

MINING COMPONENTS FROM LEGACY SYSTEMS
THROUGH REVERSE ENGINEERING

Z. Tang and H. Yang
Department of Computer

Science
De Montfort University

England
hjy@dmu.ac.uk

W. C. Chu and Y. C. Pen
Department of Computer
Science and Information

Engineering,
TungHai University

Taichung, Taiwan, R.O.C.
chu@csie.thu.edu.tw

C. H. Chang
Department of Information

Engineering,
Feng Chia University

Taichung, Taiwan, R.O.C.
chchang@soft.iecs.fcu.edu.tw

Abstract

Legacy systems are increasingly acknowledged as major
problems for most large corporations. Re-engineering is
probably the best way to solve the problem. A typical
component-based re-engineering process is: to use reverse
engineering methodology to expose components from the
existing system, to use repository to store and manage the
components, then to restructure the new system, and to
integrate the new system with reusable generic components
and new-produced components by forward engineering. In
our approach reusable components are mined from legacy
systems, and made potentially reusable. New systems can
be made by the integration of both mined and newly build
components. The problem to be studied is an efficient and
feasible way to extract components from the legacy
systems. In this paper, component is explicitly defined and
a sound method is proposed, detailed algorism is described
with a case study.

 1. Introduction

Let’s suppose a scenario first: an application has served the
business needs for a company for 10 or 15 years. During
that time it has been corrected, adapted, and enhanced
many time. People approached this work with the best
intentions. Now the application is unstable. It still works,
but every time a change is attempted, unexpected and
serious side effects occur. Yet the application must
continue to evolve. What to do?
Unmaintainable software is not a new problem. In fact, the
broadening emphasis on software re-engineering has been
spawned by a software maintenance “iceberg” that has
been building for more than three decades [20]. Legacy
systems are increasingly acknowledged as major problems
for most large corporations.
A legacy system is any system that significantly resists
modification and evolution to meet new and constantly
changing business requirements. They’ve been developed
but cannot be readily modified to adapt to the constantly
changing business requirements, therefore, they provide
the greatest opportunity to lower costs and improve the
business.
A couple of problems exist. The first is to keep the systems
running. The business depends on them. The second is to
modify them to meet current business needs. Modification
inevitably requires replacement, but replacement will not

work for large, mission-critical information systems. The
common-sense solution to the legacy problem is migration.
Obviously we can’t prevent future legacies because we
can’t anticipate future business requirements or technology
advances. But if you design your target systems to be
completely decomposable (i.e., composed of separate
components for each separable function), you’ll be able to
modify those components that do not support current needs
when the time comes.
As we all know, it’s easier to solve a complex problem
when you break it into manageable pieces, software can be
divided into separately individual named and address-able
components, and can be integrated by modifying, deleting
the generic components and adding some new-produced
components to satisfy specific problem requirements. A
reusable software component is a collection of operations
designed to aid programmers in the development of
applications programs. The use of software components
saves both time and money. This savings, along with
assured accuracy and reliability, is the main reason for
using components to build component-based applications
and a relatively sophisticated component-based approach
to sharing, collaboration, and software reuse.
It became of strategic importance to be able to reuse
existing knowledge to enable new applications to be
assembled quickly and reliably. To achieve this developers
require greater support and guidance for decomposing
applications into meaningful pieces, and explicit
representation of the rules for assembling new applications
from a mixture of new and existing pieces.

 2. Component-based Software Re-engineering

The IEEE [17] has developed a comprehensive definition
that Software engineering is:
(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software. And (2) The study of approaches
as in (1).
Software engineering is a discipline that integrate process,
methods, and tools for the development of computer
software.
Software Re-engineering is the examination and
alteration of an existing subject system to re-constitute it in

a new form. This process encompasses a combination
of sub-processes such as retargeting, reverse engineering,
restructuring and forward engineering [7].
Re-engineering helps an organization move away from
reactive maintenance to active management of its
production system portfolio. The purpose of re-engineering
is both to position existing systems to take advantage of
new technologies and to enable new development efforts to
take advantage of reusing existing systems. Re-engineering
has the potential to improve software productivity and
quality across the entire life cycle.
Reverse Engineering is the process of analyzing a system
in order to obtain and identify major system components
and their inter-relationships and behaviors. It involves the
extraction of higher level specifications from the original
system [20].
Reverse engineering has the potential to improve software
maintenance productivity significantly. Reverse
engineering is used to maintain software systems, to aid
system migrations and conversions, and to discover
reusable software components. Reverse engineering
extends the useful life and value of existing systems by
converting them to newer software technologies, and by
migrating them to other operating platforms.
Software reuse covers the whole process of identification,
representation, retrieval, adaptation and integration of
reusable software components. Programmers have reused
ideas, objects, arguments, abstractions, and processes since
the earliest days of computing, today, complex,
high-quality computer-based system must be built in very
short time periods. This demands a more organized
approach to reuse. But software engineering still makes
less use of reusable components than any other kind of
engineering [22]. By reusing reusable components, system
reliability is increased, development time (i.e. design and
coding time, verification or testing time) is reduced, and
standards can be implemented as reusable components (i.e.
standards for fault-tolerance or correctness, standards for
user interfaces) [25].

Component-based Development (CBD) is the
industrialisation of the software development process
based on assembly of prefabricated software components
[21]. Two basic ideas underlie CBD. Firstly, that
application development can be significantly improved if
applications can be quickly assembled from pre-fabricated
software components. Secondly, that an increasingly large
collection of inter-operable software components will be

made available to developers in both general and specialist
catalogues. Manufacturing industries long ago learned the
benefits of moving from custom development to assembly
from pre-fabricated components. For modern
manufacturing has evolved to exploit two crucial factors
underlying today’s market requirements: reduce cost and
time-to-market by building from pre-built, ready-tested
components, but add value and differentiation by rapid
customisation to targeted customers.

 3. Related Work

3.1 Various Definitions of Component

Various definitions are given out in many references.
 Component is mentioned in the year of 1987 as “bits of
software that can be replicated and, often with
modifications, assembled repeatedly to form any number
of applications” [8], in this definition, components are not
regarded as off-the-shelf stuff, configuration should be
considered rather than modification to make the future
reuse of the components more flexible and adaptable.
And also, “A reusable software component is a logically
cohesive, loosely coupled module that denotes a single
abstraction” [9], in the book namely Software Components
with Ada. High cohesive and low coupling are the basic
features of components, they should and must be included
in the definition of components, and because of the
variation of the levels of abstraction, but it is also
important to mention the context in which a component can
be used, which is missed in this definition.
Later on, O.Nierstrasz and D.Tsichritzis published a very
abstract definition of components, which says “A software
component is a static abstraction with plugs” [19], By
“static”, here means that a software component is a
long-lived entity that can be stored in a software base,
independently of the applications in which it has been used.
By “abstraction”, here means that a component puts a more
or less opaque boundary around the software in
encapsulates. “with plugs” here means that there are
well-defined ways to interact and communicate with the
component (parameters, ports, messages, etc.). This
definition is a bit too abstract to be understood and
over-mechanism.
Many more definitions came out from 1996, some
companies also made their own definitions, like Meta
Group’s in 1998 [23], which says “Software components
are de-fined as prefabricated, pretested, self contained,
reusable software modules – bundles of data and
procedures - that perform specific functions”. Most of
these definitions are made out for their own applications,
which are not general enough to define a software
component.

3.2 Related Projects

Many research works had been done in the area of reusable
software components.
Software Compositions, for example, is a company

Repository

Reusable
Components Generic

Components

Modified,
newproduced
Components

Components

Legacy System
Target System

partition

identify

store

store

retrieve

modify
produce

integrate

Figure 1: Process of Component-based Re-engineering

founded in 1989 to provide products (named
Re-engineering Mentor) and services for Ada software
development and maintenance organisations. The
company’s expertise in transformation and reuse
technologies is applied to products and services for the
re-engineering and reuse of Ada software [4].
FormaNet Technology Inc., another company, is dedicated
to providing Java components. These components provide
additional functionality to developers and speed
development time. All of the components work with JDK
1.0.2. The utility products include the pre-built Java
components (Byte code), the Java-Doc documentation for
the components, example applets and the source code for
the example applets [1].
The RECAST method [15] by the University of Durham
was developed for ICL COBOL systems using IDMSX
(Integrated Database Management Systems, Extended) and
TPMS (Transaction Processing Management System). It
provides a route for reverse engineering legacy COBOL
systems into SSADM (Structured Systems Analysis and
Design Method) logical specifications.
Another project namely IDENT [11, 12, 13, 14] is resulted
from taking a number of techniques from the RE 2 project
and constructing the techniques into a method using
RECAST as a framework. It modifies, extends and
integrates the two projects. The work is specifically geared
towards large COBOL applications, consists of 10 steps.
Research works related to the component reuse and
adaptation based on interface specifications and
architectures, specification-based component retrieval,
design representation for automating software component
reuse were also explored in the early 90’s by the
Knowledge-Based Software Engineering Lab in the
Department of Electrical and Computer Engineering and
Computer Science, University of Cincinnati. They have
produced a prototype component classification/retrieval
system names REBOUND, and had extended the system
with a formal model of architecture to support component
adaptation and composition [16].
CATALYSIS by Trireme Company [24], is a development
strategy for component-based design. Compliant with
UML, Catalysis provides a set of design process patterns
for: 1) Building software and business models from
re-usable components; 2) Integrating legacy components
with new development work; 3) Development or
re-development from scratch; 4) Business process
re-engineering; 5) Rigorous, robust design.
More recently, CBD products as EJB (Enterprise
JavaBeans) [5], COM (Component Object Model) [6] and
CORBA [3] have attracted many people’s attention, with
their relative language and platform-independent features,
which make the creating and integrating of components
more efficient.
There are also a number of software component
repositories (such as the OAK Software Repository, it is a
public service of Oakland University’s Office of Computer
and Information Services) offering many collections of
computer software and information to Internet users free of
charge [2].

 4. Mining Components from Legacy Systems

4.1 Problem

Re-engineering covers both reverse engineering and
forward engineering, a typical component-based software
re-engineering process should contain several parts,
namely: identification, classification, storing, retrieval,
adaptation, composition.

More detailing, they are processed as below:
! Mining components from the legacy systems
! Wrap up the components with well-defined interface

for future reuse
! Store the components in a software repository
! Build new reusable components if not available in

the repository
! Make all the components off-the-shelf to meet

specific user requirements
! Build the target systems by integrating the reusable

components
When we consider the components of a software system,
the following come to mind: program design documents,
source code modules, object code modules, copy libraries,
file descriptions, screen definitions, user manuals, etc.
Functions, macros, procedures, templates and modules may
all be valid examples of components [10], and component
software may standardize interfaces and generic code for
various kinds of software abstractions. Furthermore,
components in a software may also be other entities than
just software, namely specifications, documentation, test
data, example applications, and so on. While most of the
projects only concern one or two parts of them. And some
others, i.e., the newly increased CBD, put more emphasis
on composition, which is mainly of the forward
engineering in the re-engineering process. Little attention
have been paid in the reverse part, which is, mining the
components from the existing systems.
What have been ignored is that, the existing systems are
tested reliable, and domain specific, after being extracted

extract
code spec. doc. interface design

newly-build Store&

RE
MENTOR
(Ada)

 FORMANET REBOUND

RE2
(COBOL)

RE2 ARACHNE CAPS

RECAST
(COBOL)

RECAST RECAST EJB HELIOS

IDENT
(COBOL)

IDENT IDENT COM

RESTRUCT RESTRUCT
CIDER
CATALYSIS

RESTRUCT
DECODE

CORBA

Other
Research
Works

Other
Research
Works

 Other
Research
Works

Figure 2: Works done in the related area

out, the components can be reused directly and efficiently.

4.2 Proposed Working Definition

The importance of a precise definition of what constitutes a
software component and how to describe it have become
a critical issue in the considerations about enhancements of
the software development process in general and reuse of
software pieces in particular, which helps to identify the
components during system decomposition.
Components are larger than classes, can use multiple
languages, include their own metadata, are assembled
without programming, need to specify what they require to
run.
Component systems are not invulnerable, the size of a
component is inversely proportional to its match to any
given requirement. Compared to objects, components are
larger sized, physical entity instead of conceptual entity,
support encapsulation, with defined interface.
Components’ strength is integration, so flexibility is key,
and components are also highly scalable.
Thus, a definition of a component is clarified as follows: a
software component is a coherent and configurable
software package, independently of the applications in
which it has been used, with well-defined interface in
different context to interact and communicate with other
components, to compose a larger system.

4.3 Proposed Method

Today, complex, high-quality computer-based systems are
in need to be built in a very short time period. This strongly
demands a more organised, more systematic approach to
build software by reusing the software components.
Legacy systems are strongly in need of enhancement
through re-engineering for the future reuse.
A great advantage of the extracted components is, they’ve
already tested reliable in their history use. By borrowing an
existing suitable software development method, which has
been well developed, forward engineering therefore can be
carried out easily in the process of building target systems.
The extracted components are more domain specific than
the newly built ones, and can be reused directly and
efficiently.
The source code of a legacy system is first translated into
CSL (Common Structural Language) through a “translator”.
The “universal translator” translates between a
source/target language to/from RWSL (Re-engineering
Wide Spectrum Language) (i.e., a COBOL-to-RWSL
Translator [18]. This translator must be written for each
source/target language and is simply a one-to-one mapping,
to ensure semantics equivalence.
Five elements should be considered in, they are: code,
specification, interface, design and documentation.
Source code is the most elementary part of a component,
all the other elements are extracted out from code.
A component is more packaged than any old object. The
assumption is that it will be used in many contexts

unknown to its own designers. It should be robust in
respect of abuse from other components, complaining
rather than collapsing.
In addition to the executable code itself, there should be a
specification documenting its behaviours unambiguously,
using a suitable modelling and design notation. Since the
average component will be used more than an individual
product, it is, even more than usual, worth investing in
good specification and design. The specification is
essential because clients do not have access to the design,
and should not have to waste time experimenting. A clear
specification also tends to prolong the life of the designers’
original vision, through many updates and enhancements
[27, 28].
There are numerous undocumented programs. Maintaining
a program that is un-documented (or poorly documented)
is a costly task. The facts are: the original pro-grammars
are gone; everyone that is around and knows something
about the program doesn’t want anything to do with it; the
few comments that are in the code aren’t necessarily
correct (although they might be); and the small amount of
documentation that exists (if any) is not necessarily correct
or complete– it hasn’t been updated for the las
who-knows-how-many code updates.
Components are identified by their interface. Interface
should be defined in different context to interact and
communicate with other components.
The term black box conveys the idea of components whose
internal workings are hidden, and so inaccessible, with the
complementary notion that what is important about such a
component are the ways in which it interacts with other
components over some well-defined interface: its behavior.
What is important is how the components fit together,
rather than how each performs its particular function. They
should be functionally self-contained.

People know the systems through their design.

Finally, a well-structured repository is demanded to store
all those elements for the future reuse, all associated
software components could then be classified, stored,
compared and retrieved, by software composition
techniques.

4.4 Introduction to RA

Legacy systems usually have millions lines of code to
maintain. However, not all of it can or should be
restructured. Some programs have certain characteristics
that will cause them to grow enormously in size if they are

source code (in WSL)
piece of legacy

(In,Out,Local,Global) source code formal spec. plain text DFD

Interface Code Specification DocumentationDesign

component name

Figure 3: Decomposition

restructured. Other programs need to be redesigned, not
simply restructured. Re-engineering tools are developed to
determine if and how to re-engineer existing programs.
The Re-engineering Assistant (RA) is the advanced version
of MA (Maintainer’s Assistant), which covers the aspects
of reverse engineering, software maintenance, reuse and
re-development. (as shown in Figure 4). The
Re-engineering Assistant (RA) is an interactive software
maintenance tool which helps the user to extract a
specification from an existing source code program. It
operates with WSL (or Wide Spectrum Language) which is
a simple but very precise language, once the program is in
WSL, it does not really matter in which language it was
originally written. It is based on a program transformation
system, in which a program is converted to a semantically
equivalent form using proven transformations selected
from a catalogue.

Some main functions of RA:
! Transforming: The Re-engineering Assistant can

transform a WSL program. Transformation will produce
a program which is functionally equivalent to – but
ideally, much easier to understand or alter than - the
original program. In addition to transforming a program,
the user may make a conscious decision to edit it. The
resulting program will not usually be equivalent to the
original but should have been edited in such a way as to
remove errors or to comply with changed requirements.
The program is still guaranteed to be syntactically
correct, nonetheless.
! Extracting Specification from Code: based on the

construction of a wide spectrum language known as
RWSL, a taxonomy of abstraction and a set of
abstraction rules are developed, all of which enjoys a
sound formal semantics, concentrates on engaging
abstraction technology to extract formal specification
from legacy source code.
! Metrics: Metrics may help to measure the progress made

in optimising the program code and to measure the
resulting quality of the program being transformed. A
development of a classification of software metrics for
reverse engineering is proposed and embedded in, which
includes complexity measures, abstractness measures,
object orientedness measures, economics measures and
reusability measures.

 5. Implementation

! CODE
Code can be obtained unchanged through RA.
! SPECIFICATION
Specifications are usually at different levels of abstraction,
involving a process of crossing levels of abstraction, by
adopting certain abstraction rules [29], specification can be
represented as:

concrete → less abstract → more abstract

Abstraction rules are classified into two categories:
elementary abstraction rules, rules to abstract source
statements into logic formulae, which may be very
redundant and specific; and further abstraction rules, which
extract a more concise and abstract specification from the
formulae through compositions and semantics weakening.
The formal definition of General Abstraction Rule is as
follow:

)(SLOGS ≥

Where S denotes an uncomposite statement in source code,
LOG gives the semantics definition of S in logical form.
! DOCUMENTATION

The whole point is to make the program understandable
by other people. Natural language is clearly a rich source
of conceptual information. We propose the
documentation in natural language, in the form of
manual pages or comments, usually associated with the
code.
! INTERFACE

We can get the interface by the following steps:
–Cut out a procedure from the whole piece of code, loops

or conditions should be cut as a whole.
– Identify the principle (dependent) data items and

auxiliary (independent) data items, as both of them may
change to each other in the process, a list is demanded to
show the changes.
–Find out all the local variables and global variables.

–Present the interface in the form of below:

(In: var VarName, Out: var VarName, Local: var VarName,
Global: var VarName)
! DESIGN

We present the design by DFD (Data Flow Diagram),
some main rules are listed is figure 5.

 6. Conclusions

In a component-oriented approach, the activity of
component engineering must be explicitly incorporated
into the life cycle, and supported by the software process,
the methods and the tools. Systematic rather than
accidental software reuse requires an investment in
component framework development and in software
information management [26]. Component re-engineering
can only be considered successful if the results are used to

Figure 4: Prototype of Re-engineering Assistant

build more flexible applications.
Many research work have been explored in the area of
software re-engineering, researches related to the
components retrieval and adaptation were discussed in
many ways, while few efficient and feasible ways could be
found for understanding the existing system.
In conclusion, a sound systematic method of mining
software components from legacy systems is proposed in
this paper, through a clear definition and a feasible
approach, which is believed has unbeatable advantage for
the future reuse of the software components.
Thus, the value of it may be in its complete integrated,
unified, domain specific, and documented support for
components, and also support for the GUI, repository and
providing a range of generic components as building
blocks for the target systems.

 References

[1] FormaNet Products - Java Components.
http://www.formanet-tech.com/products.htm.

[2] OAK Software Repository.
http://www.acs.oakland.edu/oak.html.

[3] Object Management Group Home Page.
http://www.omg.org.

[4] Software Compositions - Ada Tools.
http://www.swcomp.com/mentor.htm.

[5] Sun Microsystems. http://www.sun.com.
[6] Welcome to Microsoft’s Homepage.

http://www.microsoft.com.
[7] ARNOLD, R. S. Introduction: A Road Map Guide to

Software Reengineering Technology. IEEE
Computer Society Press (1994), 3–22.

[8] BIGGERSTAFF,T.,AND RICHTER, C. Reusability
Framework, Assessment, and Direc-tions. IEEE
Software 4, 2 (March 1987), 41–49.

[9] BOOCH,G. Software Components With Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

[10] BRACHA,G. The Programming Language Jigsaw:
Mixins, Modularity and Multiple In-heritance. PhD

thesis, Department of Computer Science, University
of Utah, March 1992.

[11] BURD, E., AND M.MUNRO. Enriching Program
Comprehension for Software Reuse. In Proceedings
of the International Workshop On Program
Comprehension (IWPC’97) (1997), IEEE Press.

[12] BURD, E., AND MUNRO, M. Investigation the
Maintenance Implications of the Replication of Code.
In Proceedings of the International Conference On
Software Maintenance (ICSM’97) (1997), IEEE
Press.

[13] BURD, E., AND MUNRO, M. The Implications of
Non-functional Requirements For the Reengineering
of Legacy Code. In Proceedings of the 4th Working
Conference On Reverse Engineering: WCRE’97
(October 1997), IEEE Press, Amsterdam,
Netherlands.

[14] BURD, E., AND MUNRO, M. A Method for the
Identification of Reusable Units Through the
Reengineering of Legacy Code. The Journal of
Software and Systems (1998).

[15] EDWARDS, H., MUNRO, M., AND WEST, R. The
RECAST Method For Reverse Engineering. CCTA,
NCC, Blackwell (1995).

[16] HTTP://WWW.ECECS.UC.EDU/JPENIX/KBSE/
INDEX2.HTML. The University of Cincinnati
KBSE Homepage.

[17] IEEE Standard Collection: Software Engineering,
1993.

[18] KWIATKOWSKI, J., PUCHALSKI, I., AND YANG,
H. Pre-processing COBOL Programs For Reverse
Engineeering. In Proceedings of the International
Conference On Software Maintenance (April 1998),
Oxford, England.

[19] NIERSTRASZ, O., AND TSICHRITZIS,D.Object
Oriented Software Composition. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[20] PRESSMAN, AND S., R. Software Engineering: A
Practitioner’s Approach, 4th ed. McGraw-Hill Book
Company, 1997.

[21] SHORT, K. Component Based Development and
Object Modeling. Stering Software CBD White
Paper, Feburary 1997. Version 1.0.

[22] SIGFRIED,S. Understanding Object-Oriented
Software Engineering. The Institute of Electrical and
Electronics Engineers, Inc., New York, 1996.

[23] SZYPERSKI,C.Component Software: Beyond
Object-Oriented Programming. Addison-Wesley,
1998. ISBN-0-201-17888-5.

[24] TRIREME. Catalysis – Objects, Components and
Frameworks With UML. http://www.trireme.com/
catalysis/, 1998.

[25] WAHLS, T. Software Engineering. In Course Notes
for Comp 413 (1996).

[26] WEGNER, P. Capital-Intensive Software
Technology. IEEE Software 1, 3 (July 1984).

STORE

XXX
PROCESS

data name

SOURCE

SYMBOLS MEANINGS
A process "bubble" represents the activity
of transforming input data into output data.
PROCESS represents the name of the process,
and x.x.x represents the section where it is
defined.

A labeled arrow represents the flow of
data. The direction of the arrow
identifies the direction of flow.

Two horizontal bars with a name between them
represents a "store". The store identifies a
mechanism for the storage of data. It could be a
file, dynamic storage (e.g. buffers), or a database,
for example.
A box with a brief description inside
represents a "source" and/or "sink"
(destination) of data.

Figure 5: Data Flow Diagram

[27] YANG, H. Formal Methods and Software
Maintenance - Some Experience With the REFORM
Project. In Position Paper, Workshop On Formal
Methods (September 1994), Montery, USA.

[28] YANG, H., AND BENNETT, K. H. Acquaring
Entity-Relationship Attribute Diagrams From Code
and Data Through Program Transformation. In IEEE
International Conference On Software Maintenance
(ICSM’95) (October 1995), Nice, France.

[29] YANG, H., LIU, X., AND ZEDAN, H. Tackling the
Abstraction Problem For Reverse Engineering in a
System Re-engineering Approach. In IEEE
International Conference On Sofware Maintenance
(ICSM’98) (November 1998), Washinton D.C.,
USA.

