->parseDesign(); 
   Design * des = new Design; 
   des->acmedesign = d; 
   return(*des); 
  } 
 end 
end 
 
type Design 
 internal 
 begin 
  ACME::Design * acmedesign; 
 end 
 external 
 begin 
  numSystems : Integer 
  { 
   return(acmedesign->getnumSystems()); 
  } 
  systems : Set(System) 
  { 
   ACME::SystemEnumeration * allsys =  

new ACME::SystemEnumeration; 
   acmedesign->getSystems(allsys); 
   set<System &> * allsystems =  

new set<System &>; 
   while (allsys->moreItems()) 
   { 
    System *s = new System; 
    s->acmesystem = allsys->getNextItem(); 
    allsystems->push_back(*s); 
   } 
   return(*allsystems); 
  } 
 end 
end 
 
type System 
… 
 
In the type library, we are essentially putting wrappers 
over the existing classes provided by the tool API so that 
the types are understandable to LEADS. Since, ultimately 

the LEADS parser will be generating C++ code for the 
type library too, there could be places where name 
collisions can occur (as in the example). So, we make use 
of namespaces and define all the types offered by 
“ACME.h” in the namespace ACME. 
 In the type Parser, we maintain a pointer to 
ACME::ACMEParser to which the getDesign method is 
delegated. ACME::ACMEParser::parseDesign() returns 
“ACME::Design *” which cannot be used by LEADS. 
Hence in Design, we maintain an internal variable which 
holds a pointer to ACME::Design, to which all requests are 
delegated.  
 ACME::Design provides a method called getSystems(). 
This method returns a pointer to SystemEnumeration 
which is a collection object defined in the ACME library 
used to hold Systems. In the get function for systems (an 
attribute in Design), since LEADS cannot use 
SystemEnumeration as a collection type, we store all the 
elements of SystemEnumeration in a set<System> and 
return this set. 
 The type library can be completed proceeding on the 
same lines.  

4. The Overall System Architecture 

We now present a control flow diagram that depicts the 
logical organization of various components in LEADS. 
 

Specification Environment 
 

Type Library 
 

Pattern 
Matcher 

 

Pattern 
 

Action 
 

Indicates “uses” dependency 
  

Figure 1 

The Type Library is the interface between the LEADS 
environment and the specification environment. Every 
Pattern, to identify its instances uses the Pattern Matcher, 
which in turn uses the Type Library. For every matched 
instance, the Action is called, which could use the Type 
Library. 

5. On the expressiveness of the language 

Through LEADS, we wanted to make the information 
searching process easier and modular. Organizing the 
process into patterns is the basic underlying principle. We 
also took a declarative approach towards specifying the 
patterns, since we felt this was intuitive and simple. The 
patterns are specified as a set of constraints that hold on its 
participants. The constraint language is based on First 
Order Logic, and does not define relations over relations, 



etc. However, since our aim is to make specifying patterns 
easier, we have enriched the language by adding some 
special primitives that don’t necessarily fall under First 
Order Logic. This decision was driven by the fact that 
certain operations were done repeatedly in many 
exploitations. To name some, checks for reachability, 
connectedness, which are captured by the 
transitive_closure  construct; ordering entities, so as to do 
things like diagram layout, getting test sequences, 
organizing the designs, which is captured by the order 
construct; partitioning sets of entities based on some 
properties of interest, which is captured by the partition 
construct. These primitives also make the patterns easier to 
express.  

Newer primitives can be introduced into the language, 
by defining them in the type library (as methods of types), 
or by modeling them as patterns. 

6. On the reusability of LEADS specifications 

LEADS was designed keeping in mind that there are 
several specification environments from different vendors 
often supporting the same specification language. Scripts 
that exploit the information content in one specification 
environment, cannot be reused in another specification 
environment, if the API provided by the specification 
environment changed. 
 In LEADS only the type library depends on the 
specification environment. The same LEADS 
specifications can be used with a different specification 
environment, by simply altering the type library to suit the 
specification environment.  

7. Related Work 

In LEADS we incorporate ideas that have been successful 
in various domains, to exploit information in 
specifications. In this section, we summarize the related 
work in various domains that have influenced the design 
of LEADS.  
 
Specifications 

UML has been adopted by OMG as a standard for 
software specification. UML provides various views and 
diagrams where in software can be diagrammatically 
specified. The UML standard is obtainable from the OMG 
web site [8]. Several industry strength tools have emerged 
that support UML. A brief listing of various commercial 
tools and the features they offer can be found at [9]. Many 
of these tools offer extensibility interfaces by which one 
can access the information structure and the tool’s 
functionality (Eg: Rose Extensibility Interface from 
Rational Rose Help). 
 The academic community has been looking into 
Software Architecture Description Languages. ACME[7] 
has been proposed as a means of achieving interchange 
across ADLs. ACME is supported by a tool, which 
provides accessibility API.. 
 The OMG has recently proposed the XMI (XML 
MetaData Interchange)[4], by which several tools that 
implement UML can exchange information. OMG 
recommends that all tools that support UML provide for 
interchange using XMI. The XMI recommendation is 
available at the OMG Web Site[8]. 

 
Extensibility in Specification Environments 
Rational Rose[5] provides a scripting language called 
Rose Scripts through which one can write scripts (in Basic 
programming language) that can exploit the information 
content in the specification being edited/ written in 
Rational Rose. These scripts essentially access the API 
provided by Rose. The script is coded in a programming 
language that does not make the search process easy. One 
has to work in and out of the information structure while 
trying to search for information of interest. Rose Scripts 
are also tightly bound to the Rational Rose tool. In 
contrast, LEADS is specially designed to make 
specification of searches easy. The patterns are specified 
in a declarative language that is intuitive and simple to 
use. LEADS is also designed in such a way that it 
maintains applicability to a wide range of specification 
environments and is not tightly bound to any single 
specification environment. 
 
Patterns in Specifications 
 The SADL[10] architectural description language is 
designed to facilitate Architectural Refinement, from an 
abstract high level architecture to a more detailed concrete 
architecture. In [11], Mark Moriconi et. al. talk about 
Refinement Patterns that essentially provide mappings 
from a high level, less detailed pattern to a lower level, 
concrete pattern. Given such refinement patterns, the 
SADL system parses specifications written in SADL, 
looks for instances of the high level patterns and replaces 
them with more concrete instances, as defined by the 
refinement pattern. In LEADS, we try to generalize the 
problem of Architecture Refinement, by allowing a piece 
of C++ code to be written whenever a pattern is identified. 
The mapping/refinement to the lower level architecture 
can be implemented in the actions. This way Architectural 
Refinement can be achieved across specification languages 
and environments. So, potentially one could look at an 
architectural description (in an ADL-based environment) 
for high level patterns and refine them into a low level 
(say Design) specification in a different design 
environment. 
 In [12], Rick Kazman and Marcus Burth describe 
IAPR (Interactive Architecture Pattern Recognition) where 
user defined patterns can be searched within a software 
architecture. IAPR is described as a reverse engineering 
tool that can be used to understand software architectures 
by viewing them from higher levels of abstraction. IAPR 
provides GUIs, an Architecture Modeler and a Pattern 
Modeler for user specification of the software architecture 
and patterns respectively. In LEADS, we build up on this 
idea of identifying patterns in architectures, allow users to 
specify actions to be performed when patterns are 
identified, and define an interface (through the type 
library) by which LEADS can be used in association with 
any specification environment. 
  
The Pattern-Action approach 
 The Pattern-Action approach has been used in many 
useful tools. yacc[2] allows users to associate actions with 
production rules (conforming to LALR(1) grammars) that 



are performed when the production rules are parsed. In 
XML[13], the XSL style sheets are specified as patterns 
and actions, and used to convert custom XML documents 
to HTML or any other form.  
 
 The design of LEADS has been influenced by the 
Z[14] software specification language. Though LEADS 
only offers a small subset of Z, it provides for some 
primitives (not in Z) that make the pattern specification 
process easier. Our concept of defining a pattern is very 
similar to schemas in Z. Schemas in Z contain some 
members and some invariants that hold amongst them. 
Schemas in Z can be instantiated, as a member of another 
schema. 

8. Conclusions and Future Work  

We present a Language for Exploiting Architectural and 
Design Specifications. Our contribution through LEADS 
is that we make tool writing faster, easier and modular. 
The phases of exploiting information are separated, and 
constructs are provided to make the information searching 
process easier. With the type library, we decouple from the 
specification environment and ensure the applicability of 
LEADS over a wide range of specifications and 
specification environments. 

As we use the language to exploit the information 
content in specifications, more primitives that will ease the 
pattern searching process will be discovered. These 
primitives will be included in the language in future 
revisions. 
  Since, we generate C++ classes for the patterns, they 
can be extended easily to suit more specific requirements. 
A repository of such patterns can be maintained and the 
application of the exploitations can be integrated into the 
specification environments itself. This would eventually 
allow knowledge reuse.  
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