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ABSTRACT

The EM (Expectation-Maximization) algorithm is a
broadly applicable method for calculating maximum
likelihood estimates given ‘incomplete ‘data[1}. The EM
algorithm has received considerable aitention due to their
computation - feasibility -+ in = tomographic - image
reconstruction{2~3], and parameter estimation[6]. However,
it is less recognized that the EM algorithm can be equally
applicable to image enhancement applications encountered
in scanning, reproduction and rendering processes. No past
techniques surveyed can incorporate the potentially complex
nature of varions image formation processes into a simple
probability density array as the EM procedure does. In this
paper. an image enhancement technique utilizing the EM
procedure to model the image formation process is proposed.
By dynamically giving a priori probability distribution
suited for a specific application environment . currently
considered, the proposed method provides a general
framework for rendering good image quality at the
designated resolution for a large class of image formation
processes.

1. INTRODUCTION

The Expectation-Maximization (EM) algorithm was_

first used for calculating maximum likelihood (ML)
estimations given incomplete data[l]. The EM algorithn
incorporates the potentially complex nature of image
formation process into a simple probability array and uses
iterative method to restore the complex nature of image
formation process. Hence, in recent years, the EM paradigm
has been applied to tomographic image reconstruction [2],
symbol detection[7], parameter estimation{8], and time
delay estimation for filtered Poisson Processing[6]. However,
no past techniques surveyed can incorporate the potentially
complex nature of various image formation processes into a
simple probability density array as the EM procedure does.
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In this paper, a resolution and contrast enhancement method
utilizing the EM procedure is proposed.

EM algorithm

The EM algorithm is a very general iterative
algorithm for ML estimation in incomplete data problems.
In fact, the range of problems that can be attacked by the
EM is very broad and includes applications not usually
considered to be ones arising from missing or incomplete
data, e.g., variance components estimation, iteratively
reweighted least squares[11]. The EM algorithm formalizes
a relatively old ad hoc idea for handling incomplete data by
replacing incomplete values by estimated values first, then
estimate parameters. The newly acquired parameters is used
to reestimated the incomplete values assumimg the new
parameter estimates are correct. The whole procedure is
repeated until parameter converges.

The EM algorithm is modeled as the complete data

log-likelihood function
I(X19) = In L(X16),

where X is the complete data, / is the function of the log-
likelihood function, L is the likelihood function, @ is the
parameter needed to be estimated. More generally, missing
sufficient statistics rather than individual observations need
to be estimated, and even more generally, the log-likelihood
I(X]6) itself needs to be estimated at each iteration of the
algorithm.

The earliest reference surveyed ocomes from
McKendrick, who applies the EM algorithm to a medical
application{12]. Hartley develops the theory quite
extensively and comsiders the general case of counted
data[11]. Baum et al. uses the algorithm in a Markov model
and proves essential mathematical results, results that can be
easily generalized[15]. Orchard and Woodbury first notice
the general applicability of the underlying idea, calling it the
“missing information principle[13].” Sundberg explicitly



considers properties of the general liketihood equations[14],
and Beale and Little further develop the theory for the
normal model[10]. The term EM is introduced in Dempster,
Laird. and Rubin[l], and their work exposed the full
generality of the algorithm by (1) proving general resulis
about its behavior, specifically that each iteration increases
the log-likelihood /(¥]6), where ¥ is the incomplete data,
and (2) providing a wide range of examples. Since 1977,
there have been many new usages of the EM algorithm, as
well as works relating to its convergence properties[9].

Each iteration of the EM consists of an E step
(expectation step) and an M step (maximization step). These
steps are ofien easy to construct conceptually, to program for
calculation, and to fit into computer storage. Also each step
has a direct statistical interpretation. An additional
advantage of the algorithm is that it can be shown to
converge reliably, in the sense that under general conditions,
as the number of iteration increases, the log-likelihood /(Y] 6)
converges {1]. The EM algorithin has the following
desirable properties: (1) If /(X]6) is an exponential family
and /(110) is bounded, then ¢”, the /" iteration of parameter
0, converges. (2) If /(¥}6) is bounded then /(¥}¢") will
converge. (3) Monotonic increase of /(Y)6) at each iteration
to a unique point to ensure the validity of the algorithm. A
disadvantage common to the EM algorithm is that its rate of
convergence can be painfully slow if a lot of data are
unobserved.

The E step and M step

The E (expectation) step finds the conditional
expectation of the “complete data™ given the observed data
and current estimated parameters. Specifically, let #” be the
current (/™) estimate of the parameter 6. In the E-step, a
conditional expectation is formulated by defining:

Q(01¢%) =E(UX19) | 1, 67,

where .\ represents the complete data set, ¥ the incomplete
data set. and £(.) the mathematical expectation value.

The M (Maximization) step is simple to describe:
perform maximum likelihood estimation of &. In fact, the
M-step obtains a set of new estimates by maximizing the
conditional expectation formulated with respect to the
parameters obtained in the E-step. Effectively, the M siep of
the EM algorithm uses the same computational methods as
ML estimation from /(X]6). The M siep of the EM
determines 8" by maximizing the expected log-likelihood.

Starting the EM algorithm by arbitrary assigning the
initial value of the parameter needs o be estimaied. Then
from the E-step, a new formula is generated by deriving the
conditional expectaition with respect to the parameter,
followed by the M-step, a set of new estimate with respect to
the parameter is formed by solving the equation generaied
from E-step. By following this procedure, an iteration of the
EM algorithm is complete. This iterative process has the
desirable properties of maximizing the likelihood function
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defined on the measured data monotonically{l], and
converging to a global maximum at a unique poini[9]. The
E-step followed by the M-step is compuied iteratively until
the parameters converged. Since each iteration of the
algorithm consists of an expectation step followed by a
maximization step, this iterative procedure is called the EM
algorithm. The EM algorithm is useful because of its
computational simplicity, and provides a numerical method
to find the ML estimates.

A multinomial example[1]

Suppose that the data vector of observed counts ¥ =
(38, 34, 125) is postulated to arise from a multinomial with
cell probabilities

(L-loloLile)
2 2 472 4

The objective is to find the ML estimate of 6. Define X" = (v,,
¥2, V3, ¥4) to be multinomial with probability

(1-lololel)
2 2 4 4 2

where Y = (v, ¥2, ¥3+v4). Notice that if ¥ were observed, the
ML estimate of 6 would be immediate:

Tty

N HVy s
Also note that the log-likelihood /(X|#) is linear in X, so
finding the expectation of /(X]6) given @ and Y involves the

same calculation as finding the expectation of X given @ and
¥, which in effect fills in estimates of the incomplete values:

E(1,10,Y) =38,
E(y,10,7) =34,

E(y3I6’,Y)=12520/(%+59),

E(y419,Y)=125(%)/(%+i:9).

Thus at the iteration, with estimate , we have for the E

step
y(t) — 12%(19([)}/(1+i‘9(t))
’ 4 2 4 |

and for the M step, we have

g = (344‘_}/;[))/(72 +}/§t))~

Iteration between the E step and M step defines the EM
algorithm for this problem. In fact, setiing

8"V =6 =@ and combining these two equations

vields a quadratic in @ and thus a closed-forn solution for
the ML estimate.
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Our work

A schematic representation of the application of the
EM algorithm to resolution enhancement encountered in the
scanning process is shown in Figure 1. A fluorescent light
source pulled by a tracking mechanism from top to bottom
emits light on the surface of the scanned hardcopy. The
intensity of the light reflected is then detected by an array of
light semsors. However, the intensity registered by any
specific sensor is affected not only by the area bounded by
scanner resolution, but also neighboring areas due to the
diffusion of light. The proposed method utilizing the EM
procedure can be used to compensate the above effect,
restore original density, or increase resolution if desired.

light source N
L

L L
LD L ' scanning direction
sensor array
cnglomerate of image cells
document to be scanned

Figure 1 Image formation process and the spatial
relationship between sensor array and image cells.

Let the intensities detected by the sensor array
correspond to the incomplete data set {I';}, and the complete
data set {Yj;,.,}, defined as the physically un-measurable
actual image intensity located at cell (m, n), distributed by
parameter yet to be determined A,,,, and registered in sensor
(i. 7). The dimensions of ¥ and A need not to be the same.
Due to the hardware cost, the number of sensors is almost
always less than the number of image cells in the actual
application. Hence, the problems we are targeting can be
stated as: “Given the limited spatial resolution of sensor
array, how can we best compensate the physical
configuration of the underlying imaging digitization system
and render the output at the desired resolution?” No past
techniques surveyed can incorporate the potentially complex
nature of image formation process into a simple probability
array as the EM procedure does. Factors affecting the

sampling processing include type of light source, the spatial
configuration between light source, the scanned document
and sensor array, the surface of the origin which affects the
pattern of light scattering, the senmsitivity of sensors and
registration errors, etc. The new enhancemeni method
proposed in this paper can obtain resolution at any desired
scale given the intensities registered by the finite number of
sensors, and the spatial correspondence between sensors (i, /)
and image cells (m, n). The EM operation for a one-to-one
mapping between .Y and ! represents image density
compensation or re-calibration, while a many-to-one
mapping means resolution enhancement. By incorporating
all physical factors involved in the image formation process,
the probability density function {Cj;;} representing the light
intensity emitted from cell (m. ) and detected by sensor (7, j)
can be formed. An iterative equation forrnulated by
employing the EM paradigm is as follows:

ey | A Yy

g =| oo | 22 i
ZZCJJ‘.mn iy ZZCJ,,S/I(IQ
17 rs

(® e
Where A, represents the /* estimate of A .

The same principle can be adapted to various
imaging systems by incorporating all physical factors into
{Cy;m} and specifying different spatial relationship between
cells and sensors. Take a rod-like arrangement of sensors for
example, the {Cj;..} can be confined to a rectangular area,
served as an indication for the line semsor setup, with
amplitude inverse proportional to the distance from the
center cell considered, reflecting an energy drop (ref. Figure
2). If a one-to-one spatial mapping between image cell and
sensor is specified, then the EM procedure redistributes the
intensity of image cell detected according to the probability
density matrix {Cj;..; postulated. On the other hand, if a
many-to-one mapping is specified, an interpolation of cells
is performed based on the cells detected and the probability
density matrix {C;.,}. An enhancement in resolution is
achieved. In comparison with other interpolation techniques,
e.g., linear interpolation between neighboring image cells,
the EM algorithms has the advantage of incorporating all
the physical factors affecting a complex image formation
into a single probability density matrix {Cjn,} and thus
gives better results.

0.00030| 0.00174| 0.01373 | 0.03662 | 0.06409 | 0.07690| 0.06409

0.03662 | 0.01373 | 0.00174 | 0.00030

0.00036 | 0.00367 | 0.01648 | 0.04394 0.07960

0.04394 | 0.01648 | 0.00367 | 0.00036

0.00030| 0.00174

0.07960 }.09229
0.01373 | 0.03662 | 0.06409 /0.07690

0.06409

0.03662 | 0.01373 | 0.00174| 0.00030

/

center cell

Figure 2 The probability density matrix {Cj;,; for an
exemplary rod-like arrangement of sensors.
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The EM algorithm can use not only in resolution
enhancement but also in image scaling operations. In the
past, methods used for changing the scale of an image are
usually simple duplication or linear interpolation. In simple



duplication technique, a pixel is filled with duplicated
luminance value of existing nearest neighboring pixel. The
linear interpolation method uses linear weighting for
assigning new pixel values according to distances to existing
neighboring pixels. The interpolated pixel value is a linear
function of the distance to its neighboring sampled pixels.
This method usually has better interpolated result than the
simple duplication one. However, both methods tend to blur
the image and reduce the high frequency component. In
contrast, the EM algorithm uses probability density function
to represent the complex nature of image. It may include all
the configuration factors that may affect the image scaling.
Thus, it has the potential to produce better image quality
than those of simple duplication method and interpolation
method. The EM algorithm is an image sharpening process
that can restore the fine details of a blurred image.

2. THE IMAGE MODEL AND FORMULA
DERIVATION

In this section, we present a contrast and resolution
enhancement technique by incorporating the potentially
complex nature of various image formation processes into a
simple probability density array using EM algorithm. No
past techniques surveyed can represent such complex nature
of various image formation process into a simple probability
density array. Restoration of the original intensity or
increasing the image resolution can be reached. The spatial
arrangement of photodetecting array, suited for a specific
application environment, is used as a priori information by
setting up a corresponding probability distribution. Through
the EM iterative formulation, the restored image intensity is
obtained at the desirable preset resolution. Contrast
enhancement using a Gaussian blurred image as test image

@) Sensors in the photodetecting array. The
itensity detected is corresponding to the
incomplete observed data.

A Denotes the original data {1, }, deriving
from the iteration of EM algorithm. A one
to three resolution enhancement is
obtained in both horizontal and vertical
direction.

Figure 3 The image model. (a) The observed image,
incomplete data set in the EM formulation, from the
scanning process. (b) The image afier a scale change of one
to three.
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is performed. The result obtained from enlarging an image
using the EM algorithm is compared with those by simple
duplication and linear interpolation methods. The
simulation study shows the EM algorithm is a feasible
method for a large class of image processing applications.

The Image Model

The relationship between observed data and
parameters to be estimated in using the EM formulation is
described first. Consider the diagram shown in Figure 3.
Figure 3(a) represents the pixels obtained from an image
scanning device. It is an array of grayscale image with size
NEM. Let i and j represent the horizontal and vertical
coordinates on the plane of the sensor array respectively,
where i = 1,... N and j = I....M. The gray level of the
observed image detected by the (i, /)™ semsor on the
photodetecting array is denoted as ¥;. Figure 3(b) represents
an image after performing scale change of the original
scanned image in (a). A one to three scale change is
demonstrated in both the horizontal and vertical directions.
Therefore, in our EM formulation, Yy, the pixel value
obtained from the scanning process, corresponds to the
incomplete data, while the newly added pixel value A,
maps to the parameters yet to be determined. The complete
data set {Xj;m,} represents the number of photons emitting
from cell (m, n) and detected by sensor located in (i, ). This
complete data set can not be measured physically. Given the
observed, incomplete data set {¥;;}, which is limited by the
resolution of sensor array, and the specified mapping
relationship between {Y;;} and an unobservable complete
data set {Xjm.}, which corresponds to the image plane
resolution, the EM algorithm can estimate the parameters
iteratively to  restore = the comect value of
unobservablecomplete data set {.Xj;.}.

In summary, the following symbols are used in the

formulation of the EM algorithm:

1. {¥,} is the luminance value detected by the sensor
located in (7, /). It also corresponds to the observable,
incomplete data in our EM formulation.

2. {Xiimn} is the number of photons emitted from cell (i,
n) and detected by sensor located in (i, j), This
corresponds to the unobservable, complete data in our
EM formulation. .Y};.., can not be measured physically.
Normally, the observable data Y;;is an accumulation of
the photons emitted from all the image cells and
detected by sensor located in (i, ), ie.,

Yz)‘ :ZZXJ.mn .
ma

3. {Ama} is the total number of photons emitted from
image cell (m, n). The photons emitted may be detected
by more than one sensors due to the angle of emission,

ie., ;Lmn:ZZXxj‘,nm This is the set of
75

parameiers needed to be estimated.
4. Given observed, fixed resolution i x j image, we can
stipulate the dimensions of m and n, m>7/,n> ;.
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the mapping between (m, n) and (i, j) according to
certain image formation model, and formulate an EM
iterative procedure to obtain an image with better
resolution m x n.

Formula Derivation
According to the notations given above, we can
establish the following relationship:

Yi=2 Xjmm O
mn

With the photon emission behavior, the expected value with
the configuration of the photon emission, the expected value
of .\, given A, can be defined as:

Nij,m EE(X;)'.JmM) =Cjutm @

where {Cj;m,} are the probability that photons emitted from
cell (m, n) and detected by sensor (i, /). In principle, {Cj;mn}
can incorporate every physical factor involved in the image
formation process, not just the geormetric orientation
between image cell and sensor location mentioned
previously. Thus, it can be assigned dynamically to meet the
requirement of specific imaging system. From the Poisson
nature of the photon emission process, the conditional
probability density function of {X};.,} given 1 is:

L i
.&]ﬂ__.exp(-. Ny,mn) .

X!
All the elements of {Xj;..} are independently identically
distribution (iid). The likelihood function of the complete
data set L{X]A), the likelihood function by definition, can be

expressed in terms of the joint probability density function
as:

P(Xj ml2)=

LX) =TI A(X e 14).
i jmn
Substituting the expression for P(Y};,..J4) back to the above
equation, we can rewrite the likelihood function as:
Ny o
L(X12) =TI T —22
I jmn ij,mn!
Take the logarithm of the above likelihood function on both
sides. we obtain

exp(— ij,mn).

Xy

[ Z(x14)]=1n m ?E?Wew(— N o)
y,mn
= ZZTE[ Ny + X (N o) = 10X 5 )|

I Jman
From the above equation, we can then proceed with the E-
step and M-step of the EM algorithm.

The E-step: In the E-step of the EM algorithm, a
conditional expectation of In[L(Y]1)] with respect to the
incomplete data set, {Y;}, and the current(t‘“)

estimates, A([), is formulated by defining:
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OE(AI/I(‘) EE[M[(AMIY.A(')} ’ o
=§§§§ N+ Xty A ]anj,m]+Z

where Z is independent of A. By the definition of conditional
expectation and the relationship between {Y;} and {Xj .}
from equation (1), the following equation can be derived.

Ay mlry A) = E(Xf/'nm ‘
[zzxg W)E(Xu m [)) ¥ E(Yu ) )
%%E(X‘,',slﬂ- ) E(" )

According to the definition of the expectation value of Yy n
given A from equation (2), replace A with the current )

ol
IZ2 X ) @

estimation l(r) , and 1, by and its /1227.
E(Xy, 0l 2) = V3 = C (5)

Substituting equations (4) and (5) into (3), we can obtain the
following equation:

(1)<
' Gy
SR | S s

The M-step: The M-step is falrly straightforward, the next
(¢+1)™ estimation of 1 is calculated by maximizing Qz(A")
with respect to A,,. First, differentiate QE(JM“)) with respect
t0 s and let it equal to zero.

e G Gy |
( ]OE( ) L ( S /{“]

of 1575

The above equation is solved to yield the mext (t+I)®
estimate of A:

() oy
() ) Fm ‘ZZCy'.m——‘YIJ :

mn C- e t
?? iomn || 1 J %%C;j,mﬂg’s)

The E-step and M-step are repeated iteratively until {A,,}
converges. The probability density of complete data set
{X;imn} and incomplete data set {¥;;} are exponential family.
Hence, from the property of the EM algoirthm, through the
iterative method, the EM algorithm guarantees the
parameter will converge tc an unique global maximum
point.



3. SIMULATION RESULTS

The EM procedure developed is applied to the
contrast and resolution enhancement of test images in this
section. The simulation is divided into two parts. In the first
part, the original 256x256 Lena image is blurred by using a
mask following Gaussian amplitude, simulating the light
scattering pattern occurred in the scanning process. The
dimensions of the image before and after applying the EM
procedure are the same. The image is deblurred by
determining the {Cj;»»} first, then following the expectation
and maximization steps iteratively. In the second pait, The
original Lena image is scale down first, then enlarged itina
one-to-three scale horizontally and vertically by the EM
algorithm, simple = duplication method and linear
interpolation method.

Deblurring simulation

The image is first blurred by using a mask with
Gaussian amplitude. The values of the mask are determined
according to the Gaussian distribution, That is, the value of
the element in the mask depends on the distance betweén the
element and the center element. The Gaussian distribution
has the probability density function as following:

P(X)~G(,u,62),

2o

where g is the mean value of the samples, o is the variance
of the samples in the probability sense. The value of the u
and o can be specified directly, The element within the
mask is evaluated according to the following formulation:

(X—cx)2 +(y-ec,)?

20?2

1
m(x,y) = oo e .

where, c, is the x position of center element and c, is the y
position of center element. The center element is the
element under consideration. The gray value of the pixel is
then determined by the following formula:

NeWGrayVa]ue(X, y)= )%3 %3 m(i, J')*O.rgGraj/VaIue(i, j)
=x-3j=y-3

where NewGravValue(x, y) is the new gray value of pixel in
position (x, ¥), OrgGrayValue(i, j) is the mask value. Figire
1 is the original image and Figure 2 is the blurred image
after applying the above rod-shape Gaussian filier. After this
blurring process, a blurred image is generated and served as
the input image for the EM algorithm.

In applying of the EM algorithm to the blurred image,

the value of {Cj.,; array is set to be the same as the
Gaussian filer, the incomplete data set {.Y;;} is the blurred
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image, and the complete data set {A,,} is then the original
image. We start the EM algorithm by arbitrary assigning the
value of complete date set {1,..}, after the iteration of E-step
and M-step discussed in the previous section, a deblurred
image is obtained. Figure 3 is the deblurred result after 100
iterations of the EM algorithm.

Fel e original Lena image.

" Figure 2 The blurred version of Lena image.



Proceedings of International Conference on Image
Processing and Character Recognition

Figure 3 heeled result obtain after 100 iterations of
the EM algorithm.

ie 5 The result obtained from simple duplication
method.

Scale change )

In this part, the EM algorithm is applied to the image
scaling application. ‘A scale down version of the original
Lena image is generated first. A 3 by 3 square area in the
original image is mapped to a single pixel in the reduced
version, with the grayscale value as the average of the pixels
contained within the square, i.e.

) 1 & ¥ . .
NewPixelValue(x,y)== ¥ % OrgPixelValue(i, ),
9 i=35-2j=3r-2

where NewPixell’alue(x, y) represents the new scale down
pixel value in position (x, y); OrgPixelValue(i, j) is the
original pixel in position (i, j). The size of new image is 1/9
of the original image. The reduced and blurred version of
_the Lena image is shown in Figure 4. This image is then
served as the input image for the EM, simple duplication,
and linear interpolation procedures for enlarging to the . . ..
original scale. The enlarged and deblurred image using Figure 6 The result obtained from the linear interpolation
these three different methods are shown in Figure 5, 6 and 7. method.

The high frequency characteristic obtained from the EM
method is clearly superior to those obtained from two other
methods.

Figure 4 The scaled Lena image (1/9 of original image).

7 ‘Figure 7 The result obtained from the ‘ ‘method.
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4, CONCLUSIONS

In this paper, the application of the EM algorithm to
image contrast and resolution enhancement is proposed. The
EM algorithm is a simple numerical method and can be
easily adapted to a large class of image processing
applications. The EM algorithm can incorporate the
potentially complex nature of various image formation
processes into a single probability density array and
iteratively converge monotonically to a global maximum.
The image quality obtained from using the EM method is
superior to that of convention ones and can be applied 0 a
broad class of problems. The efficiency of the EM algorithm
has yet to be addressed. The rate of convergence can be
painfully slow if a lot of data are unobserved in the EM
paradigm. A more efficient iteration method accelerating
the convergence process is the topic to be discussed in the
future research.
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