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abstract

An n-dimensional crossed cube, CQr, s ¢ variation
from hypercube. In this paper, we prove that CQn s

(n—2)-hamiltonian and (n—3)-hamilionian connected. -

That is, a Ting of length 2™ — f, can be embedded in
a foulty CQn with f, foulty nodes end f. foulty edges,
where fy + fe < n—2 and n > 3. In other words,
we show that the faulty CQn is still hamiltonian with
n — 2 faults. In addition, we also prove that there ez-
tsts a hamiltonian path between any pair of vertices in
a foulty CQn with n — 3 faults. A recent result has
shown that a ring of length 2" — 2f, can be embedded
in a faulty Hypercube, if fuy +fe <n—1andn > 4,
with a few additional constrains [10]. Our results, in
comparison to Hypercube, show that longer rings can
be embedded in CQn without additional constrains.

Keywords: crossed cube, fault tolerant, hamilto-
nian, hamiltonian connected, hypercube.

1. Imtroduction

The architecture of a local network is usually repre-
sented as a graph. A ring structure (hamilinian cycle)
is widely used in local networks, for its good proper-
ties such as low connectivity, simplicity, expandability,
and easiness to implement. The embedding problem,
which maps a source graph into a host graph, is an
important topic of recent studies. The embedding of
rings into various networks has been discussed. For ex-
ample, a ring (fault-tolerant ring) can be embedded in
faulty Stars [13], faulty arrangement graphs [6], double
loop networks [11], de Bruijn networks [9], and faulty
Hypercubes {8, 10, 12].

Hypercube is a popular network because of its at-
tractive properties, including regularity, symmetry,
small diameter, strong connectivity, recursive con-
struction, partitionability, and relatively low link com-
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plexity [1, 8, 10, 12]. The crossed cube, a variation of
Hypercube denoted as CQ,, is derived by changing
connections from Hypercube [2, 5. The total number
of vertices and edges in a crossed cube is the same as
Hypercube. The crossed cubes have been studied re-
cently, because they have several properties that are
superior to Hypercubes (3, 4]. For example, the di-
ameter of a crossed cube is nearly that of half of Hy-
percube. Hence, The number of average communica-
tion steps in the crossed cube is approximately half
of Hypercube. As another example, a (2" — 1)-node
complete binary tree can be embedded into a 2”-node
crossed cube with dilation 1 [7]. However, a (2" — 1)-
node complete binary tree can only be embedded into
a 2™-node Hypercube with dilation 2 [14].

A recent result has shown that a ring of length 2™ ~
2f, can be embedded in a faulty Hypercube, if f, +
fe <n—1andn >4, with a few additional constrains
[10]. In this paper, we will show that a ring of length
2™ — f, can be embedded in a faulty CQ, with f, faulty
nodes and f. faulty edges, where f, + fe < n — 2 and
n > 3. All of the fault-free vertices can be included
in the ring in the faulty CQ,. In other words, we
will show that the faulty C'Q» is still hamiltonian with
n — 2 faults. This result is optimal, since there is no
hamiltonian cycle in a regular greph with degree n,
which can hold over n — 2 faults. We will also prove
that there exists a hamiltonian path between any pair
of vertices in a faulty C@Qn with n — 3 faults. This
result is also optimal. The reason is as follows: Assume
that there are n — 2 faults in a crossed cube CQ,. It
is possible that there exists a vertex v with degree 2
in this faulty CQ.. Let = and y be the two vertices
adjacent to v, then = and y can not be the end points of
any hamiltonian path, since such a path must traverse
both v and other vertices, which is not possible.

The rest of this paper is organized as follows. Sec-
tion two explains notations and the basic properties of
crossed cubes. The main theorem is proved in section
three. The conclusion is given in section four.

" 2. Notations and basic properties

Let G = (V, E) be an undirected graph. We refer to
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(5] for our fundamental graph terminology, when using
undirected graph to model interconnection networks.
Given a graph, the vertex set and the edge set of G
are denoted by V(G) = V and E(G) = E, respectively.
A path, P(vo,v:) = (vo,v1,...,w:), is a sequence of
nodes such that two consecutive nodes are adjacent.
A path (vo,v1,...,v:) may contain other subpath,
denoted as (vg,v1,... v, Plu;, v;), Vi, Vj41, - .., 08,
where P(vi,v;) = (vs,vi41,...,0j-1,v;). A path that
contains every vertex of G exactly once is called a
hamiltonian path of G. A path (vo,vs,... , V¢, Vo) 18
called a cycle, if vo is adjacent to v; and ¢ > 3. A cy-
cle which visits each vertex in G exactly once is called
a hamiltonian cycle. A graph that contains a hamil-
tonian cycle is called a hamiltonian graph (or simply
hamiltonian). A graph G is called hamiltonian con-
nected if there exists a hamiltonian path between any
two vertices of G.

A graph G — F denotes the subgraph of G with
node faults and/or edge faults, i.e., a faulty network,
where F' C V(G) |J BE(G). Let k be a positive integer.
A graph G is k-hamiltonian if G — F is hamiltonian for
any F with |F| < k. That is, a ring can still be embed-
ded into a faulty network G — F. Similarily, a graph
G is k-hamiltonian connected if G — F' is hamiltonian
connected for any F' with |F| < k.

We now introduce some definitions.

Definition 1 Two two-digit binary strings z = 130
and y = y1yo are pair related, denoted as © ~ vy, if and
only if (z,y) € (00,00), (10, 10), (01, 11), (11, 01).

Definition 2 An n-dimension crossed cube CQn isa
graph CQn = (V, E) that is recursively constructed as
follows: CQ1 is a complete graph with two vertices
labeled by 0 and 1, respectively. CQ, consists of two
identical (n — 1)-dimension crossed cubes CQ2_, and
CQL_1. The vertez u = Oun—s...up € V(CQ4_,)
and verter v = lvp—2...v0 € V(CQL_,) are adjacent
tn CQyr if and only if

(1) Wn—2 = Vo2 if 0 is even,and

(2) foro<i< l_ngl_I, U241 U25 ~ V24102i .

We denote CQ%_, and CQL_, as the subcrossed
cubes of CQn. In addition, we define the edge set
Ee = {(uwo,w1) | (vo,m1) € E,uo € CQ%_, and
w1 € CQr_1} of CQn as the set of crossing edges
of CQn. For any edge e = (uo,u1) € E., the ver-
tices up and w1 are called crossing nodes of each other.
Clearly, there are 2"~ crossing edges and 2™~! pairs
of crossing nodes in CQ,.

Examples of CQs; and CQq are shown in Fig. 1.
From above two definitions, we know that every vertex
in CQn with a leading bit 0 has exactly one neighbor
with a leading bit 1 and vice versa. It is obvious that,
CQn is connected, regular graph of degree n with 2"
vertices.

In Hypercube, there is a simple rule that an edge
(u,v) exists, if and only if  differs from v in exactly
one bit. However, the rule for a crossed cube is a little

Figure 1: CQ, for n=34.

more complicated. According to definition 2, for all
n > 1, the edge (¥ = wn_1Un—2... ww-1 ... uo,v =
Un—1Vn-2... V-1 ...v) exists in CQ, if and only if
there exists an [ with

(1) Un—-1Un-2...U = Up—-1VUp-2... v,

(2) w—1 =3,

(3) wi—2 = v if I is even, and

(4) for 0 < i < |55, wipruzi ~ vaip1ves.

If both of the rules (1) and (2) hold, we say that
u and v have a lefimost differing bit at position [ — 1.
We refer to rulers (3) and (4) as the pairing rules. If {
is odd, the rule (3) is not used.

3. Hamiltoian Cycles in Crossed Cubes

We will prove that a ring of length 2™ — £, can be
embedded in CQ,, with f, faulty nodes and f. faulty
edges, where f, + fo < n — 2. That is, we will prove
that CQn is (n— 2)-hamiltonian, for n > 3. Moreover,
we will show that CQ, is (n — 3)-hamiltonian con-
nected, for n > 3. For simplifying our proof, we are
not distinct from the f. and f,, and use |F| = f. + f,.
Our proof is by induction on n, and the outline of our
proof is as follows: First, for the induction base, we
prove that CQ3 is 1-hamiltonian and hamiltonian con-
nected, and CQ, is 2-hamiltonian and 1-hamiltonian
connected. Next, asstuming CQy, is (k—2)-hamiltonian
and (k — 3)-hamiltonian connected, for 4 < k < n,
we will show that CQny1 is (n — 1)-hamiltonian and
(n—2)-hamiltonian connected. To start our induction,
let us look at the CQs and CQy.

Recall that Fig. (1-a) and (1-b) are two isomorphic
CQs’s, where the vertices of Fig. (1-a) are labeled
with binary numbers and the vertices of Fig. (1-b) are
labeled with decimal numbers.

Lemma 1 CQs is 1-hamiltonian and hamiltonian
connected.

Proof: (1). It is easy to show that CQj is 1-
hamiltonian. For example, if the node 1 is faulty,
0,2,3,5,7,6,4,0) is a fault-free hamiltonian cycle.
Since Fig. (1-b) is a node symmetric graph, it is ob-
vious that there are fault-free Hamiltonian cycles for
any node fault.
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if the edge (04) is

faulty,
(0,1,7,6,4,5,3,2,0) is a fault-free hamiltonian cycle
and if the edge (0,2) is faulty, (0,1,7,6,2,3,5,4,0) is
another fault-free hamiltonian cycle. Since Fig. 1-(b)
is a symmetric graph, there are fault-free Hamiltonian
cycles for any edge fault.

For instance,

(2). We want to show that CQz is hamil-
tonian connected too.  From Fig.  (1-b), we
can find that (0,2,6,7,1,3,5,4), (0,4,6,2,3,1,7,5),
(0,2,6,4,5,7,1,3) and (0,4,5,3,1,7,6,2) are hamil-
tonian paths between the node 0 and 4, 0 and 5, 0
and 3, and 0 and 2, respectively. Since Fig. (1-b) is
a node symmetric graph, there are Hamiltonian paths
between the node 0 and 6, 0 and 7, 0 and 1. Therefore,
CQs3 is hamiltonian connected. [m}

For simplicity, we assume that CQs is 2-
hamiltonian and 1-hamiltonian connected. Then, we
will denoted P(w,u) as a path (w,...u) between w
and u, and HP(w,u) as a hamiltonian path between
w and u in faulty or fault-free CQr. In addition, we
use the notation HCp to denoted a hamiltonian cycle
in faulty or fault-free CQS and HC) as a hamiltonian
cycle in faulty or fault-free CQ5.

Lemma 2 IfCQn is (n—2)-hamiltonian and (n—3)-
harniltonian connected, CQn+1 is (n—1)-hamiltonian,
where n > 4.

Proof: Let E. be the set of crossing edges, i.e.,
E. = {(uo,ul) | (uo,ul) € E,ug € CQ% and u; €
CQL}. Let F be a faulty set of CQn41 with Fo =
FNCQRY, Fr = FNCQL, and F. = FNE., and
let fo = |F0|, fi = |F1l, fo = |Fc| We will show
that CQn+41 is (n — 1)-hamiltonian, in the following
three cases: (1) The faults are scattered (at least two
of fo, fi, and f. are greater then zero). (2) All of
the faults are located in the same CQ, (either fo >
0,fi=0,fo=00r fo=0,f1 >0,f. =0). (3) All of
the faults are located in E. (fo =0,f1 =0, f. > 0).

cq cqQ, CQ, cQ,
W, W,
w, | (w,w )| w, . (W, W, !
U,it,) HP(w,.u,)
i,
u,
HP(u,w, )
(u,.u,)
Plw, o, } HP(u,.w,) u, u,
{a) casel (b) case2

Figure 2: Nustration for Lemma 2.

Case 1: The faults are scattered in CQ%, CQL, and
E., shown in Fig. (2-a); Without loss of generality, we
assume that fo > fi. If at least two of fo, f1 and f. are

greater than zero, then fi < fo < n — 2. We want to
prove that fi < n—3. fi is strictly either less than n—2
or equal to n—2. Suppose fi = n—2then fo = 1. Since
fo > f1, then 1 > n — 2 and 3 > n, contradicting the
fact that n > 4. Thus, fi <n—-3and fi+ fe <n-2,
where n > 4. Since CQ2 is (n — 2)-hamiltonian and
fo € n — 2, there exists a hamiltonian cycle, HCy,
with at least 2" — (n — 2) edges. We now show that
there exists an edge (wo,u0) € HCp such that the
crossing nodes w; and uy of wo and up respectively
are both fault-free and the crossing edges (wo, w1) and
(w0, 1) are also fault-free. Since |[HCo| > 2™ —(n—2),
we have at least 2" — (n — 2) choices. If none of the
edges of HCp meets the requirements of (wo, to), then
there are at least [211——(2"'2—)1 faults in Fy and F.. (be-
cause a single fault in either Fy or F. eliminates at
most 2 edges of HCy), contradicting the fact that
fr + fo £ n—2, for n > 4. Therefore, we can find
such an edge (wo, o) and then HCo = (wo, P(wo, uo),
uo,wo). Because CQ} is (n — 3)-hamiltonian con-
nected and fi < n — 3, there exists a hamiltonian
path between u; and wy, ie., HP(u;,w1). Hence,
(wo, P(wo, o), uo, w1, HP(u1, w1), wy,wo) is a fault-
free hamiltonian cycle between z and y in CQn+1.

Case 2: Al of the faults are located in the same
CQi,, for i = 0,1, shown in Fig. (2-b): Without loss
of generality, we assume that all of the faults are lo-
cated in CQ% and fo = n — 1. Since CQY is (n — 2)-
hamiltonian, there exists two vertices wo and uo, such
that there is a hamiltonian path between wp and wuo,
say HP(wo,uo). Let w1 be the crossing node of wo
and u; be the crossing. node of upo. We know that
w1, u1, (wo,w1) and (uo, u1) are all fault-free, because
there are no faults in either E. or CQL. Farthermore,
since CQ; is hamiltonian connected, there exists a
hamiltonian path between u; and wy, i.e., F P(u1,w1).
Hence, (wo, HP(wo, uo), uo, u1, HP(u1,w1), w1, wo) is
a fault-free hamiltonian cycle in CQn+1-

Case 3: All of the faults € E.. Because there
are 2" crossing edges in CQn+41, there are at least
(2" — (n — 1)) > 2 fault-free crossing edges, where
n > 4. We can choose two fault-free crossing
edges (wo,w1) and (uo,u:). Since both CQY and
CQL are (n — 3)-hamilténian connected, there exist
HP(wo,u0) in CQ% and HP(uy,w1) in CQL. Hence,
(wo, HP(wo,uo), uo,u1, HP(u1,w1), wa,wo ) is a
fault-free hamiltonian cycle in CQn41. This completes
the proof of the lemma. m]

We need the following auxiliary lemma in Lemma
4. One may skip the poof temporarily, and come back
for it afterwards.

Lemma 3 Assume that CQn—1 is hamiltonian con-
nected. In a foult-free CQn with 4 distinct vertices
w,u,z, and y, if w € CQ2_y and w € CQhL_y, there
exist two disjoint paths between w and x, and u and
y or between w and y, and u and . Moreover, these
two disjoint paths traverse all vertices of CQn.

Proof: Case (a): Since CQ%_, is hamiltonian
connected, there exists a hamiltonian path between
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HP'(b,u )

HP'(u,y)

(a) casel (b) case2

Figure 3: Illustration for Lemma 3.

z and w, ie, HP(z,w). Similarly, there exists a
hamiltonian path HP(u,y) between » and y. Hence,
{z, HP(z,w),w) and (u, HP(u,y),y) are the two dis-
Jjoint paths, shown in Fig. (3-a).

Case (b): « and y are in the same sub-crossed cube
CQn-1 of CQp, shown in Fig. (3-b): Without loss of
generality, we assume that both x and y € CQ%_,.
Since CQJ_, is hamiltonian connected, there exists a
hamiltonian path HP(z,y) between z and y. Let a
and z be the two neighboring nodes of w on HP(z,y).
The]_.‘.l, HP($7y) = (a:,P(:c,a),a,w,z,P(z,y),y). And
let b be the crossing node of a. Assume b # u.
Then, there exists a hamiltonian path between b and
u because CQp-1 is hamiltonian connected. Hence,
(z,P(z,a),a,b,HP(b,u),u) and (w>z7P(zyy):y) are
the two disjoint paths. In the case that b = u, we
can simply replace a with z, the similar argument as
above still holds. (]

Lemma 4 If CQn-1 s (n — 3)-hamiltonian and
(n ~ 4)-hamiltonian connected and CQ, is (n — 2)-
hamiltonian and (n — 3)-hamiltonian connected, then
CQnt1 is (n—2)-hamiltonian connected, where n > 4.

Proof: We will show that there exists a hamilto-
nian path between every pair of vertices = and y in
CQn+1 with |F| < n — 2. There are three cases: (1)
The faults are scattered (at least two of fo, f1, and
fe are greater than zero). (2) All of the faults are lo-
cated in the same CQ, (either fo > 0,fi =0,f. =0
or fo =10,f1 > 0,f. = 0). (3) All of the faults are
located in E. (fo =0, /1 =0, and f. > 0).

Case 1: The faults are scattered in CQ%, CQ., and
E.. Without loss of generality, we assume that fo >
f1. Because any two of fo, fi and f. are greater than
zeroand fi < fo < n—3,thus fi <n—-3and fi+f. <
n— 3, where n > 4.

There are three subcases: (1.1) z € CQ2 and y €
CQ;. (1.2) both z and y € CQS%. (1.3) both z and
y € CQL.

Q@ cqQ,
x
HP(xw,) .,- | (it
o fwaw) e (waw,
w, w,
(a) casell (b) case 12

U,
2 o, ) | HP(w,u, )
Plugy)

u

{xyx) |-

(Wow,)

)
C:g

(e) case23.1

t,u, )

HP{u,y)

() case23.2

Figure 4: Illustration for Lemma, 4.

(1.1) = and y are in different CQ%, for i = 0,1,
shown in Fig. (4-a): Because there are 2™ crossing
edges in CQn1, we have at least (2" — (n — 2)) >
3 fault-free crossing edges, for n > 4. Let (wo,w:)
be one of the fault-free crossing edges, wo # z, and
w1 # y. Since CQY is (n — 3)-hamiltonian connected
and fo < n — 3, there exist a fault-free hamiltonian
path HP(z,wo) in CQY. Similarly, since CQ?L is (n —
3)-hamiltonian connected and f; < n — 3, there also
exist a fault-free hamiltonian path HP(w1,y) in CQL.
Hence, (z, HP(z,wo), wo, w1, HP(w1,y),y) is a fault-
free hamiltonian path between & and y in CQpn.

(1.2) Both z and y are in the same CQ, for
t = 0,1, shown in Fig. (4-b): Without loss of gen-
erality, we assume that ¢ = 0. Since CQ2 is (n — 3)-
hamiltonian connected and fo < n — 3, there exists a
hamiltonian path HP(z,y) between z and y. Since

|HP(z,y)] > 2" ~ (n — 3), and we have at least

2" — (n — 3) choices, where n > 4. We can find
an edge (wo, uo) on the path HP(xz,y) such that the
crossing node w1 and u; of wo and wup respectively
are both fault-free and the crossing edges (wo,w;)
and (uo, 1) are also fault-free. Then, HP(z,y) = (z,
P(z,wo), wo,uo, P(uo,y),y). Since CQL is (n — 3)-
hamiltonian connected and f; < n — 3, there exists a
hamiltonian path between w; and vy, i.e., HP (w1, u1).
Hence, (HP(z,y)U{(wo, 1), (w0, u1) JUHP(wy, u1))—
{(wo, uo)} is a fault-free hamiltonian path in CQnqy.
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(1.3) Both z and y are € CQL: This case is sym-
metric to the case (1.2).

Case 2: All of the faults are in the same CQx.

Assume all of faults are located in CQ°. There are
three subcases: (2.1) ¢ € CQ% and y € COL (2.2)
both z, and y € CQY (2.3) both z and y € S

(2.1) = and y are in different cQy, for i = 0,1,
shown in Fig. (4-¢): Without loss of generality, we
assume that ¢ = 0 and fo = n» — 2. Since cQ?
is (n — 2)-hamiltonian, there exists a hamiltonian
cycle with vertices uo and wp adjacent to , ie.,
HCy = {(z,u0, P(uo, wo), wo, z). Let wy be the cross-
ing node of wo and w1 be the crossing node of wuo.
We know that (wo,w:) and (uo,u1) are fault-free, be-
cause there are no faults in E,. Since CQ. is hamil-
tonian connected, there exists a hamiltonian path be-
tween w; and y, ie., HP(w1,y). Hence, if w1 # y,
(z, o, P(uo, wo), wo, w1, HP (w1, y),y) is a fault-free
hamiltonian path between z and y in CQn41. Other-
wise, (:v,wo,P(wo,uo),uo,ul,HP(ul,y),y) is a fault-
free hamiltonian path between z and y in CQn41-

(2.2) Both z, and y are € CQ?, shown in Fig. (4-
d): Let d be a fault of F. Since cQl is (n — 3)-
hamiltonian connected, CQ% — (F — {d}) contains a
hamiltonian path between z and y, ie., HP(z,y).
Thus, CQ% — F contains two node-disjoint paths
P(z,wo) and P(uo,y), where P(z,wo) U P(uo,y) =
HP(z,y) — {d}. Because CQx is (n — 3)-hamiltonian
connected and n — 3 > 0, there exists a hamiltonian
path between wy and u1, ie., HP(w1,u). Hence, (z,
P(IL‘,wo), wo, W, HP(’I.U1,'£L1), u1, %o, P(uo)y)>y> is a
hamiltonian path between x and y in CQn+1.

(2.3) Both z and y € cQL.

There are another two subcases in this case. Let
zo € CQ2 be the crossing node of z and yo € CQ% be
the crossing node of y.

(2.3.1) Both zo and yo are faulty, shown in Fig. (4-
e): Since CQ% is (n — 2)-hamiltonian and fo =n — 2,
there exists a hamiltonian cycle HCo. Since HCo is a
hamiltonian cycle, there are at least two edges cross-
ing the two sub-crossed cubes of CQ%. Let one of
the edges be (wo,u0) and w1 be the crossing node
of wo, and u; be the crossing node of uo. Since wo
and ug belong to different sub-crossed cube of cQl,
w; and u; must also belong to different sub-crossed
cube of CQL. In addition, zo and yo are both faulty,
therefore wy, and ui can't be either = or y. Since
CQY is fault-free, by Lemma 3, we have four district
vertices uj,w1,T,Yy, therefore there are two disjoint
paths, which traverse through all vertices of CQL,
say, (z, P(z,w1),w1) and {u1, P(wu1,y), y). Hence,
($7P($7w1)7 w1, Wo, P(w03u0)7 uovuhP(uhy))y) isa
fault-free hamiltonian path between z and y in CQn1.

(2.3.2) At least one of o or Yo is fault-free, shown
in Fig. (4-f): Assume zo is fault-free. Since cQY is

(n — 2)-hamiltonian and fo = n — 2, there exists a
hamiltonian cycle containing vertex zo, ie., H Co =
(0, wo, P(wo,uo), uo, o). Let u1 be crossing node of
uo and u; # y (if w1 =y, we can simply use wo to re-
place ug)~ Since CQ is (n—3)-hamiltonian connected
and n — 3 > 1, there exists HP(u1,y) in cQRL - {z}.
Hence, {x, zo, wo, P(wo, uo), o, 21, HP(u1,y),y) is a
fault-free hamiltonian path between z and y in CQn+1.

Case 3: All of the faults € E..

There are also three subcases: (3.1) z € CQ}, and
y € CQL (3.2) both = and y € CQy (3.3) both = and
y € CQr.

(3.1) z € CQ° and y € CQ. The conditions of
this case are in fact similar to the case (1.1). The
same arguments used in case (1.1) can also be applied
here to obtain a fault-free hamiltonian path between
z and y.

(3.2) Both & and y € CQ5. The conditions of this
case are in fact similar to the case (1.2). We can find
an edge (wo, uo) from CQ?% and fault-free vertices and
edges w1, u1, (wo, w1), and (uo, u1) from CQ?% and E.
with the fact that (2" — 2(n — 2)) > 2. Therefore, a
similar hamiltonian path between z and y as in the
case (1.2) can be found.

(3.3) This case is symmetric to the case (3.2). This
completes the proof of the lemma. D

Now we are ready to prove our main theorem.

Theorem 1 CQn is (n-2)-hamiltonian and. (n-38)-
hamiltonian connected, for n > 3.

Proof: By Lemma 1, CQs is 1-hamiltonian and
hamiltonian connected in addition to assume that CQ4

is 2-hamiltonian and 1-hamiltonian connected. Then,

by Lemma 2 and 4, CQn is (n-2)-hamiltonian and (n-
3)-hamiltonian connected. Therefore, by induction,
this theorem is true. 0

4. Conclusions

This paper focuses on the study of a faulty crossed
n-cube, CQn—(fs+fe), which contains f, faulty nodes
and f. faulty edges. We prove that a ring of length
2" — £, can be embedded in afaulty CQ» with fotfe <
n — 2. That is, all of the fault-free vertices can be
included in the ring in the faulty CQ,. This result is
optimal, since there is no hamiltonian cycle in aregular
graph with degree n, which can hold over 1z — 2 faults.
We have also proved another optimal result that there
exists a hamiltonian path between any pair of vertices
in a faulty CQ, with n — 3 faults.
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