
CONTEXTUAL CONSTRAINTS – BREAKING THE “TO CONSTRAIN OR
NOT TO CONSTRAIN” DILEMMA

R. Lakshminarayanan and Y. N. Srikant
Department of Computer Science and Automation

Indian Institute of Science
Bangalore - India

lakshmin@irisa.fr & srikant@csa.iisc.ernet.in

Abstract

Software architectures are developed incrementally, and
the development involves experimenting with a variety of
components, interaction patterns and styles. Composition,
substitution and refinement are three important operations
that are performed during these design experiments. ADLs
provide constructs to express composition, substitution and
refinement. It is important to be able to specify that “X is
composed with Y,” but the fact “why X is composed with Y”
is much more important and valuable, for they serve as the
(only) guide line for the evolution of the system. Such design
decisions are captured as constraints in the architecture
specifications. Every design decision, specified as a con-
straint, is tightly bound to its context, and is often applica-
ble only in that context. To be able to specify the context of
a constraint at the finer granularity of operations, it should
be possible to specify the operational context in which the
constraint is applicable. In this paper we present contex-
tual constraints, as supported by our ADL TriSL, which per-
mit tagging of constraints with operational contexts. TriSL
blends the notion of type conformance with contextual con-
straints to ensure that the constraints are checked when
(and only when) the corresponding design operations are
performed.

Keywords: Software architecture description lan-
guages, Contextual constraints, composition, substitution,
refinement, TriSL, software architecture, specification.

1 Introduction

Software architecture development involves design and
analysis of architectures. The design and analysis are in-
separable as design decisions are validated and influenced
by the results of the analysis. The development is done in-
crementally starting from an initial model annotated with

properties. The model is modified and elaborated to incor-
porate the results of the analysis. This process is repeated
iteratively till an architecture that meets the requirements of
all the stake holders is reached.

In general, the architecture development process in-
volves experimenting with a variety of component types,
interaction protocols, and architectural styles. Examples of
such experiments include determination of the usability of
a component from a library, evaluation of a COTS (Com-
mercial Off-The-Shelf) component for its suitability to the
task at hand, determination of the correctness of the refine-
ment of a particular component, and determination of when
and how can two components be composed together. These
design experiments can be considered as a set of operations
performed on the architectural model. We note that compo-
sition, substitution and refinement are three important oper-
ations that are often performed during design experiments.

In this Section we introduce an example, which will be
used to explain these operations. The goal of the exam-
ple is to design an architecture for a system that will sup-
port remote print service. We start with an initial model
of the architecture which consists two components, viz.,
PrintServer and Client. We identify the following
characteristics of the PrintServer: it can accept request
for printing documents; it can print only documents of the
type PS and only at a speed of six pages per minute; it can
be configured to handle a variety of printers. The Client
component is characterized by its requirement to be able to
print documents.

1.1 Composition

Composition, in the context of design, refers to the op-
eration that combines the functionality provided by two
components (or systems) to form a larger component (or
a system). On analyzing the initial model for composi-
tion of PrintServerwith Client,we observe that the
composition operation requires us to determine when and

1

how can the Client and PrintServer be composed
together? In this case, the answer to the question “when can
they be composed together?” is straight forward: “they can
be combined when the Client can send the documents for
printing, in the format required by the Print-Server,
viz., PS.” However, the answer to the question “how can
they be composed together?” requires us to identify the pro-
tocol used by PrintServer to interact with its clients and
check whether Client can speak this protocol.

We decide to introduce a connector, RPS-
Connector, that defines the protocol for interaction
between the Client and PrintServer. Now, where
do we place the constraint: “the Client can send only
documents of type PS to the PrintServer,” and when
should this constraint be checked for? The answers are
obvious but their implications are subtle. We can easily
choose to place the constraint in the RPS-Connector,
and then decide that the constraint should be checked when
RPS-Connector is used to compose a Client and a
PrintServer. The implication to be noted here is the
context sensitiveness of the constraint. The constraint is
designed for, and needs to be checked, when the operation
performed is composition. For example, this constraint
need not be satisfied when the RPS-Connector is
refined, i.e. when the refinement operation is performed
on the RPS-Connector. Other related questions are: Is
the introduction of the new RPS-Connector permitted?
How to constrain such additions of new architectural
elements? When should such constraints be verified? Here,
not only the constraint is dependent on the context, but it
is also at a very finer granularity, viz., the addition of an
architectural element.

1.2 Substitution

Substitution, in the context of design, refers to the opera-
tion that replaces an architectural element by a “functionally
equivalent” element. Consider that we find two COTS com-
ponents which claim to provide the functionality of print
servers. Now we need to determine whether these com-
ponents are substitutable for the PrintServer compo-
nent. We can observe that, a component is substitutable for
PrintServer only if the functionality provided by the
component (described in terms of the document type it can
accept, the number of pages it can print per minute, and
configurability) is at least as much as that is guaranteed by
PrintServer. Again we can see that the constraint is
dependent on the operational context, substitution.

1.3 Refinement

Refinement, in the context of design, refers to the opera-
tion of elaborating the structure and functionality of an ar-

chitectural element. The elaboration of an architectural ele-
ment is called the representation of the element. Represen-
tations range from a whole system representing a single el-
ement, to a code module that implements an element. Now,
consider that the PrintServer is refined into a system PS-
Rep. PS-Rep is composed of a LoadBalancer compo-
nent and a PrinterDriver component. Now, we need to
determine whether this refinement is correct? Which in turn
prompts to the question: When can one say that system PS-
Rep is a correct refinement of Print-Server? In the
case of our example, we can formulate a condition as fol-
lows. PS-Rep is a correct refinement of PrintServer
only if the LoadBalancer component of PS-Rep can
guarantee the speed requirement (six pages per minute) of
the PrintServer and the PrinterDriver component
of PS-Rep is configurable. The parameters of constraints
on refinement will always be dependent on the representa-
tion. Hence, constraints on refinement are often applicable
only in the context of the refinement operation and are not
much relevant to the other contexts, for example, composi-
tion.

1.4 “To constrain or not to constrain”

On observing the context sensitive nature of the con-
straints that are encountered during architecture develop-
ment, architects can be expected to document these con-
straints only when they have a mechanism to specify and
automatically verify, such contextual constraints. Current
mechanisms for specifying constraints do not permit con-
texts to be attached to constraints and the specification of
constraints at the granularity of operations. Hence, here is
a situation where architects have constraints that are mean-
ingful only in a particular context and only at a particular
granularity of operations. As architects often come across
such situations and do not have a mechanism to specify con-
textual constraints they face the “to constrain or not to con-
strain” dilemma. And more often, they choose not to spec-
ify the constraint at all! As a result, a valuable information
that can guide the evolution of the system is lost!

In the following sections we explain the contextual con-
straints feature of TriSL, and then explain the use of contex-
tual constraints to constrain composition, substitution and
refinement. Then we present the related work and conclude
with pointers to future work.

2 Contextual Constraints

As shown in the previous section, constraints, that rep-
resent design decisions, are dependent on operational con-
texts. The operational contexts range from operations fre-
quently performed in design experiments, like composition,

2

refinement etc. to internal decisions made by a specifi-
cation analyzer, like a subtyping judgment. Architecture
Description Languages (ADLs) are widely used for formal
specifications of architectures, and they permit specifica-
tion of constraints as a part of the architecture specification.
Clearly, an ADL should facilitate the tagging of constraints
with operational contexts, thereby allowing the architect to
capture critical design decisions that would guide the evolu-
tion of the system. For capturing these design decisions, ar-
chitects need a mechanism to specify and verify these con-
straints.

Broadly, the requirements for contextual constraints can
be classified into those for specification and those for veri-
fication.

� Specification: It should be possible to specify con-
straints on any architectural element, like components,
connectors, ports, roles, etc. and it should also be pos-
sible to specify the contexts in which these constraints
are valid.

� Verification: It should be possible to automatically
verify the satisfaction of the constraints required for
any architectural element, in and only in the context in
which the constraints are specified to be valid.

These requirements have significant ramifications on
the design of the ADL and its support environment (type
checker, analyzers, etc.). The requirements for specifica-
tion require an ADL to explicitly identify the operational
contexts, to which constraints can be associated. This in
turn requires the ADL to be based on an operational model.
The requirements for automatic verification of constraints
require an ADL and its support environment to explicitly
identify the operations which can be used as operational
contexts in constraint specifications. The ADL support en-
vironment need to play an important role by exposing some
of its operations (for example, type judgment) to be used
as contexts in constraint specifications. These requirements
can be satisfied by an ADL which treats architectures as ar-
tifacts that are developed incrementally and not as artifacts
that are specified. This shift from the specification model
to the incremental development model, will bring in the re-
quired notion of operations on the architectural structures
and the notion of operational contexts to which constraints
can be associated. Current ADLs are based on the specifi-
cation model.

In the following section, we present our ADL, TriSL1,
which is based on an incremental development model, and
defines operations on architectures as operations in the
TriSL Abstract Machine, and supports specification and au-
tomated verification of contextual constraints.

1TriSL stands for System Structure Specification Language.

3 Brief Overview of TriSL

PrintSystem :system extended with
PrintServer :component extended with

docType :string is ”PS”;
speed :int is 6;
configurable :bool is true;
PrintService :port;
DeviceAccess :port;

end;
PrintClient :component extended with

PrintRequest :port;
end;
Printer :component extended with

DataPort :port;
end;
RPS-Connector :connector extended with
Client :role;
Server :role;

end;
PrinterConnector :connector extended with

Driver :role;
Device :role;

end;
attach PrintServer.PrintService to

RPS-Connector.Server;
attach PrintClient.PrintRequest to

RPS-Connector.Client;
attach PrintServer.DeviceAccess to

PrinterConnector.Driver;
attach Printer.DataPort to

PrinterConnector.Device;
end;

Figure 1. A Print System in TriSL

The basic building blocks of architectural descriptions
are called architectural elements (or simply elements). For
facilitating reuse of element descriptions ADLs support
specification of element types (or simply types). Compo-
nent, port, connector, role,and properties form the basic
elements of TriSL. In addition to this, TriSL permits the
specification of a system,a configuration of components
and connectors. Figure 1 gives a TriSL specification
of the PrintSystem example. The system consists three
components, viz., PrintServer, PrintClient and
Printer, and two connectors, viz., RPS-Connector
and PrinterConnector. The Printer component
and the PrinterConnector are new and the rest of the
elements are same as in the example discussed in Section 1.
The Printer component represents the hardware printer
and the PrinterConnector represents the connection
between the hardware and the PrinterServer. The
configuration of these components and connectors, speci-
fied using a set of attachments, form the PrintSystem.
For example, in Figure 1 the PrintService port of
PrintServer plays the role of Server in the inter-

3

action defined by RPS-Connector and this is specified
by “attach PrintServer.PrintService to
RPS-Connector.Server.”

In TriSL, every element has a type. For example, in
Figure 1, the type of PrintServer is component and
of PrintService is port. TriSL allows specification
of element types using the keywords compt, connt, portt,
and rolet, which respectively represent the kinds compo-
nent, connector, port, and role types. In TriSL, architectural
styles, which capture recurring patterns of system organi-
zation, are also considered as element types, and are de-
fined using the keyword style. TriSL provides the following
built-in property types: int, bool, real, and string. For ease
of use, TriSL provides a set of empty types, viz., compo-
nent, connector, port and role, which are of the kind compt,
connt, portt, and rolet respectively. An element, which is
an instance of a type, gets its structure and properties from
the type it claims to be. Further, it can add more structure
or properties by using the extended withconstruct. For ex-
ample, the PrintServer component in Figure 1 claims
to be of the (empty) type componentand then adds all the
structure (the ports) and the properties that characterize the
component.

In TriSL, types form the basic mechanism for specifi-
cation and verification of constraints. The constraints are
specified as a part of the type specification and are vali-
dated in the context of the instance. The constraint lan-
guage of TriSL is based on first order logic. An element
E is judged of type T if and only if it possesses the struc-
ture required by T and it satisfies all the constraints spec-
ified by T : The structure of a type are the elements and
properties it defines. For example, for the connector type
RPS-ConnectorT (figure 2) the role types Client and
Server together with the property protocol constitute
its structure. The constraints are tagged with the context in
which they are valid. The TriSL type system, when making
a type judgment, verifies only those constraints that are ap-
propriate for the current operation. TriSL is based on struc-
tural type equivalence and structural subtyping. Hence, two
types are equivalent if they have the same structure but dif-
ferent names. The name independence is up to the reorder-
ing of the fields of the type. A formal specification of the
TriSL type system can be found in [2]. In the following sec-
tions we explain the specification and verification of con-
textual constraints with examples. As constraints are speci-
fied as a part of the type definitions, the examples are TriSL
specifications of architectural element types.

4 Constraining Composition

Connectors mediate the interaction between components
and serve as a medium for composition of functionalities.
Hence, constraints on composition can be specified through

connectors. Components are composed together through a
connector, by attaching the appropriate ports of the com-
ponents with the appropriate roles of the connector. Re-
call the composition constraints, formulated in Section 1.1,
for the PrintServer example. The Client should be
able to send the documents for printing in the ”PS” format,
and it should be able to speak the protocol understood by
the PrintServer. We can specify these constraints by
defining a connector type, RPS-ConnectorT, as given
in Figure 2. As roles form the basis of attachments, it is
appropriate to specify the constraints as a part of the role
type definitions. The constraints in the role type Client,
specify that any component which wants to play the role of
a Client, should be able to send documents in the ”PS”
format, and should be able to speak the ”Rprint-protocol”.
On the similar lines, the constraints in the role type Server
specify that any component which wants to play the role of
a Server should be able to accept documents of type ”PS”
and speak ”Rprint-protocol”.

Having specified the constraint, we need to define the
context in which the constraint is valid. Composition is ex-
pressed as attachments between ports and roles. TriSL pro-
vides the attach operation, to attach a port to a role. Hence,
the right operational context to validate the constraints on
composition is the attach operation. Whenever an attach op-
eration is performed on the roles (Client and Server) of
an instance of RPS-ConnectorT, the constraints will be
validated and only if the constraints are satisfied the attach
operation will succeed.

RPS-ConnectorT :connt is

protocol :string is ”Rprint-Protocol”;

Client :rolet is
onattach ensure

(Client.docType eq ”PS” and
Client.canSpeak eq ”Rprint-Protocol”);

end;

Server :rolet is
onattach ensure

(Server.docType eq ”PS” and
Server.canSpeak eq ”Rprint-Protocol”);

end;

end;

Figure 2. Constraining composition

5 Constraining Substitution

The functionality of an element is specified in terms of
the structure, properties and constraints on the structure and

4

properties. A component A can be substituted for B if they
are functionally equivalent, i.e. if A possesses the same
structure and properties as that of B; andA satisfies all con-
straints defined for B: The structure, properties and con-
straints of A and B can be abstracted and specified as types,
say At and Bt: Now the problem of substitutability can be
reduced to checking whether A conforms to the type B t: In
TriSL, type judgments include constraint satisfaction, hence
any component that conforms to the type B t can be sub-
stituted for B: This can be generalized to: any component
that conforms to a type which is a subtype of Bt can be
substituted for B: As the type system is based on structural
subtyping, we can constrain substitution by constraining the
subtyping. In fact, constraining substitution is just a direct
use of constraints on subtyping. Constraints on subtyping
can be used in conjunction with other contexts to form pow-
erful constraints.

Figure 3 specifies a component type, PrintServerT,
for the PrintServer component, discussed earlier. The
constraints on the substitution of the PrintServer com-
ponent (document type, speed and configurability) are spec-
ified as a part of the type definition. The constraints are
specified to be valid on the context of a subtype judgment.
Whenever the type system attempts to judge an instance to
be of a type which is a subtype of PrintServer, the
constraints will be validated in the context of the instance.
The type of the instance is judged as a valid subtype of
PrintServerT if and only if the constraints are satisfied.
The identifier self, used in the constraint specification will
be bound to the context of the instance.

PrintServerT :compt is

docType :string is ”PS”;
speed :int is 6;
configurable :bool is true;

PrintService : portt;
DeviceAccess : portt;

onsubtype ensure
(self.docType eq ”PS” and

self.speed eq 6 and
self.configurable eq true);

end;

Figure 3. Constraining substitution

6 Constraining Refinement

Architectural elements are elaborated by refining the
structure and properties. The elaboration is called the repre-

sentation of the element. The main task is to refine the func-
tionality by adding more detail. The representations range
from a whole system to a code module that implements the
element. Refinements specify a mapping from the element
to its representation. This mapping forms the basis for ver-
ifying the correctness of the refinement. Figure 4 speci-
fies the representation of the PrintServer component,
discussed earlier. The representation consists two compo-
nents, viz., LoadBalancer and PrinterDriver con-
nected by a DataPipe connector. The PrintService
port of LoadBalancer and the DeviceAccess port
of PrinterDriver are bound to the respective ports of
PrintServer. These bindings serve as the mapping
from the PrintServer to its representation. Constraints
on refinement use this mapping for relating the properties
of the element and the representation. Note the property
speed, of the LoadBalancer component is 4, whereas
that of PrintServer component is 6. It is quite expected
that load balancing might increase the processing time and
hence decrease the speed. However, the acceptable speed
range can be specified by the PrintServer and any rep-
resentation of it, can be ensured to have a value for speed
within the range.

PrintServer :component of PrintSystem is

LoadBalancer :component extended with
docType :string is ”PS”;
speed :int is 4;
PrintService :port;
DriverAccess :port;

end;

PrinterDriver :component extended with
Configurable :bool is true;
DataAccess :port;
DeviceAccess :port;

end;

DataPipe :connector extended with
Producer :role;
Consumer :role;

end;

attach LoadBalancer.DriverAccess to
DataPipe.Producer;

attach PrinterDriver.DataAccess to
DataPipe.Consumer;

bind LoadBalancer.PrintService to
PrintServer.PrintService;

bind PrinterDriver.DeviceAccess to
PrintServer.DeviceAccess;

end;

Figure 4. Refinement of PrintServer

The properties speed, docType, and config-
urability define the important characteristics of

5

PrintServer and any representation should guarantee
that it preserves these characteristics. Such characteris-
tics can be specified as constraints in the definition of the
PrintServer type, and can be specified to be valid in
the context of refinement. As a part of refinement every
representation provides a set of bindings. The bind opera-
tion provides the operational context for verifying the con-
straints on refinement. Figure 5 specifies a type for the com-
ponent PrintServer. It specifies the constraints as a
part of the port types PrintService and DeviceAc-
cess. The self in the expression self.comp,refers to the
port instance and comp refers to the component in which
the port is contained. This notation allows the properties
of a component to be accessed through its port. The con-
straint in PrintService ensures that the representation
supports the docType ”PS” and its speed is greater than
3 pages per minute. Further, the constraint in DeviceAc-
cess ensures that the representation is configurable. The
constraints are verified when a bind operation is performed
on the instance of these ports, contained in an instance of
the PrintServerT. The operation succeeds only when
the constraints are satisfied.

PrintServerT :compt is

docType :string is ”PS”;
speed :int is 6;
configurable :bool is true;

PrintService :portt is
onbind ensure

(self.comp.docType eq ”PS”
and self.comp.speed gt 3);

end;

DeviceAccess :portt is
onbind ensure

(self.comp.configurable is true);

end;

Figure 5. Constraining refinement

7 Other useful operational contexts

All the definitions (elements and types) and operations
in TriSL are translated into a sequence of operations of the
TriSL Abstract Machine (TAM). Figure 6 gives the opera-
tions defined in TAM. The structured operational semantics
of the TriSL language in terms of these operations can be
found in [2]. These operations form as a good basis for the
operational contexts. Figure 7 lists the set of operational
contexts supported by TriSL. There are operational contexts
like onconstruct and onsubtypefor which there is no cor-

OPERATION MEANING

add add an instance or type to
another instance or type

del delete an instance or type from
another instance or type

attach attach a port instance to a role
(or vice versa)

detach detach a port instance from a role
(or vice versa)

bind bind a port/role
to its representation

unbind unbind a port/role from
its representation

set set the value of an instance
fuse fuse two instances or types

Figure 6. Operations in TAM

TAG OPERATIONAL CONTEXT

onadd add operation on mutable instances
ondel del operation on mutable instances
onattach attach operation on instances
ondetach detach operation on instances
onbind bind operation on instances
onunbind unbind operation on instances
onconstruct Declaration of instances
onfuse fuse operation on instances
onsubtype Implicit or Explicit subtyping
onall All operations

Figure 7. The operational contexts supported
by TriSL

responding operation. The choice of the set of operational
contexts is motivated by the nature of the architecture de-
sign process, and is not solely based on operations.

The operational contexts del, detachand unbind can be
used to specify constraints on the integrity of the structure
of a system. The operational context add can be used to
constrain the type of new elements that can be added to the
existing architecture. For example, this context can be used
to specify the constraint whether the RPS-Connector,
discussed in the example in Section 1.1, can be introduced
or not. Constraints that are valid on all contexts and need to
be verified on all operations can be specified using the onall
context. We do not claim that these operational contexts
covers all possible contexts, but we do claim that they form
a very useful set.

8 Related work

TriSL is designed to specify architectural structures,
properties and constraints on them, we present here only
those ADLs that have similar design goals.

6

Armani [5] supports design element types and property
types. Two types of constraints are supported, viz., design
invariants and heuristics. These constraints are specified as
a part of the design element type specifications. Design in-
variants are constraints that need to be satisfied by all the
instances of the element type. Heuristics are just design
guidelines and are not required to be satisfied by all the in-
stances of the element type. Armani provides a constraint
language based on first order logic, to express constraints
in type and style definitions. Armani does not permit as-
sociation of contexts with constraints. The constraints are
verified on all the operations performed on the instance.

SADL[6] is aimed at representing and reasoning about
architectural hierarchies. SADL at the highest level, pro-
vides constructs to represent architectures, mappings and
architectural styles. For modeling architectures, the follow-
ing constructs are provided: component, connector, config-
uration, connections and constraints. Mappings are rela-
tions that define a syntactical interpretation from the lan-
guage of an abstract architecture to the language of an con-
crete architecture. SADL permits two types of constraints
to be defined as a part of a style definition, viz., constraints
on well formedness of an architectural element and seman-
tic constraints on refinement. SADL comes quite close to
TriSL in terms of the expressibility of constraints, as it also
supports constraints on refinement. However, it does not
permit constraints to be tagged with the context in which
they are valid. Further, the refinement constraints in SADL,
can be specified in TriSL as a part of the type definitions
and can be tagged with the operational context onbind.

C2 is an architectural style and has an associated ADL,
C2-ADL[4], that provides constructs for specifying archi-
tectures that conform to the C2 style.While such style spe-
cific ADLs cannot be used to model other architectural
styles, they do highlight the benefit of small, simple, for-
malisms highly tailored to a specific architectural style. The
ArchShell tool, which is a part of the C2-ADL infrastruc-
ture, supports experimentation of dynamic architectures, by
providing a set of operations to manipulate architectural
structures and their runtime interconnection. From the per-
spective of providing a set of operations to manipulate ar-
chitectural structures, C2-ADL together with the ArchShell
is similar to the TAM. The operations provided ArchShell
are for manipulation of the runtime structure of the archi-
tecture, whereas the operations provided by TAM are for
manipulation of architectural structures at the specification
time. C2-ADL is specific to a particular architectural style,
and hence the constraints that are to be verified are pre-
defined. C2-ADL does not support explicit tagging of con-
straints with operational contexts.

9 Conclusions and future work

Design decisions, represented as constraints, are closely
tied to the contexts in which they are valid. If an architect
does not have mechanisms to specify the context in which
a constraint is valid, he is forced to rethink on whether to
specify the constraint or not, and often they choose not
to specify, than specifying a diluted version of the con-
straint, which is context independent. This results in loss
of valuable decision decisions that can guide the evolution
of the system. We have shown that the contextual con-
straints of TriSL, facilitates specification of operational con-
texts in which the constraints need to be valid. The incre-
mental development model (architectural design treated as
a set of operations, not as a specification) of TriSL, pro-
vides the appropriate contexts for the verification of these
constraints. Contextual constraints, in general, are very ex-
pressive and permit specification and automatic verification
of subtle constraints on the evolution of the system. So,
with contextual constraints, the architects can break the “to
constrain or not to constrain” dilemma, and can specify the
valuable design decisions.

TriSL is implemented in C++, and has been success-
fully used to formalize the control architectures in auto-
mated manufacturing systems [3]. As of now, TriSL does
not allow user defined operational contexts. We are working
on providing user defined operations on architectural struc-
tures, and permit association of these operations as contexts
for constraints evaluation. The incremental development
model and the contextual evaluation of constraints are very
useful for manipulation of architectural structures via tools.
Tools like the ones used in [1], to find patterns in architec-
tures can exploit the fact that only some constraints are valid
in a particular context, and can reduce their search space.

References

[1] Kazman, R., and Burth, M. Assessing architectural complex-
ity. In Second Euromicro Working Conference on Software
Maintenance and Reengineering, 1998.

[2] Lakshminarayanan, R. TriSL: A Software Architecture De-
scription Language and Environment. Master’s thesis, De-
partment of Computer Science and Automation, Indian Insti-
tute of Science, May 1999.

[3] Lakshminarayanan, R. and Srikant, Y.N. Formalizing control
architectures in AMS. In Second Nordic Workshop on Soft-
ware Architecture, August 1999.

[4] Medvidovic, N., Taylor, R.N., and Whitehead, E.J. Formal
modelling of software architectures at multiple levels of ab-
straction. In the proceedings of The California Software Sym-
posium, April 1996.

[5] Monroe, R. Capturing software architecture design expertise
with Armani. Technical Report CMU-CS-98-163, Carnegie
Mellon University, School of Computer Science, 1998.

7

[6] Moriconi, M. and Riemenschneider, R. Introduction to SADL
1.0: A language for specifying software architecture hierar-
chies. Technical Report SRI-CSL-97-01, Computer Science
Laboratory, SRI International, 1997.

8

